DATA LAB. Data Lab Page 1

Size: px
Start display at page:

Download "DATA LAB. Data Lab Page 1"

Transcription

1 NOTE: This DataLab Activity Guide will be updated soon to reflect April 2015 changes DATA LAB PURPOSE. In this lab, students analyze and interpret quantitative features of their brightness graph to determine the size of the planet and the nature of its orbit. In doing so, students apply statistical & mathematical skills as well as their understanding of light, gravity, and the model from the Modeling Lab. Students will: Inspect the graph (sometimes called a light curve ) that they generated in the Image Lab, and consider how confidently they can conclude that they ve detected a transiting planet, given noisy data. Compare and contrast their data with additional data for the same star and consider whether this data makes them more or less confident. Use a Transit Modeling Tool that allows students to test different transit models (deep or shallow; long or short duration; long or short ingress and egress) against their real- world data. Use statistical analysis tools to find the best fit of the Model Transit Graph to their data. Students will determine the simplified model that is best supported by the data they collected, including quantitative estimates for their baseline and transit dip brightness values, and a measurement of the uncertainty of those values. For the culmination of this Lab students will: Interpret the light curve and its quantitative parameters to determine important features of the planet: its size, orbital tilt, and distance from its star. They ll derive the planet s size relative to its star from the fractional dip in the star s brightness. They ll use the shape of their light curve data to draw conclusions about the orientation of the planet s orbit with respect to Earth s viewpoint (edge- on or tilted). They ll estimate the relative distance of the planet from its star based on the duration of their measured transit. They will summarize what they ve learned by submitting a Press Conference Briefing to their Journal EDUCATIONAL OBJECTIVES. Like the Image Lab, this Data Lab also highlights specific science practices that are important throughout the sciences. In particular, this Lab gives students practice in interpreting data in light of a model that explains and makes predictions for what Data Lab Page 1

2 the data should look like. Students must deal with uncertainty as they interpret and draw conclusions from their data. As a result of this lab, students should be able to: Explain how all measurements have inherent uncertainty, and that every measuring instrument contributes noise (so there will always be scatter in the data when you look closely enough). Describe how obtaining more data helps to distinguish a signal from the noise. Describe how using statistical measures and a simplified model can help us draw conclusions when there is scatter in the data. (We can choose a model that minimizes the variance between the data and the model; and we can assess the amount of scatter in the data, e.g. standard deviation or standard error) SUGGESTIONS FOR LEADING THE LESSON. Introduce the Lab. As students open the Data Lab, the graph will display the communal class light curve of the star they measured in the Image Lab. (If the class investigated more than one star, you can use the Other Stars link to choose from a list of stars for which you have light curves.) Depending upon some of the factors you discussed in the Image Lab, your class may have a very messy light curve with a lot of scatter, or a curve with a more definitive dip amidst the scatter. Explain that finding a signal in the noise of random variation is fundamental to scientific investigations: ( Is the Earth getting warmer? Does aspirin help prevent heart attacks? Is Serena Williams tennis game at its peak? ). The signal we are looking for in this investigation is a particular pattern of changing brightness the tell- tale transit dip that students predicted in the Modeling Lab. But detecting exoplanets is very challenging, with many sources of noise and random scatter the telescope instrument contributes noise; the Earth s atmosphere (even on the clearest of nights) distorts the light from the stars. (We can see this with our naked eye as twinkling!) Detection Challenge 1 and 1b: Do you have evidence for a planet? 1. Following the directions on the Data Lab sidebar, students will begin by examining their graph, and deciding if they have evidence for a transit. You may want to highlight this key idea: Don t look for answers. Look for results that you can justify with the evidence you have gathered. (In real science investigations like this one, Nature doesn t come with an answer key!) Encourage students to describe the aspects of their data that give them confidence (or not) in their results. Do they see the tell- tale pattern of a transit dip in their data? 1b. After putting their first impressions in the Challenge 1 text box, students should click Save and Continue. At this point, they can click on Show Others Data to see additional data point from another class measurements of the same star on a different night. They can also click and drag their cursor on the graph to highlight a region they think might where the dip occurs. [NOTE: The Show Astronomers Prediction Button will not work until Challenge 3 of the Data Activity 5 Data Lab Page 2

3 Lab] Tell students to be sure to click Save and Continue to save their additional thoughts about whether this additional evidence gives them any more confidence they have detected an exoplanet. Data Lab Challenge 1b. Activity 5 Data Lab Page 3

4 Detection Challenge 2: How do I fit a transit model to the data? This part of the data lab immerses students in one of the central practices of authentic science using models to analyze and interpret real- world data. Explain to students that the straight- lined graph superimposed over their data is a Transit Modeling Tool. The straight line segments represent our understanding of the physics of the real world phenomena: a baseline stellar brightness; a maximum dip level; and on and off ramps where the planet is moving in front of the edge of the star s disk. Their job is to move the Red, Yellow, and Green circles to where they think these segments align with (or fit) their data. The Challenge 2 text box asks students why they think their data don t exactly match the pattern predicted by the model. They should answer this and click Save and Continue to be sure to save the Challenge 2 baseline and dip level brightness values into their journal. AFTER they have answered this, you may want to take time to explicitly discuss the use of models in science see the discussion in the appendix at the end of this Data Lab guide. Activity 5 Data Lab Page 4

5 Detection Challenge 3: Which transit model best fits my data? This part of the Lab gives students additional analytical tools to i) optimize the fit between their data and the Transit Model, ii) refine their quantitative values for the depth and duration of the transit they observed, and iii) reflect upon the uncertainty inherent in their measurements. Now, as students move the Red, Yellow, and Green circles, they will see thin grey lines that represent the distance between their individual measurements and the Transit Model. A banner at the bottom of the graph illustrates Current and Best Score values that dynamically change as students manipulate the model, allowing them to actively test which specific model minimizes the summed distance of all the point from the straight- line graph. Uncertainty: The bottom banner also shows a dynamically changing value representing the standard error a statistical calculation that depends both on the number of points in the data set AND the scatter around the particular transit model being tested. For a clear transit Activity 5 Data Lab Page 5

6 data set which has truly random variation, this bar represents the 95% confidence interval that is, if you took an infinite number of measurements of this quantity, the probability is 95% that the average would fall somewhere within this interval. But of course, there may be many other non- random (systematic) variations that can affect the fit of your class data to a particular transit model (human error, clouds, moon, etc), and that will also affect the uncertainty. You may want to have your students reflect on the fact that even though there may be significant uncertainty in their baseline and dip level values, they are still able to detect the signal of the planet crossing in front of its star. Be sure to have them click Save and Continue before moving on to Challenge 4. Detection Challenge 4: How big is my planet? For many students (and teachers), these final steps are the most exciting ones, because this is where their measurements of a dot of light turn into results that describe the physical characteristics of a real world orbiting another star! Size: To determine the size of the planet, remember the simple geometry of the model of a transit. Because the (projected) shapes of both the star and the planet are very nearly circular disks, the percentage dip in brightness caused by the black disk of the planet is simply the ratio of the area of the planet to the area of the star: (e.g., a total 100% dip in brightness would mean the planet was the same radius as the star) This means that you can easily calculate the planet/star size ratio (r/r) by taking the square root of the fraction of starlight blocked by your exoplanet: For the example of HATP 19 illustrated in Challenge 3, above, the fractional dip in brightness (ΔB/100%) would be: BASELINE DIP LEVEL = = BASELINE LEVEL The square root of = 0.148, meaning that HATP 19, according to this dataset, is times the diameter of its star. That s larger than the size of the giant planet Jupiter, compared to the Sun. By contrast, the Earth is only 0.01 times the diameter of the Sun, so it would block out only of the Sun s light (i.e. 0.01%) during a transit. To detect an Earth- sized planet would require 100 times more precision than the MicroObservatory telescope. Activity 5 Data Lab Page 6

7 To enter the correct value in the SIZE textbox, students should use their values for baseline and dip brightness and follow these 4 steps: 1. BASELINE BRIGHTNESS LEVEL FROM CHALLENGE 3 2. DIP LEVEL BRIGHTNESS LEVEL FROM CHALLENGE 3 3. PERCENTAGE DIP, ΔB/100% = (1. 2.)/1. : 4. SIZE RATIO OF PLANET/STAR, r/r = sqrt(3.): Enter the result from Step 4 into the textbox in Challenge 4, and click Save and Continue to save this value into the Journal. Detection Challenge 5: Is the planet s orbit tilted? In order to even see a transit, the orbit must be fairly Edge- On with respect to our view from Earth. Transits for most of the stars have a flat trough, indicating that the planet s orbit is nearly 90 degrees edge- on, and the planet transits across the middle of the main face of the star. But for the star TrES3, for example, the planet s orbit is tilted 8% from an edge- on view (it has an inclination of 82 degrees), so the transiting disk of the planet just grazes the star. The transit graph looks more like a V : As soon as there is a dip, the brightness returns to the baseline level. The precision of students data should typically allow them to identify whether their observations indicate a more edge- on, or more tilted, orbital plane. Have students click on the graph image that represents their choice, and then click Save and Continue. Detection Challenge 6: How close is the planet to its star? For this final important planetary characteristic, you ll use Kepler s 3 rd Law, the mathematical relationship that describes how the closer a planet is to its star, the faster it moves and so the shorter its transit time. Typically, Kepler s law is expressed as a relationship between the period (T) of the planet (it s year, or Time for one orbit), and the semi- major axis of its elliptical orbit, which for a circular orbit, is simply R, the distance between the star and planet. Kepler discovered that R 3 = T 2, where R is expressed in Astronomical Units (AU, the average Earth- Sun distance), and T in units of Earth years. In this calculation, you and your students will assume a circular orbit, and also assume that the target star is Sun- like (the same mass and diameter), so that you can directly compare the orbital speed and distance of your exoplanet with that of the Earth. (Of course your result will then only be approximate if the target star is not the same mass or diameter of the Sun.) Activity 5 Data Lab Page 7

8 Using Transit Duration and Orbital Speed to Determine Planetary Distance R While your class typically will not know the period (T) of their planet (they would have to observe at least 2 transits in a row to determine this), they DO have the transit duration, which, as a measure of the planet s orbital speed, is proportional to the square root of its orbital distance from its star (longer duration transits mean larger orbital distances). Challenge 6 Textbox: Your students can read off the orbital distance of their planet from the graphical chart on the page. For more math- based courses, you might choose to have students calculate their planet s orbital speed and then substitute that into Kepler s Law to calculate the orbital distance. If the exoplanet transits the star in, say, 3 hours, then its approximate speed (v) is simply the diameter of a Sun- like star (1.4 million km) divided by the transit duration (3 hrs) = 467,000 km/hr. By comparing this orbital speed with the Earth s orbital speed (about 100,000 km/hr) Here s how to use orbital speed, v, in Kepler s equation rather than the period, T: It should be straightforward to see that the period (T) times the orbital speed (v) equals the orbital circumference 2πR, so that T = 2πR/v. Substituting this in to Kepler s equation R 3 = T 2, we have: R 3 = 4π 2 R 2 v 2 Now, you can see that the distance R is proportional to 1/v 2 So. if your exoplanet s orbital speed is 4.7 times that of the Earth (as above), then its distance from its star is 1/(4.7) 2 or AU! The importance of this distance is that it bears on whether the planet might be habitable. The planets detected in this project are all very close to their stars. Liquid water would not exist on these planets, and neither would life. Detection Challenge 7: Publish your results and prepare a press conference briefing!! Don t forget to reflect on what is amazing about this Lab: Your class was able to detect a planet and tell something about it, just from measuring the starlight! This last page of the DataLab provides an opportunity for students to reflect upon and sum up their finding through the whole investigation. They can open up their journal to refresh their memory about all the steps they went through as the prepare the text for this last step of the Data Lab. Activity 5 Data Lab Page 8

Activity 2 MODELING LAB

Activity 2 MODELING LAB Activity 2 MODELING LAB PURPOSE. This activity sets up the rest of the ExoLab investigation, and is intended to help your students predict what the signal of an alien world might look like. They use the

More information

Transit Tracks. Activity G14. What s This Activity About? Tips and Suggestions. What Will Students Do? What Will Students Learn?

Transit Tracks. Activity G14. What s This Activity About? Tips and Suggestions. What Will Students Do? What Will Students Learn? G14 Transit Tracks Activity G14 Grade Level: 7 12 Source: This is a first version of an activity intended to be part of the Full Option Science System (FOSS) Planetary Science Course. Transit Tracks is

More information

Is there life outside of Earth? Activity 2: Moving Stars and Their Planets

Is there life outside of Earth? Activity 2: Moving Stars and Their Planets Is there life outside of Earth? Activity 2: Moving Stars and Their Planets Overview In this activity, students are introduced to the wobble-method (officially known as the radial velocity method) of detecting

More information

Dear Teacher, Overview Page 1

Dear Teacher, Overview Page 1 Dear Teacher, You are about to involve your students in one of the most exciting frontiers of science the search for other worlds and life in solar systems beyond our own! Using the MicroObservatory telescopes,

More information

Extrasolar planets. Lecture 23, 4/22/14

Extrasolar planets. Lecture 23, 4/22/14 Extrasolar planets Lecture 23, 4/22/14 Extrasolar planets Extrasolar planets: planets around other stars Also called exoplanets 1783 exoplanets discovered as of 4/21/14 Orbitting 1105 different stars Number

More information

Lab 3: Stars, Stars, Stars!

Lab 3: Stars, Stars, Stars! Lab 3: Stars, Stars, Stars! The Hertzsprung-Russell Diagram Today we will learn about the different types of stars and how they are different form one another. Go to http://astro.unl.edu/naap/hr/hr.html.

More information

Eclipsing Binary Simulator Student Guide

Eclipsing Binary Simulator Student Guide Name: Pretest Score: Eclipsing Binary Simulator Student Guide Background Material Complete the following section after reviewing the four background pages. Question 1: Crudely describe where the center

More information

Angles Lab. name: Part I - How tall is Founders Hall? Astronomical Ideas, Fall 2012

Angles Lab. name: Part I - How tall is Founders Hall? Astronomical Ideas, Fall 2012 Angles Lab Haverford College Astronomical Ideas, Fall 2012 name: Collaborators: With this lab, you will get quantitative experience with the basic relationship between angular size, distance, and physical

More information

Extrasolar Planets. Materials Light source to mimic star Ball to mimic planet Light meter Interface

Extrasolar Planets. Materials Light source to mimic star Ball to mimic planet Light meter Interface Name: Date: Extrasolar Planets Objectives: Learn about Extrasolar planets planets orbiting other stars Explain how astronomers detect and characterize Extrasolar planets Materials Light source to mimic

More information

18 An Eclipsing Extrasolar Planet

18 An Eclipsing Extrasolar Planet Name: Date: 18 An Eclipsing Extrasolar Planet 18.1 Introduction One of the more recent new fields in astronomy is the search for (and discovery of) planets orbiting around stars other than our Sun, or

More information

The Revolution of the Moons of Jupiter

The Revolution of the Moons of Jupiter The Revolution of the Moons of Jupiter Overview: During this lab session you will make use of a CLEA (Contemporary Laboratory Experiences in Astronomy) computer program generously developed and supplied

More information

PHYS 106 Fall 2151 Homework 3 Due: Thursday, 8 Oct 2015

PHYS 106 Fall 2151 Homework 3 Due: Thursday, 8 Oct 2015 PHYS 106 Fall 2151 Homework 3 Due: Thursday, 8 Oct 2015 When you do a calculation, show all your steps. Do not just give an answer. You may work with others, but the work you submit should be your own.

More information

Astron 104 Laboratory #4 Orbital Motion of a Planet

Astron 104 Laboratory #4 Orbital Motion of a Planet Name: Date: Section: Astron 104 Laboratory #4 Orbital Motion of a Planet Introduction The nature of the Solar System was first derived from careful measurements of the positions of the planets in the night

More information

Science and Engineering Practices DRAFT. Interpreting Data. and Applications of system and beyond. Students consider the

Science and Engineering Practices DRAFT. Interpreting Data. and Applications of system and beyond. Students consider the Solar System and Beyond Overview NGSS Performance Expectation MS-ESS1-1: Develop and use a model of the Earth-sun-moon system to describe the cyclic patterns of lunar phases, eclipses of the sun and moon,

More information

Physics Lab #6:! Mercury!

Physics Lab #6:! Mercury! Physics 10293 Lab #6: Mercury Introduction Today we will explore the motions in the sky of the innermost planet in our solar system: Mercury. Both Mercury and Venus were easily visible to the naked eye

More information

Unlocking the Solar System

Unlocking the Solar System Unlocking the Solar System Grade 5 Pre-Visit Activities Howard B. Owens Science Center Unlocking the Solar System (5 th grade) DESCRIPTION What *IS* a solar system? What does it look like? What SHOULD

More information

Credit: NASA/Kepler Mission/Dana Berry. Exoplanets

Credit: NASA/Kepler Mission/Dana Berry. Exoplanets Credit: NASA/Kepler Mission/Dana Berry Exoplanets Outline What is an exoplanet? Why are they interesting? How can we find them? Exolife?? The future... Jon Thaler Exoplanets 2 What is an Exoplanet? Most

More information

NGSS UNIT OVERVIEW SOLAR SYSTEM AND BEYOND

NGSS UNIT OVERVIEW SOLAR SYSTEM AND BEYOND NGSS UNIT OVERVIEW SOLAR SYSTEM AND BEYOND Performance Expectation MS-ESS1-1: Develop and use a model of the Earth-sun-moon system to describe the cyclic patterns of lunar phases, eclipses of the sun and

More information

Planet Detection. AST 105 Intro Astronomy The Solar System

Planet Detection. AST 105 Intro Astronomy The Solar System Review AST 105 Intro Astronomy The Solar System MIDTERM III this THURSDAY 04/8 covering LECT. 17 through We ve talked about the Terrestrial Planets and the Jovian Planets - What about planets around other

More information

[05] Historical Perspectives (9/12/17)

[05] Historical Perspectives (9/12/17) 1 [05] Historical Perspectives (9/12/17) Upcoming Items 1. Homework #2 due now. 2. Read Ch. 4.1 4.2 and do self-study quizzes. 3. Homework #3 due in one week. Ptolemaic system http://static.newworldencyclopedia.org/thumb/3/3a/

More information

Lecture 8. October 25, 2017 Lab 5

Lecture 8. October 25, 2017 Lab 5 Lecture 8 October 25, 2017 Lab 5 News Lab 2 & 3 Handed back next week (I hope). Lab 4 Due today Lab 5 (Transiting Exoplanets) Handed out and observing will start Friday. Due November 8 (or later) Stellar

More information

I. Introduction. II. An Introduction to Starry Night NAME: ORBITAL MOTION

I. Introduction. II. An Introduction to Starry Night NAME: ORBITAL MOTION NAME: ORBITAL MOTION What will you learn in this Lab? You will be using some special software to simulate the motion of planets in our Solar System and across the night sky. You will be asked to try and

More information

Prelab 4: Revolution of the Moons of Jupiter

Prelab 4: Revolution of the Moons of Jupiter Name: Section: Date: Prelab 4: Revolution of the Moons of Jupiter Many of the parameters astronomers study cannot be directly measured; rather, they are inferred from properties or other observations of

More information

Lab 5: Searching for Extra-Solar Planets

Lab 5: Searching for Extra-Solar Planets Lab 5: Searching for Extra-Solar Planets Until 1996, astronomers only knew about planets orbiting our sun. Though other planetary systems were suspected to exist, none had been found. Now, thirteen years

More information

Lab 4. Habitable Worlds: Where Should NASA Send a Probe to Look for Life?

Lab 4. Habitable Worlds: Where Should NASA Send a Probe to Look for Life? Lab Handout Lab 4. Habitable Worlds: Where Should NASA Send a Probe to Look for Life? Introduction Our solar system consists of the star we call the Sun, the planets and dwarf plants that orbit it, and

More information

Galileo Educator Network

Galileo Educator Network Galileo Educator Network D1.3 Moons of Jupiter (1 hour and 45 minutes + 15 minute Break) 1. Observing Jupiter s Moons (15 minutes) Explain how Galileo used the telescope to learn more about objects in

More information

Overview Students read about the structure of the universe and then compare the sizes of different objects in the universe.

Overview Students read about the structure of the universe and then compare the sizes of different objects in the universe. Part 1: Colonize the solar system Lesson #1: Structure of the Universe Time: approximately 40-50 minutes Materials: Copies of different distances (included). Text: So What All Is Out There, Anyway? Overview

More information

Activities: The transit method, exploring distant solar systems, the chemistry of life.

Activities: The transit method, exploring distant solar systems, the chemistry of life. Kendall Planetarium Extreme Planets Planetarium Show Teacher s Guide PROGRAM OUTLINE Description: Extreme Planets immerses audiences in the cutting-edge science of finding planets orbit around stars other

More information

Unit: Planetary Science

Unit: Planetary Science Orbital Motion Kepler s Laws GETTING AN ACCOUNT: 1) go to www.explorelearning.com 2) click on Enroll in a class (top right hand area of screen). 3) Where it says Enter class Code enter the number: MLTWD2YAZH

More information

Patterns in the Solar System (Chapter 18)

Patterns in the Solar System (Chapter 18) GEOLOGY 306 Laboratory Instructor: TERRY J. BOROUGHS NAME: Patterns in the Solar System (Chapter 18) For this assignment you will require: a calculator, colored pencils, a metric ruler, and meter stick.

More information

PH104 Lab 2 Measuring Distances Pre-Lab

PH104 Lab 2 Measuring Distances Pre-Lab Name: Lab Time: PH04 Lab 2 Measuring Distances Pre-Lab 2. Goals This is the second lab. Like the first lab this lab does not seem to be part of a complete sequence of the study of astronomy, but it will

More information

Astronomy 101 Lab: Hunt for Alien Worlds

Astronomy 101 Lab: Hunt for Alien Worlds Name: Astronomy 101 Lab: Hunt for Alien Worlds Be prepared to make calculations in today s lab. Laptops will also be used for part of the lab, but you aren t required to bring your own. Pre-Lab Assignment:

More information

Student s guide CESAR Science Case The Venus transit and the Earth-Sun distance

Student s guide CESAR Science Case The Venus transit and the Earth-Sun distance Student s guide CESAR Science Case The Venus transit and the Earth-Sun distance By: Abel de Burgos and Assiye Süer Name Date Introduction A transit happens when a body passes, or transits, in front of

More information

Standards Alignment... 5 Safe Science... 9 Scienti c Inquiry Assembling Rubber Band Books...15

Standards Alignment... 5 Safe Science... 9 Scienti c Inquiry Assembling Rubber Band Books...15 Standards Alignment... 5 Safe Science... 9 Scienti c Inquiry... 11 Assembling Rubber Band Books...15 Earth in Space and Time The Scoop on Stars...17 Telescopes...19 Magnify the Sky...21 Star Samples...27

More information

NGSS UNIT OVERVIEW SOLAR SYSTEM AND BEYOND

NGSS UNIT OVERVIEW SOLAR SYSTEM AND BEYOND NGSS UNIT OVERVIEW SOLAR SYSTEM AND BEYOND Performance Expectation MS-ESS1-1: Develop and use a model of the Earth-sun-moon system to describe the cyclic patterns of lunar phases, eclipses of the sun and

More information

Gravitation & Kepler s Laws

Gravitation & Kepler s Laws Gravitation & Kepler s Laws What causes YOU to be pulled down to the surface of the earth? THE EARTH.or more specifically the EARTH S MASS. Anything that has MASS has a gravitational pull towards it. F

More information

Waterloo Collegiate Astronomy Assignment SES4UI. Size of the Earth and the Distances to the Moon and Sun

Waterloo Collegiate Astronomy Assignment SES4UI. Size of the Earth and the Distances to the Moon and Sun Waterloo Collegiate Astronomy Assignment SES4UI Size of the Earth and the Distances to the Moon and Sun Objectives Using observations of the Earth-Sun-Moon system and elementary geometry and trigonometry,

More information

Student Review Investigations in Earth and Space Science Semester A 2015 Examination

Student Review Investigations in Earth and Space Science Semester A 2015 Examination Investigations in Earth and Space Science Semester A Examination Test Description Length: 2 hours Items: 56 SR (85%), 2 BCRs (15%) Unit Approximate Number of Selected Response Items IESS Skills and Processes

More information

Doppler Technique Measuring a star's Doppler shift can tell us its motion toward and away from us.

Doppler Technique Measuring a star's Doppler shift can tell us its motion toward and away from us. Doppler Technique Measuring a star's Doppler shift can tell us its motion toward and away from us. Current techniques can measure motions as small as 1 m/s (walking speed!). Sun motion due to: Jupiter:

More information

ASTRO Fall 2012 LAB #6: Extrasolar Planets

ASTRO Fall 2012 LAB #6: Extrasolar Planets ASTRO 1050 - Fall 2012 LAB #6: Extrasolar Planets ABSTRACT This is an exciting time in astronomy. Over the past two decades we have begun to indirectly detect planets that orbit stars other than our sun.

More information

Science Olympiad Astronomy C Division Event National Exam

Science Olympiad Astronomy C Division Event National Exam Science Olympiad Astronomy C Division Event National Exam University of Nebraska-Lincoln May 15-16, 2015 Team Number: Team Name: Instructions: 1) Please turn in all materials at the end of the event. 2)

More information

Unit 5 Gravitation. Newton s Law of Universal Gravitation Kepler s Laws of Planetary Motion

Unit 5 Gravitation. Newton s Law of Universal Gravitation Kepler s Laws of Planetary Motion Unit 5 Gravitation Newton s Law of Universal Gravitation Kepler s Laws of Planetary Motion Into to Gravity Phet Simulation Today: Make sure to collect all data. Finished lab due tomorrow!! Universal Law

More information

AST101: Our Corner of the Universe Lab 4: Planetary Orbits

AST101: Our Corner of the Universe Lab 4: Planetary Orbits AST101: Our Corner of the Universe Lab 4: Planetary Orbits Name: Partners: Student number (SUID): Lab section number: 1 Introduction Objectives The Planetary Orbits Lab reviews used the Planetary Orbit

More information

CESAR Science Case. Jupiter Mass. Calculating a planet s mass from the motion of its moons. Teacher

CESAR Science Case. Jupiter Mass. Calculating a planet s mass from the motion of its moons. Teacher Jupiter Mass Calculating a planet s mass from the motion of its moons Teacher 2 Table of Contents Fast Facts... 4 Summary of activities... 5 Background... 7 Kepler s Laws... 8 Activity description... 9

More information

Beyond the Book. FOCUS Book

Beyond the Book. FOCUS Book FOCUS Book At the bottom of page 4 is an example of a transit graph. A transit graph shows changes in the brightness of a star s light as a planet crosses in front of the star as seen from Earth. Suppose

More information

The Problem. Until 1995, we only knew of one Solar System - our own

The Problem. Until 1995, we only knew of one Solar System - our own Extrasolar Planets Until 1995, we only knew of one Solar System - our own The Problem We had suspected for hundreds of years, and had confirmed as long ago as the 1800s that the stars were extremely distant

More information

LESSON TITLE Earth 2.0. Guiding Question: Why should we continue to explore? Ignite Curiosity

LESSON TITLE Earth 2.0. Guiding Question: Why should we continue to explore? Ignite Curiosity SUBJECTS Science Language Arts COMPUTATIONAL THINKING PRACTICE Find Patterns COMPUTATIONAL THINKING STRATEGIES Developing and Using Abstractions MATERIALS Conditions of Life on Earth student capture sheet

More information

Build Your Own Planet Lesson 5: Final Planet Details

Build Your Own Planet Lesson 5: Final Planet Details Build Your Own Planet Lesson 5: Final Planet Details You have been traveling through space for many years at close to the speed of light. For most of those years you and your crewmates have been in a very

More information

Relative Photometry with data from the Peter van de Kamp Observatory D. Cohen and E. Jensen (v.1.0 October 19, 2014)

Relative Photometry with data from the Peter van de Kamp Observatory D. Cohen and E. Jensen (v.1.0 October 19, 2014) Relative Photometry with data from the Peter van de Kamp Observatory D. Cohen and E. Jensen (v.1.0 October 19, 2014) Context This document assumes familiarity with Image reduction and analysis at the Peter

More information

Outline for Today: Newton s Law of Universal Gravitation The Gravitational Field Orbital Motion Gravitational Potential Energy

Outline for Today: Newton s Law of Universal Gravitation The Gravitational Field Orbital Motion Gravitational Potential Energy PHY131H1F - Class 13 Outline for Today: Newton s Law of Universal Gravitation The Gravitational Field Orbital Motion Gravitational Potential Energy Under the Flower of Kent apple tree in the Woolsthorpe

More information

Astronomy December, 2016 Introduction to Astronomy: The Solar System. Final exam. Practice questions for Unit V. Name (written legibly):

Astronomy December, 2016 Introduction to Astronomy: The Solar System. Final exam. Practice questions for Unit V. Name (written legibly): Astronomy 101 12 December, 2016 Introduction to Astronomy: The Solar System Final exam Practice questions for Unit V Name (written legibly): Honor Pledge: On my honor, I have neither given nor received

More information

Eclipses and Forces. Jan 21, ) Review 2) Eclipses 3) Kepler s Laws 4) Newton s Laws

Eclipses and Forces. Jan 21, ) Review 2) Eclipses 3) Kepler s Laws 4) Newton s Laws Eclipses and Forces Jan 21, 2004 1) Review 2) Eclipses 3) Kepler s Laws 4) Newton s Laws Review Lots of motion The Moon revolves around the Earth Eclipses Solar Lunar the Sun, Earth and Moon must all be

More information

Amateur Astronomer Participation in the TESS Exoplanet Mission

Amateur Astronomer Participation in the TESS Exoplanet Mission Amateur Astronomer Participation in the TESS Exoplanet Mission Dennis M. Conti Chair, AAVSO Exoplanet Section Member, TESS Follow-up Observing Program Copyright Dennis M. Conti 2018 1 The Big Picture Is

More information

Appearances Can Be Deceiving!

Appearances Can Be Deceiving! Appearances Can Be Deceiving! Overview: Students explore the relationship between angular width, actual size, and distance by using their finger, thumb and fist as a unit of angular measurement in this

More information

Lecture 9. November 1, 2018 Lab 5 Analysis

Lecture 9. November 1, 2018 Lab 5 Analysis Lecture 9 November 1, 2018 Lab 5 Analysis News Lab 2 Handed back with solution; mean: 92.1, std dev: 5.5 Lab 3 Handed back next week (I hope). Lab 4 Due November 1 (today) News Lab 5 (Transiting Exoplanets)

More information

ASTRO 1050 Extrasolar Planets

ASTRO 1050 Extrasolar Planets ASTRO 1050 Extrasolar Planets ABSTRACT This is an exciting time in astronomy. Over the past two decades we have begun to indirectly detect planets that orbit stars other than our Sun. Methods of detection

More information

Exo-planets. Introduction. Detection Methods. Teacher s Notes. Radial Velocity or Doppler Method. 1. Download these notes at

Exo-planets. Introduction. Detection Methods. Teacher s Notes. Radial Velocity or Doppler Method. 1. Download these notes at 1. Introduction An exoplanet, or an extrasolar planet, is a planet which orbits any star other than our Sun so one which is not within our Solar System. As far back as the 16th century, the existence of

More information

PARALLAX AND PROPER MOTION

PARALLAX AND PROPER MOTION PARALLAX AND PROPER MOTION What will you learn in this Lab? We will be introducing you to the idea of parallax and how it can be used to measure the distance to objects not only here on Earth but also

More information

Outline for Today: Newton s Law of Universal Gravitation The Gravitational Field Orbital Motion Gravitational Potential Energy. Hello!

Outline for Today: Newton s Law of Universal Gravitation The Gravitational Field Orbital Motion Gravitational Potential Energy. Hello! PHY131H1F - Class 13 Outline for Today: Newton s Law of Universal Gravitation The Gravitational Field Orbital Motion Gravitational Potential Energy Under the Flower of Kent apple tree in the Woolsthorpe

More information

CESAR Science Case. The mass of Jupiter. Calculating the mass of a planet from the motion of its moons. Teacher Guide

CESAR Science Case. The mass of Jupiter. Calculating the mass of a planet from the motion of its moons. Teacher Guide The mass of Jupiter Calculating the mass of a planet from the motion of its moons Teacher Guide Table of Contents Fast Facts... 3 Summary of activities... 4 Introduction... 5 Background... 6 Activity 1:

More information

Unit 2: Astronomy. Content Area: Science Course(s): Generic Course Time Period: Marking Period 1 Length: approximately 15days Status: Published

Unit 2: Astronomy. Content Area: Science Course(s): Generic Course Time Period: Marking Period 1 Length: approximately 15days Status: Published Unit 2: Astronomy Content Area: Science Course(s): Generic Course Time Period: Marking Period 1 Length: approximately 15days Status: Published Unit Summary (Content) This unit is broken down into three

More information

Hunting for Planets. Overview. Directions. Content Created by. Activitydevelop. How can you use star brightness to find planets?

Hunting for Planets. Overview. Directions. Content Created by. Activitydevelop. How can you use star brightness to find planets? This website would like to remind you: Your browser (Safari 7) is out of date. Update your browser for more security, comfort and the best experience on this site. Activitydevelop Hunting for Planets How

More information

The Venus-Sun distance. Teacher s Guide Advanced Level CESAR s Science Case

The Venus-Sun distance. Teacher s Guide Advanced Level CESAR s Science Case Teacher s Guide Advanced Level Introduction This is the teacher s guide for. Note that this guide does not contain full instructions to successfully develop the science case, those can be found at the

More information

5. How did Copernicus s model solve the problem of some planets moving backwards?

5. How did Copernicus s model solve the problem of some planets moving backwards? MODELS OF THE SOLAR SYSTEM Reading Guide: Chapter 27.2 (read text pages 691-694) 1k. Recognize the cumulative nature of scientific evidence. 1n. Know that when an observation does not agree with an accepted

More information

AST 301: What you will have to learn and get used to 1. Basic types of objects in the universe

AST 301: What you will have to learn and get used to 1. Basic types of objects in the universe AST 301: What you will have to learn and get used to 1. Basic types of objects in the universe Planets, stars, galaxies, a few things inbetween--look through your textbook soon! You will have to learn:

More information

Lecture #15: Plan. Telescopes (cont d) Effects of Earth s Atmosphere Extrasolar planets = Exoplanets

Lecture #15: Plan. Telescopes (cont d) Effects of Earth s Atmosphere Extrasolar planets = Exoplanets Lecture #15: Plan Telescopes (cont d) Effects of Earth s Atmosphere Extrasolar planets = Exoplanets Resolving Power (review) The bigger the size of the telescope, the better it is at discerning fine details

More information

The Law of Ellipses (Kepler s First Law): all planets orbit the sun in a

The Law of Ellipses (Kepler s First Law): all planets orbit the sun in a Team Number Team Members Present Learning Objectives 1. Practice the Engineering Process a series of steps to follow to design a solution to a problem. 2. Practice the Five Dimensions of Being a Good Team

More information

II Planet Finding.

II Planet Finding. II Planet Finding http://sgoodwin.staff.shef.ac.uk/phy229.html 1.0 Introduction There are a lot of slides in this lecture. Much of this should be familiar from PHY104 (Introduction to Astrophysics) and

More information

HR Diagram of Globular Cluster Messier 80 Using Hubble Space Telescope Data

HR Diagram of Globular Cluster Messier 80 Using Hubble Space Telescope Data Jason Kendall, William Paterson University, Department of Physics HR Diagram of Globular Cluster Messier 80 Using Hubble Space Telescope Data Background Purpose: HR Diagrams are central to understanding

More information

Chapter 10 Worlds of Gas and Liquid- The Giant Planets. 21st CENTURY ASTRONOMY Fifth EDITION Kay Palen Blumenthal

Chapter 10 Worlds of Gas and Liquid- The Giant Planets. 21st CENTURY ASTRONOMY Fifth EDITION Kay Palen Blumenthal Chapter 10 Worlds of Gas and Liquid- The Giant Planets 21st CENTURY ASTRONOMY Fifth EDITION Kay Palen Blumenthal What is a storm on Saturn like? The Giant Planets, Part 1 Jupiter, Saturn, Uranus, and Neptune

More information

Thank you for your purchase!

Thank you for your purchase! TM Thank you for your purchase! Please be sure to save a copy of this document to your local computer. This activity is copyrighted by the AIMS Education Foundation. All rights reserved. No part of this

More information

the songg for Science.

the songg for Science. STRONOMY RADE ASSESSMENT PACKET A comprehensive course that teaches the big ideas behind Newton s ground breaking work. Discover how to identify meteorites s, learn about magnetic storms, listen to the

More information

Measurement Tutorial. Open the opaque filter image it s called (Dark-B FITS) in MicroObservatory Image.

Measurement Tutorial. Open the opaque filter image it s called (Dark-B FITS) in MicroObservatory Image. Measurement Tutorial Now that you ve mastered finding stars in the pattern matching game, here s a new challenge. How accurate are you at measuring the brightness of a star? Test your ability against members

More information

Star Cluster Photometry and the H-R Diagram

Star Cluster Photometry and the H-R Diagram Star Cluster Photometry and the H-R Diagram Contents Introduction Star Cluster Photometry... 1 Downloads... 1 Part 1: Measuring Star Magnitudes... 2 Part 2: Plotting the Stars on a Colour-Magnitude (H-R)

More information

TPS. How many Exoplanets have been discovered to date? A B C D

TPS. How many Exoplanets have been discovered to date? A B C D TPS How many Exoplanets have been discovered to date? A. 1-10 B. 11-100 C. 101-500 D. 501-1000 ExoPlanets Objectives What are Exoplanets How do we find Exoplanets How do Exoplanets compare to our solar

More information

Orbital Scale of the Solar System

Orbital Scale of the Solar System Unit 3: Lesson 2 Scale of the Solar System Orbital Scale of the Solar System Subject/Grade Level: Space and the Solar System / Middle School (Grades 6-8) Lesson Objective(s): To understand the scale of

More information

Exoplanets. Saturday Physics for Everyone. Jon Thaler October 27, Credit: NASA/Kepler Mission/Dana Berry

Exoplanets. Saturday Physics for Everyone. Jon Thaler October 27, Credit: NASA/Kepler Mission/Dana Berry Exoplanets Saturday Physics for Everyone Jon Thaler October 27, 2012 Credit: NASA/Kepler Mission/Dana Berry Outline What is an exoplanet? Why are they intereskng? How can we find them? Exolife?? The future...

More information

ASTR : Stars & Galaxies (Spring 2019)... Study Guide for Midterm 1

ASTR : Stars & Galaxies (Spring 2019)... Study Guide for Midterm 1 ASTR-1200-01: Stars & Galaxies (Spring 2019)........................ Study Guide for Midterm 1 The first midterm exam for ASTR-1200 takes place in class on Wednesday, February 13, 2019. The exam covers

More information

MARS, THE RED PLANET.

MARS, THE RED PLANET. ENGLISH ENTRY TEST, FEB 2013. STUDENT S NAME.... READ THE TEXT CAREFULLY, CHECK THE VOCABULARY AND THEN DO THE ACTIVITIES. MARS, THE RED PLANET. It is easy to forget that Earth is not the only planet in

More information

Math Topic: Unit Conversions and Statistical Analysis of Data with Categorical and Quantitative Graphs

Math Topic: Unit Conversions and Statistical Analysis of Data with Categorical and Quantitative Graphs Math Topic: Unit Conversions and Statistical Analysis of Data with Categorical and Quantitative Graphs Science Topic: s/dwarf s of our Solar System Written by: Eric Vignaud and Lexie Edwards Lesson Objectives

More information

Grades K 2 Education Guide

Grades K 2 Education Guide Written by Kim Small Illustrated by Audio Visual Imagineering Table of Contents Standards Checklist*..3 Lessons Checklist....4 Program Pre- and Post- Survey 5 Lesson 1 The Little Star That Could Vocabulary..9

More information

What does the universe look like?

What does the universe look like? EXPLORATION 2: PORTRAIT OF THE UNIVERSE What does the universe look like? The challenge It's a big universe out there. What does it look like? Use the telescope to image different kinds of objects in the

More information

Lab #5. Searching for Extrasolar Planets

Lab #5. Searching for Extrasolar Planets Lab #5 Searching for Extrasolar Planets Introduction Since the beginning of recorded history, humans have wondered whether we are alone in the Universe. Recently, Astronomers have begun to make significant

More information

Name. Satellite Motion Lab

Name. Satellite Motion Lab Name Satellite Motion Lab Purpose To experiment with satellite motion using an interactive simulation in order to gain an understanding of Kepler s Laws of Planetary Motion and Newton s Law of Universal

More information

If Earth had no tilt, what else would happen?

If Earth had no tilt, what else would happen? A more in depth explanation from last week: If Earth had no tilt, what else would happen? The equator would be much hotter due to the direct sunlight which would lead to a lower survival rate and little

More information

Student s guide CESAR Science Case Rotation period of the Sun and the sunspot activity

Student s guide CESAR Science Case Rotation period of the Sun and the sunspot activity Student s guide CESAR Science Case Rotation period of the Sun and the sunspot activity Name Date Introduction As you may know, the Sun is a luminous globe among many, consisting of hot gas that provides

More information

Chapter 13 Other Planetary Systems. Why is it so difficult to detect planets around other stars? Size Difference. Brightness Difference

Chapter 13 Other Planetary Systems. Why is it so difficult to detect planets around other stars? Size Difference. Brightness Difference Chapter 13 Other Planetary Systems Why is it so difficult to detect planets around other stars? Size Difference Planets are small compared to interstellar distances 10 billion to 1 scale Sun is size of

More information

Assignment #0 Using Stellarium

Assignment #0 Using Stellarium Name: Class: Date: Assignment #0 Using Stellarium The purpose of this exercise is to familiarize yourself with the Stellarium program and its many capabilities and features. Stellarium is a visually beautiful

More information

The Mass of Jupiter Student Guide

The Mass of Jupiter Student Guide The Mass of Jupiter Student Guide Introduction: In this lab, you will use astronomical observations of Jupiter and its satellites to measure the mass of Jupiter. We will use the program Stellarium to simulate

More information

Lab Title: Parallax and Astronomical Distances. Equipment: Sextant Meter sticks (or tape measures) Calipers Magnetic compasses.

Lab Title: Parallax and Astronomical Distances. Equipment: Sextant Meter sticks (or tape measures) Calipers Magnetic compasses. Lab Title: Parallax and Astronomical Distances Equipment: Sextant Meter sticks (or tape measures) Calipers Magnetic compasses Introduction: Since we cannot travel to most celestial objects in order to

More information

Chapter 4 Thrills and Chills +Math +Depth Acceleration of the Moon +Concepts The Moon is 60 times further away from the center of Earth than objects on the surface of Earth, and moves about Earth in an

More information

Searching for Extra-Solar Planets

Searching for Extra-Solar Planets Searching for Extra-Solar Planets Until 1996, astronomers only knew about planets orbiting our sun. Though other planetary systems were suspected to exist, none had been found. Now, thirteen years later,

More information

10/16/ Detecting Planets Around Other Stars. Chapter 10: Other Planetary Systems The New Science of Distant Worlds

10/16/ Detecting Planets Around Other Stars. Chapter 10: Other Planetary Systems The New Science of Distant Worlds 10/16/17 Lecture Outline 10.1 Detecting Planets Around Other Stars Chapter 10: Other Planetary Systems The New Science of Distant Worlds Our goals for learning: How do we detect planets around other stars?

More information

Astronomy 102: Stars and Galaxies Examination 3 April 11, 2003

Astronomy 102: Stars and Galaxies Examination 3 April 11, 2003 Name: Seat Number: Astronomy 102: Stars and Galaxies Examination 3 April 11, 2003 Do not open the test until instructed to begin. Instructions: Write your answers in the space provided. If you need additional

More information

Extrasolar Planets. Today. Dwarf Planets. Extrasolar Planets. Next week. Review Tuesday. Exam Thursday. also, Homework 6 Due

Extrasolar Planets. Today. Dwarf Planets. Extrasolar Planets. Next week. Review Tuesday. Exam Thursday. also, Homework 6 Due Extrasolar Planets Today Dwarf Planets Extrasolar Planets Next week Review Tuesday Exam Thursday also, Homework 6 Due will count best 5 of 6 homeworks 2007 Pearson Education Inc., publishing as Pearson

More information

The Search for Extraterrestrial Intelligence (SETI)

The Search for Extraterrestrial Intelligence (SETI) The Search for Extraterrestrial Intelligence (SETI) Our goals for learning What is the Drake equation? How many habitable planets have life? How many civilizations are out there? How does SETI work? Can

More information

Orbital Paths. the Solar System

Orbital Paths. the Solar System Purpose To compare the lengths of the terrestrial planets orbital paths and revolution times. Process Skills Measure, form a hypothesis, predict, observe, collect data, interpret data, communicate, draw

More information

History of Astronomy. Historical People and Theories

History of Astronomy. Historical People and Theories History of Astronomy Historical People and Theories Plato Believed he could solve everything through reasoning. Circles and Spheres are good because they are perfect (never ending) and pleasing to the

More information

Why Should We Expect to Find Other Planets? Planetary system formation is a natural by-product of star formation

Why Should We Expect to Find Other Planets? Planetary system formation is a natural by-product of star formation 1 Why Should We Expect to Find Other Planets? Planetary system formation is a natural by-product of star formation 2 Why Should We Expect to Find Other Planets? Observations show young stars are surrounded

More information

A Walk Across the Solar System

A Walk Across the Solar System A Walk Across the Solar System Subject Area: Earth Science and Mathematics Grade Level: Grades 4 and 8 Lesson Objective: Duration: Students will help create a model of the solar system in which the scale

More information