Measurements of Neutron Star Masses with a strong emphasis on millisecond binary radio pulsar timing

Size: px
Start display at page:

Download "Measurements of Neutron Star Masses with a strong emphasis on millisecond binary radio pulsar timing"

Transcription

1 Measurements of Neutron Star Masses with a strong emphasis on millisecond binary radio pulsar timing David Nice, Lafayette College Physics of Neutron Stars 2014, Saint Petersburg 1. Motivation 2. How to measure neutron star masses by timing binary millisecond pulsars 3. Interesting recent measurements of neutron star masses. 4. Why there will be more and better measurements in the future.

2 1. Motivation 2. How to measure neutron star masses by timing binary millisecond pulsars 3. Interesting recent measurements of neutron star masses. 4. Why there will be more and better measurements in the future.

3 Motivation 1. Nuclear equation of state. Fig. 2. Mass-radius diagram for neutron stars. Black (green) curves are for normal matter (SQM) Figure: Lattimer & Prakash 2004 (Science 304: 536)

4 Motivation 2. Pulsar Binary Evolution Figure: NASA Birth Mass + Figure: NASA Accreted Mass (for recycled pulsars) = Observed Mass

5 Motivation 2. Pulsar Binary Evolution Figure: NASA Figure: NASA Birth Mass + Accreted Mass (for recycled pulsars) = Observed Mass LMXB (long accretion phase) MS + MS MS + NS supernova HMXB (short accretion phase) supernova Ablation of companion Additional accretion (black widow & redback systems) Circular Binary White dwarf + Fully Recycled NS ( ms) Eccentric Binary Unrecycled NS + Mildly Recycled NS (20-60 ms)

6 1. Motivation 2. How to measure neutron star masses by timing binary millisecond pulsars 3. Interesting recent measurements of neutron star masses. 4. Why there will be more and better measurements in the future.

7 Timing the pulses. Mapping out an orbit.

8 Timing the pulses. Mapping out an orbit. Actually, it is a licle more complicated. sun rota4on period rota4on period deriva4ve 4ming noise Keplerian orbital elements rela4vis4c orbital elements kinema4c perturba4ons of orbital elements (secular and annual phenomena) dispersion measure dispersion meas. varia4ons nanohertz gravita4onal waves posi4on proper mo4on parallax solar wind dispersion

9 Timing the pulses. Mapping out an orbit. In classical physics physics (non-relativistic), the orbit is characterized by: orbital period semi-major axis projected along the line-of-sight eccentricity angle of periastron time of periastron passage The motion of the pulsar is determined by the gravitational interaction between the pulsar and companion stars, which depends on the pulsar mass, m 1, and the companion mass, m 2. However, the masses cannot be directly inferred from the parameters listed above. Why not? see next two slides

10 Ambiguities in observations of a classical radio pulsar orbit 1. Orbit inclination is unknown. Δ t orbit viewed edge-on? Δ t orbit not edge-on; observed Δt is the same as edge-on case, but orbit is larger

11 Ambiguities in observations of a classical radio pulsar orbit 2. Characteristics of the companion star and its orbit are unknown.? Companion might be heavy star in small orbit or light star in a large orbit Because of these ambiguities, pulsar timing observations of a classical orbit does not tell us everything we want to know about the orbital system. In particular, we cannot infer either the pulsar mass, m 1, or the companion mass, m 2. We need two additional measurements. 2π P b 2 ( a 1 sini) 3 G ( )3 = f 1 = m sini 2 m 1 + m 2 ( ) 2

12 Precession Shapiro Delay Gravitational Radiation ( ) [ ] sin sin 1 ln 2 ϕ ϕ = Δ i m c G t Grav Redshift/Time Dilation r v ( ) ) ( m m m m e e e P c G P b b = π π ) ( m m m +2m P c G γ b + = π e ) ( 2 m ( ) = m m e P b π ω 2 c G 2/3 Obtaining additional orbital measurements: 1. Relativistic orbital phenomena

13 Obtaining additional orbital measurements: 2. Classical observations beyond the pulsar binary motion Observation of companion star orbit m 1 m = a 1 sin i 2 a 2 sin i Triple system: pulsar with two companion stars Three-body system cannot be solved analytically. Numerical integration yields mass and inclination values for all three bodies.

14 1. Motivation 2. How to measure neutron star masses by timing binary millisecond pulsars 3. Interesting recent measurements of neutron star masses. 4. Why there will be more and better measurements in the future.

15 Figure: Jim Lattimer stellarcollapse.org/nsmasses

16 Neutron Star-Neutron Star binaries Mildly recycled pulsars (P~20 to 60 ms) Highly eccentric orbits Short orbital periods (usually) J J comp. Notes: PSR J Ferdman et al 2014 (MNRAS in press) m 1 =1.230(7) m 2 =1.341(7). PSRJ van Leeuwen et al 2014 (in prep). Young pulsar. m 1 =1.323(11), m 2 =1.290(11). Nature of companion unclear. PSRJ B=NGC6544B. Lynch et al 2012 (ApJ 745:109). P=4.8 ms, fully recycled. Nature of companion unclear. Likely that present system formed in exchange interaction.

17 Neutron Star-Neutron Star binaries Mildly recycled pulsars (P~20 to 60 ms) Highly eccentric orbits Short orbital periods (usually) T Y,R B 5 2 G 2/3 P = 3 b 2 2 ω c 2 π 1 e ( m 1 + m 2 ) γ = G c P 3 b e 2 2 π m 2 m 2 ( m 1 +2m 2 ) 4 ( m ) Example of measuring m1, m2 PSR J , 4 hr orbit, e=0.085 Leeuwen et al 2014, ApJ, submitted Precession rate: ± deg/yr m 1 +m 2 =2.6133±0.0002M $ Figure 8. Mass-mass diagram for the ephemeris presented in Table 3. The lines represent the values of m 1 and m 2 allowed by the three measured post- Keplerian parameters: ω (the solid line), γ (the dotted lines) and P b (the dashed lines). The dot indicates the best-fit value for m 1 and m 2. J is consistent with the value predicted by general Precession and γ: m 1 =1.323±0.011M $ m 2 =1.290±0.011M

18 Mildly recycled (spun-up pulsar) Not recycled J J comp. Notes: PSR J Ferdman et al 2014 (MNRAS in press) m 1 =1.230(7) m 2 =1.341(7). PSRJ van Leeuwen et al 2014 (in prep). Young pulsar. m 1 =1.323(11), m 2 =1.290(11). Nature of companion unclear. PSRJ B=NGC6544B. Lynch et al 2012 (ApJ 745:109). P=4.8 ms, fully recycled. Nature of companion unclear. Likely that present system formed in exchange interaction.

19 Summary Unrecycled neutron stars: 1.23M to 1.38M. Caveat: almost all measured in the same type of system, NS-NS binaries Mildly recycled neutron stars: slightly heavier than unrecycled neutron stars Caveat: PSR B is counterexample, lighter than its unrecycled companion

20 Neutron Star-White Dwarf Binaries Circular orbits; pulsar periods 1.5 to 20 ms Light white dwarf companions (typically)

21 Millisecond Pulsar Triple System PSR J Ransom et al (Nature 505: 521) Triple system: Pulsar, 2.7 ms (fully recycled) White dwarf, 0.2M, 1.6 day orbit White dwarf, 0.4M, 327 day orbit Numerically integrate 3-body gravitational interaction to find best model for the system. This determines masses and inclinations.. m 1 =1.4378±0.0013M $

22 Summary Unrecycled neutron stars: 1.23M to 1.38M. Caveat: almost all measured in the same type of system, NS-NS binaries Mildly recycled neutron stars: slightly heavier than unrecycled neutron stars Caveat: PSR B is counterexample, lighter than its unrecycled companion Fully recycled neutron stars: need not be heavier than mildly recycled NS. Triple pulsar J is fully recycled but only 1.44M.

23 Figure: Jim Lattimer stellarcollapse.org/nsmasses

24 Eccentric MSP binary PSR J Champion et al (Science 320: 1309) Freire et al (MNRAS 412: 2763) Fully recycled P=2.15 ms Eccentric e=0.44, 95-day orbit Main sequence companion unique evolution Precession (2) /yr m1+m2=2.70±0.03m Shapiro Delay Inclination 77.47±0.15 m2=1.029±0.008m m1=1.667±0.021m

25 Summary Unrecycled neutron stars: 1.23M to 1.38M. Caveat: almost all measured in the same type of system, NS-NS binaries Mildly recycled neutron stars: slightly heavier than unrecycled neutron stars Caveat: PSR B is counterexample, lighter than its unrecycled companion Fully recycled neutron stars: need not be heavier than mildly recycled NS. Triple pulsar J is fully recycled but only 1.44M. Neutron stars can have masses up to at least ~1.67M.

26 Neutron Star-White Dwarf Binaries Circular orbits; pulsar periods 1.5 to 20 ms Light white dwarf companions (typically)

27 Timing residual (µs) PSR J Pulsar-White Dwarf binary Demorest et al (Nature 467: 1081)E Fully recycled P=3.15 ms Circular e~10-6 White dwarf companion 8.7 day orbit Shapiro delay Inclination 89.17±0.02 m 2 =0.500±0.006M m 1 =1.97±0.04M Orbital Phase (turns) Δ t = G 2 3 m 2 ln sin ϕ c [ 1 sin i ( ϕ 0 ) ]

28 Summary Unrecycled neutron stars: 1.23M to 1.38M. Caveat: almost all measured in the same type of system, NS-NS binaries Mildly recycled neutron stars: slightly heavier than unrecycled neutron stars Caveat: PSR B is counterexample, lighter than its unrecycled companion Fully recycled neutron stars: need not be heavier than mildly recycled NS. Triple pulsar J is fully recycled but only 1.44M. Neutron stars can have masses up to at least ~1.67M ~2.0M.

29 Pulsar-White Dwarf binary PSR J Antoniadis et al (Science 340: )Ec Mildly recycled P=39.12 ms Circular e~2x10-6 White dwarf companion 2.5 hour orbit Companion spectroscopy T=10120±47±90 K log g(cm/s 2 )=6.035±0.032±0.060 m 2 =0.172±0.003M q=m 1 /m 2 =11.70±0.13 m 1 =2.01±0.04M

30 Summary Unrecycled neutron stars: 1.23M to 1.38M. Caveat: almost all measured in the same type of system, NS-NS binaries Mildly recycled P=39.12 ms Mildly recycled neutron stars: slightly heavier than Circular unrecycled e~2x10-6 neutron stars White dwarf companion Caveat: PSR B is counterexample, lighter than its unrecycled companion 2.5 hour orbit Fully recycled neutron stars: need not be heavier than mildly recycled NS. Triple pulsar J is fully recycled but only 1.44M. Neutron stars can have masses up to at least ~2.0M. Heavy neutron stars have periods similar to both mildly recycled and fully recycled pulsars.

31 Neutron Star-White Dwarf Binaries Circular orbits; pulsar periods 1.5 to 20 ms Light white dwarf companions (typically)

32 Eccentric globular cluster pulsars 47 Tuc I, 47 Tuc J, M5B, NGC6440B Freire et al (ApJ 675: 670) Freire et al (ApJ 697: 1433)c NGC6440B Precession: ± /yr m 1 =2.92±0.20M $ Inclination: Uniform a priori distribution of cos i m 1 =2.74±0.21M $ 15 o o o o o Same reasoning for 47 Tuc I, 47 Tuc J, and M5B also yields relatively large m 1.

33 Figure: Jim Lattimer stellarcollapse.org/nsmasses

34 Eclipsing binary PSR B van Kerkwijk, Breton, & Kulkarni 2011 (ApJ 728: 95)Ec Optical observations Light curve inclination Spectra orbit m 1 /m 2 m 1 =2.40±0.12M

35 High neutron star masses from other black widow/redback systems: PSR B m 1 = 2.40±0.11M %(van Kerkwijk et al 2011) PSR J m 1 > 2.1M (Romani et al 2012) PSR J m 1 = (1.84±0.11M /sin i) 3 (Kaplan et al 2013) PSR J m 1 > 1.75M %(Schroeder & Halpern 2014) Figure: Jim Lattimer stellarcollapse.org/nsmasses

36 Summary Unrecycled neutron stars: 1.23M to 1.38M. Caveat: almost all measured in the same type of system, NS-NS binaries Similar results from other black widow/redback systems: Mildly recycled neutron stars: slightly heavier than unrecycled neutron stars Caveat: PSR PSR B B is counterexample, m 1 = 2.40±0.11M lighter than its %(van unrecycled Kerkwijk companion et al 2011) PSR J m 1 > 2.1M (Romani et al 2012) Fully recycled PSR J neutron stars: m 1 = need (1.84±0.11M not be heavier /sin i) 3 than (Kaplan mildly et al 2013) recycled NS. Triple PSR pulsar J J is mfully 1 > 1.75M recycled but only 1.44M%(Schroeder. & Halpern 2014) Neutron stars can have masses up to at least ~2.0M, perhaps even ~2.4M. Heavy neutron stars have periods similar to both mildly recycled and fully recycled pulsars. All neutron stars in black widow/redback binaries with measured masses are heavy.

37 1. Motivation 2. How to measure neutron star masses by timing binary millisecond pulsars 3. Interesting recent measurements of neutron star masses. 4. Why there will be more and better measurements in the future.

38 The future I. Wide bandwidth high precision timing 64 MHz bandwidth GASP (GBT) ASP (Arecibo) MHz bandwidth GUPPI (GBT) PUPPI (Arecibo) PSR J at Arecibo. Adapted from figure by Paul Demorest. Radio frequency (MHz)

39 Timing residual (µs) PSR J Pulsar-White Dwarf binary Demorest et al (Nature 467: 1081) Red points: GUPPI (wideband) Gray points: previous-generation instruments Orbital Phase (turns)

40 PSR B Shapiro Delay Preliminary unpublished NANOGrav data Δ t = G 2 3 m 2 ln sin ϕ c [ 1 sin i ( ϕ 0 ) ]

41 The future II. New millisecond pulsar discoveries. Galactic (non-globular-cluster) millisecond pulsars by year of discovery (based on discovery publication date), at Arecibo, Green Bank, and other telescopes. For an up-to-date list: Figure: Maura McLaughlin

42 -40 Summary Unrecycled neutron stars: 1.23M to 1.38M. Caveat: almost all measured in the same type of system, NS-NS binaries Mildly recycled neutron stars: slightly heavier than unrecycled neutron stars Caveat: PSR B is counterexample, lighter than its unrecycled companion Fully recycled neutron stars: need not be heavier than mildly recycled NS. Triple pulsar J is fully recycled but only 1.44M. Neutron stars can have masses up to at least ~2.0M, perhaps even ~2.4M. Heavy neutron stars have periods similar to both mildly recycled and fully recycled pulsars. All neutron stars in black widow/redback binaries with measured masses are heavy stellarcollapse.org/nsmasses

Introduction to Pulsar Timing. David Nice Lafayette College. International Pulsar Timing Array Student Workshop Banff, Alberta 16 June 2014

Introduction to Pulsar Timing. David Nice Lafayette College. International Pulsar Timing Array Student Workshop Banff, Alberta 16 June 2014 Introduction to Pulsar Timing David Nice Lafayette College International Pulsar Timing Array Student Workshop Banff, Alberta 16 June 2014 1. Extremely short overview 2. Measuring TOAs 3. What s in a timing

More information

In Search of New MSPs for Pulsar Timing Arrays. Kevin Stovall, NRAO Socorro NANOGrav Collaboration

In Search of New MSPs for Pulsar Timing Arrays. Kevin Stovall, NRAO Socorro NANOGrav Collaboration In Search of New MSPs for Pulsar Timing Arrays Kevin Stovall, NRAO Socorro NANOGrav Collaboration NRAO Postdoc Symposium, March 27, 2017 NANOGrav = US/Canada-based collaboration working to detect nhz GW

More information

Pulsar Overview. Kevin Stovall NRAO

Pulsar Overview. Kevin Stovall NRAO Pulsar Overview Kevin Stovall NRAO IPTA 2018 Student Workshop, 11 June, 2018 Pulsars Pulsars ~2,700 pulsars known Act as clocks, therefore provide a means for studying a variety of physical phenomena Strongly

More information

Testing physics with millisecond pulsars. Paul Demorest, NRAO

Testing physics with millisecond pulsars. Paul Demorest, NRAO Testing physics with millisecond pulsars Paul Demorest, NRAO Talk outline: 1. Intro: Neutron stars, millisecond pulsars 2. Digital instrumentation for radio pulsar observations 3. Mass of PSR J1614-2230

More information

Recent Results in Pulsars: A Pulsar Renaissance. Scott Ransom

Recent Results in Pulsars: A Pulsar Renaissance. Scott Ransom Recent Results in Pulsars: A Pulsar Renaissance Scott Ransom NRAO Charlottesville NAIC/NRAO Single-Dish Summer School 2005 What s a Pulsar? Discovered in 1967 by Jocelyn Bell and Antony Hewish at Cambridge

More information

A Pulsar Timing Array for Gravitational Wave Detection. Paul Demorest, NRAO

A Pulsar Timing Array for Gravitational Wave Detection. Paul Demorest, NRAO A Pulsar Timing Array for Gravitational Wave Detection Paul Demorest, NRAO About 10% of known radio pulsars are recycled millisecond pulsars (MSPs). These are spun up by accreting matter from a companion

More information

Detecting Gravitational Waves. (and doing other cool physics) with Millisecond Pulsars. NANOGrav. Scott Ransom

Detecting Gravitational Waves. (and doing other cool physics) with Millisecond Pulsars. NANOGrav. Scott Ransom Detecting Gravitational Waves (and doing other cool physics) with Millisecond Pulsars NANOGrav Scott Ransom What s a Pulsar? Rotating Neutron Star! Size of city: R ~ 10-20 km Mass greater than Sun: M ~

More information

TeV Emission from Millisecond Pulsars in Compact Binaries? Mallory Roberts Eureka Scientific/NRL

TeV Emission from Millisecond Pulsars in Compact Binaries? Mallory Roberts Eureka Scientific/NRL TeV Emission from Millisecond Pulsars in Compact Binaries? Mallory Roberts Eureka Scientific/NRL Binary Period in Days Millisecond Pulsars Spun up by a low mass companion such that their spin period P

More information

Post-Keplerian effects in binary systems

Post-Keplerian effects in binary systems Post-Keplerian effects in binary systems Laboratoire Univers et Théories Observatoire de Paris / CNRS The problem of binary pulsar timing (Credit: N. Wex) Some classical tests of General Relativity Gravitational

More information

But wait! There's More! A wealth of science from millisecond pulsars. Scott Ransom National Radio Astronomy Observatory / University of Virginia

But wait! There's More! A wealth of science from millisecond pulsars. Scott Ransom National Radio Astronomy Observatory / University of Virginia But wait! There's More! A wealth of science from millisecond pulsars Scott Ransom National Radio Astronomy Observatory / University of Virginia What s a Millisecond Pulsar? Rapidly Rotating Neutron Star!

More information

NS masses from radio timing: Past, present and future. Paul Demorest (NRAO) Symposium on Neutron Stars, Ohio U., May 2016

NS masses from radio timing: Past, present and future. Paul Demorest (NRAO) Symposium on Neutron Stars, Ohio U., May 2016 NS masses from radio timing: Past, present and future Paul Demorest (NRAO) Symposium on Neutron Stars, Ohio U., May 2016 Overview Review of how to measure neutron star masses via radio pulsar timing. Summary

More information

The Hunt for New Pulsars with the Green Bank Telescope

The Hunt for New Pulsars with the Green Bank Telescope The Hunt for New Pulsars with the Green Bank Telescope Ryan Lynch Postdoctoral Fellow McGill University What we'll talk about... Two most recent large-area GBT pulsar surveys the 350 MHz Drift Scan Survey

More information

Pulsars. in this talk. Pulsar timing. Pulsar timing. Pulsar timing. Pulsar timing. How to listen to what exotic. are telling us! Paulo César C.

Pulsars. in this talk. Pulsar timing. Pulsar timing. Pulsar timing. Pulsar timing. How to listen to what exotic. are telling us! Paulo César C. How to listen to what exotic Pulsars are telling us! in this talk 1. 2. 3. Test of gravitational theories using binary pulsars 4. Probing the equation of state of super-dense matter Paulo César C. Freire

More information

Probing Relativistic Gravity with the Double Pulsar

Probing Relativistic Gravity with the Double Pulsar Probing Relativistic Gravity with the Double Pulsar Marta Burgay INAF Osservatorio Astronomico di Cagliari The spin period of the original millisecond pulsar PSR B1937+21: P = 0.0015578064924327 ± 0.0000000000000004

More information

Gravity Tests with Radio Pulsars

Gravity Tests with Radio Pulsars Gravity Tests with Radio Pulsars Norbert Wex Paris, June 21 st, 2010 Regimes of Gravity Tests (1) Quasi-stationary weak-field regime Solar system experiments (2) Quasi-stationary strong-field regime (3)

More information

The Double Pulsar:! A Decade of Discovery! (and what you can do over the next decade with FAST!)

The Double Pulsar:! A Decade of Discovery! (and what you can do over the next decade with FAST!) The Double Pulsar:! A Decade of Discovery! (and what you can do over the next decade with FAST!) Maura McLaughlin West Virginia University 20 May 2014 : Double neutron star systems" The pulsar catalog

More information

High Precision Pulsar Timing at Arecibo Observatory

High Precision Pulsar Timing at Arecibo Observatory High Precision Pulsar Timing at Arecibo Observatory What are pulsars? When the cores of massive stars run out of nuclear fuel they collapse catastrophically. Their immense gravitational field, now unopposed,

More information

New Radio Millisecond Pulsars in Fermi (formerly) Unassociated Sources

New Radio Millisecond Pulsars in Fermi (formerly) Unassociated Sources New Radio Millisecond Pulsars in Fermi (formerly) Unassociated Sources Scott Ransom (NRAO) For the Fermi Pulsar Search Consortium (PSC) Fermi Pulsars Currently 24 blind search pulsars (16 in Sci) Currently

More information

General Relativity Tests with Pulsars

General Relativity Tests with Pulsars General Relativity Tests with Pulsars Ingrid Stairs UBC Rencontres de Moriond La Thuile March 25, 2011 Green Bank Telescope Jodrell Bank Parkes Arecibo Outline Intro to pulsar timing Equivalence principle

More information

Testing General Relativity with Relativistic Binary Pulsars

Testing General Relativity with Relativistic Binary Pulsars Testing General Relativity with Relativistic Binary Pulsars Ingrid Stairs UBC GWPAW Milwaukee Jan. 29, 2011 Green Bank Telescope Jodrell Bank Parkes Arecibo Outline Intro to pulsar timing Equivalence principle

More information

Science with Radio Pulsar Astrometry

Science with Radio Pulsar Astrometry Science with Radio Pulsar Astrometry Shami Chatterjee Cornell University August 2012 Astrometry is a force multiplier Precise astrometry improves the science return from new discoveries. Astrometry is

More information

imin...

imin... Pulsar Timing For a detailed look at pulsar timing and other pulsar observing techniques, see the Handbook of Pulsar Astronomy by Duncan Lorimer and Michael Kramer. Pulsars are intrinsically interesting

More information

Pulsars are Cool. Seriously. Scott Ransom National Radio Astronomy Observatory / University of Virginia

Pulsars are Cool. Seriously. Scott Ransom National Radio Astronomy Observatory / University of Virginia Pulsars are Cool. Seriously. Scott Ransom National Radio Astronomy Observatory / University of Virginia Neutron Stars Spin rates up to 716 Hz 1.2-2 Solar masses 10-12 km radii Central densities several

More information

MILLISECOND PULSAR POPULATION

MILLISECOND PULSAR POPULATION MILLISECOND PULSAR POPULATION on Formation and Evolution Of Neutron Stars 11/12/2017 COMPANY NAME Outline 1. Millisecond Pulsars 2.Current Population 3.Applications 4.Future Prospects 4.1.Potential Science

More information

WHAT ARE GALACTIC FIELD BLACK WIDOWS AND REDBACKS GOOD FOR? (EVERYTHING BUT GRAVITY WAVES) Mallory Roberts Eureka Scientific Jan. 22, 2013 Aspen, CO

WHAT ARE GALACTIC FIELD BLACK WIDOWS AND REDBACKS GOOD FOR? (EVERYTHING BUT GRAVITY WAVES) Mallory Roberts Eureka Scientific Jan. 22, 2013 Aspen, CO WHAT ARE GALACTIC FIELD BLACK WIDOWS AND REDBACKS GOOD FOR? (EVERYTHING BUT GRAVITY WAVES) Mallory Roberts Eureka Scientific Jan. 22, 2013 Aspen, CO THE Black Widow PSR B1957+20 1.6 ms pulsar discovered

More information

New Insights from the Optical Study of Spiders

New Insights from the Optical Study of Spiders New Insights from the Optical Study of Spiders Rene Breton University of Manchester with many collaborators (V. Dhillon, J. Hessels, M. van Kerkwijk, M. Roberts, ) EWASS 25 June 2015 SDO/AIA/AEI Why Do

More information

Gamma-ray observations of millisecond pulsars with the Fermi LAT. Lucas Guillemot, MPIfR Bonn. NS2012 in Bonn 27/02/12.

Gamma-ray observations of millisecond pulsars with the Fermi LAT. Lucas Guillemot, MPIfR Bonn. NS2012 in Bonn 27/02/12. Gamma-ray observations of millisecond pulsars with the Fermi LAT Lucas Guillemot, MPIfR Bonn guillemo@mpifr-bonn.mpg.de NS2012 in Bonn 27/02/12 The Fermi Gamma-ray Space Telescope Fermi = Large Area Telescope

More information

arxiv:astro-ph/ v1 7 Jul 2004

arxiv:astro-ph/ v1 7 Jul 2004 Binary Radio Pulsars ASP Conference Series, Vol. TBD, 2004 eds. F.A. Rasio & I.H. Stairs Relativistic Binary Pulsar B1913+16: Thirty Years of Observations and Analysis Joel M. Weisberg Dept. of Physics

More information

General Relativity Tests with Pulsars

General Relativity Tests with Pulsars General Relativity Tests with Pulsars Ingrid Stairs UBC SLAC Summer Institute July 27, 2005 Much of this material is in Living Reviews in Relativity 2003 5. Pulsars: rotating, magnetized neutron stars.

More information

New Binary and Millisecond Pulsars from Arecibo Drift-Scan Searches

New Binary and Millisecond Pulsars from Arecibo Drift-Scan Searches Binary Radio Pulsars ASP Conference Series, Vol. 328, 2005 F. A. Rasio and I. H. Stairs New Binary and Millisecond Pulsars from Arecibo Drift-Scan Searches M. A. McLaughlin, D. R. Lorimer, D. J. Champion

More information

SKADS Virtual Telescope: Pulsar Survey IV: Globular Cluster Pulsars

SKADS Virtual Telescope: Pulsar Survey IV: Globular Cluster Pulsars SKADS Virtual Telescope: Pulsar Survey IV: Globular Cluster Pulsars PI: S. Ransom Co-I: M. Kramer We propose to use the SKADS Virtual Telescope (SVT) to search Globular clusters for fast rotating pulsars

More information

arxiv: v1 [astro-ph.sr] 18 Jul 2009

arxiv: v1 [astro-ph.sr] 18 Jul 2009 Eccentric Binary Millisecond Pulsars Paulo C. C. Freire Arecibo Observatory, HC 3 Box 53995, Arecibo PR 00612, USA West Virginia University, PO Box 6315, Morgantown WV 26505, USA arxiv:0907.3219v1 [astro-ph.sr]

More information

New Results from Four Elusive Binary Pulsars in 47 Tucanae

New Results from Four Elusive Binary Pulsars in 47 Tucanae Max-Planck-Institut für Radioastronomie New Results from Four Elusive Binary Pulsars in 47 Tucanae Alessandro Ridolfi and P. Freire, P. Torne, C. O. Heinke, M. van den Berg, C. Jordan, M. Kramer, C. G.

More information

Measurements of binary pulsar masses and a study on the nature of gravitational waves

Measurements of binary pulsar masses and a study on the nature of gravitational waves Measurements of binary pulsar masses and a study on the nature of gravitational waves Paulo C. C. Freire Max-Planck-Institut für Radioastronomie Bonn, Germany 2016 November 2, ``Compact Stars and Gravitational

More information

FORMATION AND EVOLUTION OF COMPACT BINARY SYSTEMS

FORMATION AND EVOLUTION OF COMPACT BINARY SYSTEMS FORMATION AND EVOLUTION OF COMPACT BINARY SYSTEMS Main Categories of Compact Systems Formation of Compact Objects Mass and Angular Momentum Loss Evolutionary Links to Classes of Binary Systems Future Work

More information

arxiv:astro-ph/ v1 11 Nov 2002

arxiv:astro-ph/ v1 11 Nov 2002 Radio Pulsars, Proceedings of August 2002 meeting in Chania, Crete ASP Conference Series, Vol. to be determined, 2003 M. Bailes, D.J. Nice, & S.E. Thorsett, eds. The Relativistic Binary Pulsar B1913+16

More information

Long-term radio observations of orbital phase wander in six eclipsing pulsar binaries. Brian Prager Department of Astronomy University of Virginia

Long-term radio observations of orbital phase wander in six eclipsing pulsar binaries. Brian Prager Department of Astronomy University of Virginia Long-term radio observations of orbital phase wander in six eclipsing pulsar binaries. Brian Prager Department of Astronomy University of Virginia Collaborators: Scott Ransom (NRAO), Phil Arras (UVa),

More information

Arecibo and the ALFA Pulsar Survey

Arecibo and the ALFA Pulsar Survey Chin. J. Astron. Astrophys. Vol. 6 (2006), Suppl. 2, 311 318 (http://www.chjaa.org) Chinese Journal of Astronomy and Astrophysics Arecibo and the ALFA Pulsar Survey J. van Leeuwen, J. M. Cordes, D. R.

More information

arxiv:astro-ph/ v1 6 Jan 2000

arxiv:astro-ph/ v1 6 Jan 2000 Neutron Star Mass Determinations M. H. van Kerkwijk Utrecht University, P. O. Box 80000, 3508 TA Utrecht, The Netherlands arxiv:astro-ph/0001077v1 6 Jan 2000 Abstract. I review attempts made to determine

More information

Observations radio de pulsars binaires relativistes a Nancay

Observations radio de pulsars binaires relativistes a Nancay Observations radio de pulsars binaires relativistes a Nancay Ismael Cognard icognard@cnrs-orleans.fr LPC2E, CNRS - Universite d'orleans, France Nancay Radio Telescope I.Cognard - Pulsars binaires relativistes

More information

Recent Radio Observations of Pulsars

Recent Radio Observations of Pulsars Recent Radio Observations of Pulsars R. N. Manchester Australia Telescope National Facility, CSIRO Sydney Australia Summary A pulsar census Recent pulsar surveys Pulse modulation and drifting subpulses

More information

Extreme Properties of Neutron Stars

Extreme Properties of Neutron Stars Extreme Properties of The most compact and massive configurations occur when the low-density equation of state is soft and the high-density equation of state is stiff (Koranda, Stergioulas & Friedman 1997).

More information

Next Texas Meeting December It s warm in December! In Melbourne. See kangaroos & koalas Swim at Barrier Reef Exciting science

Next Texas Meeting December It s warm in December! In Melbourne. See kangaroos & koalas Swim at Barrier Reef Exciting science Next Texas Meeting December 2006 In Melbourne It s warm in December! See kangaroos & koalas Swim at Barrier Reef Exciting science Millisecond Pulsars and Gravity R. N. Manchester Australia Telescope National

More information

SPIN PRECESSION IN A 2 BODY SYSTEM: A NEW TEST OF GENERAL RELATIVITY R. F. O CONNELL DEPT. OF PHYSICS & ASTRONOMY LOUISIANA STATE UNIVERSITY

SPIN PRECESSION IN A 2 BODY SYSTEM: A NEW TEST OF GENERAL RELATIVITY R. F. O CONNELL DEPT. OF PHYSICS & ASTRONOMY LOUISIANA STATE UNIVERSITY SPIN PRECESSION IN A 2 BODY SYSTEM: A NEW TEST OF GENERAL RELATIVITY R. F. O CONNELL DEPT. OF PHYSICS & ASTRONOMY LOUISIANA STATE UNIVERSITY 1 1. Newtonian Theory (p. 2) 2. General Relativistic Corrections

More information

The (obscene) Challenges of Next-Generation Pulsar Surveys

The (obscene) Challenges of Next-Generation Pulsar Surveys The (obscene) Challenges of Next-Generation Pulsar Surveys Scott Ransom NRAO / Univ. of Virginia Charlottesville, VA Haslam 408MHz Survey Summary: The Pulsar Search Problem Pulsars are faint we are sensitivity

More information

MILLISECOND PULSARS. Merve Çolak

MILLISECOND PULSARS. Merve Çolak MILLISECOND PULSARS Merve Çolak OUTLINE Corbet Diagram (again) P-P(dot) Diagram MSPs and Their History Properties of MSPs Spin-up of Neutron Stars Spin-down of MSPs MSP Evolution Recent MSP Evolution Model

More information

Pulsars and Radio Transients. Scott Ransom National Radio Astronomy Observatory / University of Virginia

Pulsars and Radio Transients. Scott Ransom National Radio Astronomy Observatory / University of Virginia Pulsars and Radio Transients Scott Ransom National Radio Astronomy Observatory / University of Virginia TIARA Summer School on Radio Astronomy 2016 Radio Transients Non-thermal emission Emission types

More information

The Formation of the Most Relativistic Pulsar PSR J

The Formation of the Most Relativistic Pulsar PSR J Binary Radio Pulsars ASP Conference Series, Vol. 328, 2005 F. A. Rasio and I. H. Stairs The Formation of the Most Relativistic Pulsar PSR J0737 3039 B. Willems, V. Kalogera, and M. Henninger Northwestern

More information

Detecting Gravitational Waves with Pulsars

Detecting Gravitational Waves with Pulsars Detecting Gravitational Waves with Pulsars R. N. Manchester Australia Telescope National Facility, CSIRO, Sydney Australia Summary Pulsars and pulsar timing Parkes pulsar surveys the double pulsar The

More information

Double neutron star evolution from geometric constraints

Double neutron star evolution from geometric constraints Double neutron star evolution from geometric constraints Robert Ferdman University of East Anglia Bonn NS Workshop X 14 November 2016 A tale of two DNSs PSR J0737-3039A/B J1756 2251 Spin period (s) 0.0227

More information

The surface gravitational redshift of the neutron star PSR B

The surface gravitational redshift of the neutron star PSR B Bull. Astr. Soc. India (2013) 41, 291 298 The surface gravitational redshift of the neutron star PSR B2303+46 Xian-Feng Zhao 1 and Huan-Yu Jia 2 1 College of Mechanical and Electronic Engineering, Chuzhou

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Earth, Atmospheric, and Planetary Sciences Department. Problem Set 6

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Earth, Atmospheric, and Planetary Sciences Department. Problem Set 6 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Earth, Atmospheric, and Planetary Sciences Department Astronomy 8.282J 12.402J March 17, 2006 Problem Set 6 Due: Friday, March 24 (in lecture) Reading:

More information

Pulsar Population. Stefan Grohnert

Pulsar Population. Stefan Grohnert Fakultät für Physik Universität Bielefeld Pulsar Population The Remnant Mass in Neutron Stars Literature Report in Galactic Astronomy eingereicht von Stefan Grohnert June 18, 2018 Contents 1 Pulsars and

More information

Collaborators: N. Wex, R. Eatough, M. Kramer, J. M. Cordes, J. Lazio

Collaborators: N. Wex, R. Eatough, M. Kramer, J. M. Cordes, J. Lazio Kuo Liu Laboratoire de Physique et Chimie de l Environnement, LPCE UMR 6115 CNRS, F-45071 Orleans Cedex 02 Station de radioastronomie de Nancay, Observatoire de Paris, CNRS/INSU, F- 18330 Nancay, France

More information

Pulsar Observation and Data Analysis Ryan Shannon Postdoctoral Fellow, CSIRO Astronomy and Space Science

Pulsar Observation and Data Analysis Ryan Shannon Postdoctoral Fellow, CSIRO Astronomy and Space Science Credit: John Sarkissian Pulsar Observation and Data Analysis Ryan Shannon Postdoctoral Fellow, CSIRO Astronomy and Space Science Outline What are pulsars? What are the requirements for instrumentation/observing

More information

Paul Demorest (NRAO) for NANOGrav collaboration, CHIME pulsar team John Galt Symposium, DRAO, Sept 23, 2014

Paul Demorest (NRAO) for NANOGrav collaboration, CHIME pulsar team John Galt Symposium, DRAO, Sept 23, 2014 Pulsars and CHIME: Gravitational Waves, the ISM and More! Paul Demorest (NRAO) for NANOGrav collaboration, CHIME pulsar team John Galt Symposium, DRAO, Sept 23, 2014 Outline Pulsar stuff: Pulsar timing

More information

Radio counterparts of gamma-ray pulsars

Radio counterparts of gamma-ray pulsars Radio counterparts of gamma-ray pulsars Lucas Guillemot, MPIfR Bonn guillemo@mpifr-bonn.mpg.de on behalf of the Fermi LAT Collaboration IAU Symposium 2012, Beijing 20/08/12 117 gamma-ray pulsars! 41 young

More information

22 Years of a Pulsar-Be Binary System: From Parkes to the Heavens (Fermi) Ryan Shannon Postdoctoral Fellow, CSIRO Astronomy and Space Science

22 Years of a Pulsar-Be Binary System: From Parkes to the Heavens (Fermi) Ryan Shannon Postdoctoral Fellow, CSIRO Astronomy and Space Science Credit: CSIRO/John Sarkissian 22 Years of a Pulsar-Be Binary System: From Parkes to the Heavens (Fermi) Ryan Shannon Postdoctoral Fellow, CSIRO Astronomy and Space Science Big Picture and Talk Outline

More information

Testing GR with the Double Pulsar: Recent Results

Testing GR with the Double Pulsar: Recent Results Testing GR with the Double Pulsar: Recent Results M. Kramer, D.R. Lorimer, A.G. Lyne, M. McLaughlin University of Manchester, Jodrell Bank Observatory, UK M. Burgay, N. D Amico, A. Possenti INAF - Osservatorio

More information

Evolution of High Mass stars

Evolution of High Mass stars Evolution of High Mass stars Neutron Stars A supernova explosion of a M > 8 M Sun star blows away its outer layers. The central core will collapse into a compact object of ~ a few M Sun. Pressure becomes

More information

arxiv: v1 [astro-ph.im] 30 Oct 2012

arxiv: v1 [astro-ph.im] 30 Oct 2012 Neutron Stars and Pulsars: Challenges and Opportunities after 80 years Proceedings IAU Symposium No. 291, 2012 c 2012 International Astronomical Union J. van Leeuwen, ed. DOI: 00.0000/X000000000000000X

More information

Spectral Analysis of the Double Pulsar PSR J with XMM-Newton

Spectral Analysis of the Double Pulsar PSR J with XMM-Newton Spectral Analysis of the Double Pulsar PSR J0737-3039 with XMM-Newton * E. Egron, A. Pellizzoni, M.N. Iacolina, A. Pollock, et al. INAF - Osservatorio Astronomico di Cagliari, Italy * ESAC, Madrid, Spain

More information

{ 2{ as well as the structure and dynamics of globular clusters. In addition, the study of individual exotic binaries formed in the dense central core

{ 2{ as well as the structure and dynamics of globular clusters. In addition, the study of individual exotic binaries formed in the dense central core Observations of two Millisecond Pulsars in the Globular Cluster NGC5904 S. B. Anderson 1 and A. Wolszczan Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802

More information

Five and a half roads to from a millisecond pulsar. Thomas Tauris AIfA, University of Bonn Max-Planck-Institut für Radioastronomie, Bonn

Five and a half roads to from a millisecond pulsar. Thomas Tauris AIfA, University of Bonn Max-Planck-Institut für Radioastronomie, Bonn Five and a half roads to from a millisecond pulsar Thomas Tauris AIfA, University of Bonn Max-Planck-Institut für Radioastronomie, Bonn Evolution of Compact Binaries, ESO Chile, March 6-11, 2011 Millisecond

More information

Twenty-One Millisecond Pulsars in Terzan 5 Using the Green Bank Telescope

Twenty-One Millisecond Pulsars in Terzan 5 Using the Green Bank Telescope Twenty-One Millisecond Pulsars in Terzan 5 Using the Green Bank Telescope arxiv:astro-ph/0501230v1 12 Jan 2005 Scott M. Ransom, 1,2 Jason W. T. Hessels, 2 Ingrid H. Stairs, 3 Paulo C. C. Freire, 4 Fernando

More information

Astronomy 421. Lecture 23: End states of stars - Neutron stars

Astronomy 421. Lecture 23: End states of stars - Neutron stars Astronomy 421 Lecture 23: End states of stars - Neutron stars 1 Outline Neutron stars Pulsars properties distribution emission mechanism evolution 2 Neutron stars Typical values: M ~ 1.4M R ~ 10 km ρ ~

More information

Radio timing observations of the pulsar by Kaspi et al. (1994) have

Radio timing observations of the pulsar by Kaspi et al. (1994) have TIMING OBSERVATIONS OF THE SMC BINARY PSR J0045?7319 V. M. KASPI IPAC/Caltech/Jet Propulsion Laboratory Pasadena, CA, USA 91125 R. N. MANCHESTER AND M. BAILES ATNF/CSIRO Epping, Australia AND J. F. BELL

More information

Gravity with the SKA

Gravity with the SKA Gravity with the SKA Strong-field tests of gravity using Pulsars and Black Holes Michael Kramer Jodrell Bank Observatory University of Manchester With Don Backer, Jim Cordes, Simon Johnston, Joe Lazio

More information

Observations of Gamma ray Spiders with the Fermi Large Area Telescope

Observations of Gamma ray Spiders with the Fermi Large Area Telescope Observations of Gamma ray Spiders with the Fermi Large Area Telescope Tyrel J. Johnson1 with P. S. Ray2, F. Camilo3, J. Roy4,5, and M. S. E. Roberts6 on behalf of the Fermi LAT collaboration 1. George

More information

The Same Physics Underlying SGRs, AXPs and Radio Pulsars

The Same Physics Underlying SGRs, AXPs and Radio Pulsars Chin. J. Astron. Astrophys. Vol. 6 (2006), Suppl. 2, 273 278 (http://www.chjaa.org) Chinese Journal of Astronomy and Astrophysics The Same Physics Underlying SGRs, AXPs and Radio Pulsars Biping Gong National

More information

Pulsar timing and its applications

Pulsar timing and its applications Journal of Physics: Conference Series PAPER OPEN ACCESS Pulsar timing and its applications To cite this article: R N Manchester 2017 J. Phys.: Conf. Ser. 932 012002 Related content - The European Pulsar

More information

Sources of GeV Photons and the Fermi Results

Sources of GeV Photons and the Fermi Results Sources of GeV Photons and the Fermi Results 1. GeV instrumentation and the GeV sky with the Fermi Gamma-ray Space Telescope 2. First Fermi Catalog of Gamma Ray Sources and the Fermi Pulsar Catalog 3.

More information

Accretion in Binaries

Accretion in Binaries Accretion in Binaries Two paths for accretion Roche-lobe overflow Wind-fed accretion Classes of X-ray binaries Low-mass (BH and NS) High-mass (BH and NS) X-ray pulsars (NS) Be/X-ray binaries (NS) Roche

More information

University of Naples Federico II, Academic Year Istituzioni di Astrofisica, read by prof. Massimo Capaccioli. Lecture 19.

University of Naples Federico II, Academic Year Istituzioni di Astrofisica, read by prof. Massimo Capaccioli. Lecture 19. University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica, read by prof. Massimo Capaccioli Lecture 19 Neutron stars Learning outcomes The student will see: xxx Discovery of

More information

The Fermi Large Area Telescope View of Gamma-ray Pulsars

The Fermi Large Area Telescope View of Gamma-ray Pulsars The Fermi Large Area Telescope View of Gamma-ray Pulsars 1 Tyrel J. Johnson, D.A. Smith2, M. Kerr3, & P. R. den Hartog4 on behalf of the Fermi Large Area Telescope Collaboration and the Pulsar Timing and

More information

Pulsars ASTR2110 Sarazin. Crab Pulsar in X-rays

Pulsars ASTR2110 Sarazin. Crab Pulsar in X-rays Pulsars ASTR2110 Sarazin Crab Pulsar in X-rays Test #2 Monday, November 13, 11-11:50 am Ruffner G006 (classroom) Bring pencils, paper, calculator You may not consult the text, your notes, or any other

More information

Masses, Radii, and Equation of State of Neutron Stars

Masses, Radii, and Equation of State of Neutron Stars Masses, Radii, and Equation of State of Neutron Stars arxiv:1603.02698v1 [astro-ph.he] 8 Mar 2016 Xxxx. Xxx. Xxx. Xxx. YYYY. 00:1 39 This article s doi: 10.1146/((please add article doi)) Copyright c YYYY

More information

Observations of Radio Pulsars

Observations of Radio Pulsars Mem. S.A.It. Vol. 76, 500 c SAIt 2005 Memorie della Observations of Radio Pulsars Andrea Possenti Istituto Nazionale di Astrofisica Osservatorio Astronomico di Cagliari, loc.poggio dei Pini, I-09012 Cagliari,

More information

Testing Gravity and Extreme Physics with Pulsars

Testing Gravity and Extreme Physics with Pulsars Testing Gravity and Extreme Physics with Pulsars John Rowe Animation Australia Telescope National Facility, CSIRO René Breton School of Physics & Astronomy The University of Manchester Liverpool Physics

More information

arxiv:astro-ph/ v1 16 Nov 1999

arxiv:astro-ph/ v1 16 Nov 1999 Mon. Not. R. Astron. Soc. 000, 000 000 (0000) Printed 1 February 2008 (MN LATEX style file v1.4) The Parkes Multibeam Pulsar Survey: PSR J1811 1736 a pulsar in a highly eccentric binary system arxiv:astro-ph/9911313v1

More information

Measuring MNS, RNS, MNS/RNS or R

Measuring MNS, RNS, MNS/RNS or R Measuring MNS, RNS, MNS/RNS or R Sebastien Guillot Advisor: Robert Rutledge Galileo Galilei Institute, Firenze March 2014 Some Reviews Lattimer and Prakash, 2007 Miller C., 2013 Heinke et al., 2013 Reminder

More information

The double pulsar as Jupiter: tomography of magnetosphere and a new test of General Relativity. Maxim Lyutikov (Purdue U.)

The double pulsar as Jupiter: tomography of magnetosphere and a new test of General Relativity. Maxim Lyutikov (Purdue U.) The double pulsar as Jupiter: tomography of magnetosphere and a new test of General Relativity Maxim Lyutikov (Purdue U.) The Double Pulsar: sixth most important scientific discovery of 2004 (Science)

More information

discovers a radio-quiet gamma-ray millisecond Journal Group

discovers a radio-quiet gamma-ray millisecond Journal Group Einstein@Home discovers a radio-quiet gamma-ray millisecond pulsar @CHEA Journal Group Contribution of the paper Contribution of the paper Millisecond Pulsars (MSPs) Ver y rapid rotating neutron star

More information

arxiv:astro-ph/ v1 15 Aug 2001

arxiv:astro-ph/ v1 15 Aug 2001 A test of general relativity from the three-dimensional orbital geometry of a binary pulsar arxiv:astro-ph/0108254 v1 15 Aug 2001 W. van Straten, M. Bailes, M.C. Britton, S.R. Kulkarni, S.B. Anderson,

More information

Astronomy 100 Spring 2006 Lecture Questions Twelve Weeks Review

Astronomy 100 Spring 2006 Lecture Questions Twelve Weeks Review Astronomy 100 Spring 2006 Lecture Questions Twelve Weeks Review 16-1 Fusion in the Sun The solar corona has temperatures roughly the same as temperatures in the Sun's core, where nuclear fusion takes place.

More information

Triple in M Analysis of the Pulsar Timing Data

Triple in M Analysis of the Pulsar Timing Data Triple in M4 2 sponding orbital periods in the range 10 2 10 3 yr (Michel 1994; Rasio 1994; Sigurdsson 1995). More recent calculations using four frequency derivatives and preliminary measurements of the

More information

Formation of Binary Pulsars in Globular Clusters 3

Formation of Binary Pulsars in Globular Clusters 3 2 Rasio & Goodman 1996; McMillan et al. 1990; Rasio & Shapiro 1991). Moreover, the basic predictions of tidal capture scenarios are at odds with many observations of binaries and pulsars in clusters (Bailyn

More information

Binary Pulsars and Evidence for Gravitational Radiation

Binary Pulsars and Evidence for Gravitational Radiation Binary Pulsars and Evidence for Gravitational Radiation Matthew S. Paoletti Institute for Research in Electronics and Applied Physics Energy Research Facility, Bldg. #3 University of Maryland College Park,

More information

PoS(ISKAF2010)080. The European Pulsar Timing Array. Roy Smits. The EPTA collaboration

PoS(ISKAF2010)080. The European Pulsar Timing Array. Roy Smits. The EPTA collaboration The University of Manchester, School of Physics and Astronomy, Jodrell Bank Netherlands Institute for Radio Astronomy (ASTRON), Dwingeloo, The Netherlands E-mail: rsmits@jb.man.ac.uk The EPTA collaboration

More information

Exotic Nuclei, Neutron Stars and Supernovae

Exotic Nuclei, Neutron Stars and Supernovae Exotic Nuclei, Neutron Stars and Supernovae Jürgen Schaffner-Bielich Institut für Theoretische Physik ECT*-APCTP Joint Workshop: From Rare Isotopes to Neutron Stars ECT*, Trento, September 14-18, 2015

More information

Millisecond Pulsar Populations in Globular Clusters

Millisecond Pulsar Populations in Globular Clusters Millisecond Pulsar Populations in Globular Clusters David C. Y. Hui Department of Astronomy & Space Science Chungnam National University 1. Introduction 2. Dynamical formation of millisecond pulsars (MSPs)

More information

Black holes in dormant X-ray transients

Black holes in dormant X-ray transients Mem. S.A.It. Vol. 83, 213 c SAIt 2012 Memorie della Black holes in dormant X-ray transients J. Ziółkowski Nicolaus Copernicus Astronomical Center, Bartycka 18, 00-716 Warszawa, Poland e-mail: jz@camk.edu.pl

More information

Lecture 13: Binary evolution

Lecture 13: Binary evolution Lecture 13: Binary evolution Senior Astrophysics 2017-04-12 Senior Astrophysics Lecture 13: Binary evolution 2017-04-12 1 / 37 Outline 1 Conservative mass transfer 2 Non-conservative mass transfer 3 Cataclysmic

More information

Nanohertz Gravitational Waves and Pulsar Timing

Nanohertz Gravitational Waves and Pulsar Timing Nanohertz Gravitational Waves and Pulsar Timing Paul Demorest, NRAO Charlottesville Sep 10, 2009 Outline Pulsar Timing and Gravitational Waves NANOGrav GW/PTA Project Improved Instrumentation for Pulsar

More information

arxiv: v1 [astro-ph.he] 11 Nov 2016

arxiv: v1 [astro-ph.he] 11 Nov 2016 Preprint November 14, 216 Compiled using MNRAS LATEX style file v3. A Massive Millisecond Pulsar in an Eccentric Binary E. D. Barr, 1 P. C. C. Freire, 1 M. Kramer, 1 D. J. Champion, 1 M. Berezina, 1 C.

More information

Discovery of a transitional Redback millisecond pulsar J !

Discovery of a transitional Redback millisecond pulsar J ! Discovery of a transitional Redback millisecond pulsar J1227-4853! By Jayanta Roy!! JBCA, University of Manchester!! and!! National Centre for Radio Astrophysics (NCRA-TIFR) Neutron stars at the crossroads,

More information

arxiv: v1 [astro-ph.he] 31 Dec 2014

arxiv: v1 [astro-ph.he] 31 Dec 2014 Pulsars in Globular Clusters with the SKA arxiv:1501.00086v1 [astro-ph.he] 31 Dec 2014 ab, A. Possenti c, M. Bailes de, C. G. Bassa a, P. C. C. Freire f, D. R. Lorimer g, R. Lynch h, S. M. Ransom i & I.

More information

Neutron Star Astrophysics

Neutron Star Astrophysics Pulsars I. The Why and How of Searching for Exotic Pulsars Jim Cordes, Cornell University Why would you want to know about pulsars and why would you like to discover more? Science, the big questions How

More information

PSR J : Intensive photometric study captured unique events.

PSR J : Intensive photometric study captured unique events. PSR J1723-2837: Intensive photometric study captured unique events. Andre van Staden South Africa andre@etiming.co.za Abstract: PSR J1723-2837, a 1.86 millisecond pulsar (MSP) is one of the growing populations

More information

Chapter 14. Outline. Neutron Stars and Black Holes. Note that the following lectures include. animations and PowerPoint effects such as

Chapter 14. Outline. Neutron Stars and Black Holes. Note that the following lectures include. animations and PowerPoint effects such as Note that the following lectures include animations and PowerPoint effects such as fly ins and transitions that require you to be in PowerPoint's Slide Show mode (presentation mode). Chapter 14 Neutron

More information