The Masses of Galaxies from the Galaxy-Halo Connection

Size: px
Start display at page:

Download "The Masses of Galaxies from the Galaxy-Halo Connection"

Transcription

1 with Charlie Conroy (Princeton) Peter Behroozi (KIPAC/Stanford) R isa Wechsler The Masses of Galaxies from the Galaxy-Halo Connection

2 The Basic Idea Theory: We now have a reasonable accounting for the distribution of mass in the Universe, and how this mass assembles over time, from numerical simulations. Observations: We now have statistically well-measured galaxy populations at various epochs. Use these two sets of information to get empirical constraints on the connection between stellar masses of galaxies and total masses of dark halos at given epochs. This can be extended to infer how galaxies grow and form stars over time. the galaxy-halo connection: methods & constraints what can the galaxy-halo connection teach us about how galaxies are assembled and how they form stars? current uncertainties in the galaxy-halo connection

3 galaxy/halo abundance (mass function) galaxy/halo abundance galaxy/halo clustering (bias function) galaxy / halo mass galaxy bias halo bias Mo & White 1996 Seljak & Warren 2004 galaxy luminosity Zehavi et al 2004 halo mass

4 The halo counting approach SubHalo Abundance Matching (SHAM) similar to the HOD approach, but instead assume that each galaxy lives in a / halo/subhalo, go from directly to galaxies using some mass-connected property luminosity/stellar mass function Cumulative luminosity function velocity/halo mass v function max Cumulative circular velocity function Kravtsov N-body prediction V max [km/s] 200 Sheth-Tormen prediction M r 5logh assign luminosities to subhalo circular velocities by matching n(>v max ) to n(>l) clearly motivated by tightness in FP & TF v max e.g. Kravtsov, Berlind, RW, et al 2004; Conroy, RW & Kravtsov 2006; Conroy & Wechsler 2008 also Vale & Ostriker 2006, 2007; Wang et al 2006; Kim et al 2008; Moster et al 2008; etc etc.

5 Wechsler et al 2002 Distinct Halo Evolution Subhalo Evolution Accretion epoch V max, mass 1/3 Constant increase V max, mass 1/3 increase decrease Time Time

6 galaxy-galaxy correlation function at higher redshift SDSS, z=0 data: Zehavi et al 2004 Subaru, z=4-5 data: Ouchi et al 2005 the scale of typical halos dark matter Conroy, Wechsler, & Kravtsov 2006 the scale & luminosity dependence of galaxy clustering at high z are very well explained by this simple approach!

7 additional clustering statistics provide further tests model makes predictions for a variety of statistics, e.g.: 1. galaxy-mass correlations (Tasitsiomi et al 2004) 2. close pair statistics & evolution (Berrier et al 2006) 3. 3pt statistics (Marin et al 2008) 4. high redshift galaxy clustering (Lee et al 2009) 5. properties of galaxies in clusters (RW et al in prep, Vale & Ostriker) (related model in talk by Cacciato) fiducial model described by one (well-constrained) parameter! (for a given cosmology) What can we learn from this? What are the uncertainties?

8 Connection between galaxy mass and halo mass integrated star formation efficiency average stellar mass η M star / M vir / f b log[m star (M sun )] stellar mass growth dominates z=0 z=0 z=2 z=2 halo growth dominates inputs: HMF(z) & GSMF(z) Mhalo ~12.5 or M* ~11 marks the transition between dominant halo growth and dominant stellar mass growth peak of integrated star formation efficiency shifts to lower mass with time peak of integrated star formation efficiency increases by ~ 4x from z=2 to z=0. (uncertain by a factor of ~2) halo log[m mass (z) at (M redshift )] z Conroy & Wechsler 08

9 Connection between galaxy mass and today s halo mass average stellar mass log[m star (M sun )] z=0 z=2 additional inputs: MAH(M) this the only additional ingredient needed to infer the average stellar mass growth of galaxies! as we saw previously, virtually no room for growth at the massive end (stellar mass is in place early for massive galaxies) integrated star formation efficiency!" M star / M vir / f b 0.10 z=0 z=2 very rapid mass growth for low mass galaxies vertical lines in this plot give you the evolution along trajectories halo l [M mass ( 0) (M at z=0 )] Conroy & Wechsler 08

10 Growth of Stellar Mass vs. Growth of Halo Mass formation redshift mass builds-up hierarchically: small halos get more fractional mass earlier than larger mass halos stellar mass build-up proceeds the other way: stars in massive galaxies in place by z=1; still rapidly forming in small galaxies

11 The star formation rate as a function of stellar mass additional model inputs: (1) amount stellar mass buildup due to merging (2) stellar mass loss specific star formation rate log[ssfr (Gyr -1 )] z=0.1 z=0.5 z=1.0 z=0.1, Salim et al. log[ssfr (Gyr!1 )] 1 0!1!2 z=0.1 z=0.5 z=1.0 star formation rate log(sfr (M sun yr -1 )] N07, z=0.5 N07, z=1.0 Noeske et al 2007; Zheng et al l [M (M )] log stellar mass Z07, z=0.5 Z07, z=0.9 log(sfr (M sun yr!1 )] 1 0! log[m (z) (M )]

12 Sources of error in the galaxy mass-halo mass relation Behroozi, Conroy & RW 2009 halo mass function cosmology dependence uncertainty in mass function for a given cosmology stellar mass function measurement error (poisson + sample variance) systematic errors in stellar masses random errors in stellar masses (Conroy et al 08) matching assumption scatter in M*-M for central galaxies assignment scheme for satellite galaxies

13 Sources of error in the galaxy mass-halo mass relation: stellar mass function statistical errors Behroozi, Conroy & RW 2009 Li & White z = 0.1 (WM5) z = 0.5 (WM5) z = 1.15 (WM5) z = 1.7 (WM5) M h / M * log 10 (M h ) [M ] O Marchesini et al 2009 z=0 Li & White 2009 z=0.5, 1 Perez-Gonzalez et al 2008 z= 1.7 Marchesini et al 2009 (converted to Chabrier IMF) statistical errors only.

14 Sources of error in the galaxy mass-halo mass relation: the halo mass function 1000 z = 0.1 (Wmap5) z = 0.1 (Wmap5,! 8 =0.912) z = 0.1 (Wmap5,! 8 =0.712) z = 0.1 (Wmap1) M h / M * log 10 (M h ) [M ] O (remove other s8, add z=1) errors include statistical errors on the SMF + error on the HMF

15 Sources of error in the galaxy mass-halo mass relation: systematics in matching galaxies to halos scatter in central galaxy mass assignment of satellite galaxies 1000 z = 0.0,! log M* = 0.32dex z = 0.0,! log M* = 0.16dex z = 0.0,! log M* = 0.00dex M h / M * log 10 (M h ) [M ] O Scatter no longer unknown! measurements from: maxbcg clusters (Wechsler et al in prep: σloglc (M)= 0.16) satellite dynamics: σloglc (M)= 0.16 galaxy clustering/hod e.g. Zheng et al 2008: σloglc (M)= 0.15 weak lensing (see Tasitsiomi et al 04, Cacciato talk)

16 Sources of error in the galaxy mass-halo mass relation: stellar mass function systematic errors 1000 z = 0.1 (WM5) z = 0.5 (WM5) z = 1.15 (WM5) z = 1.7 (WM5) add comparion of Li & White with statistical errors. M h / M * log 10 (M h ) [M ] O

17 Sources of error in the galaxy mass-halo mass relation: stellar mass function random errors M h / M * z = 0.1 (Wmap5) z = 0.5 (Wmap5) z = 1.15 (Wmap5) z = 1.7 (Wmap5) log 10 (M h ) [M ] O maybe show (1) this plot to the left but modified with the random scatter (if possible to make? perhaps can be done with old data?) (2) a demonstration of the effect of adding it onto the shape of the mass function (probably at high z so that it s visible) (change axes. is the plot still readable with errors on all 4 lines?)

18 Sources of error in the (central) galaxy mass-halo mass relation halo mass function cosmology dependence uncertainty for a given cosmology stellar mass function measurement error (poisson + sample variance) systematic errors in stellar masses random errors in stellar masses (Conroy et al) matching assumption scatter in M*-M for central galaxies assignment scheme for satellite galaxies subdominant subdominant subdominant at low z; important at z>1 IMPORTANT important at high mass as z increases impacts high mass end, but measurable. subdominant if other constraints used. neglibible (for central galaxies)

19 At high mass: Additional constraints from clusters maxbcg: SDSS clusters 0.1 < z < 0.3 (Koester et al 2007) Hansen et al 2009; RW et al 2009 cluster mass profiles Sheldon et al 2007 mass/light profiles cosmology analysis from maxbcg clusters (Rozo, RW et al 2009) constrains the distribution of P(M N) can turn this around now to get cluster properties as a function of halo mass

20 At low mass: Model appears to work for dwarf galaxies...with same M*-M scaling Busha et al 2009 add plot

21 Summary there are several powerful, complementary ways to connect galaxies and their histories to the distribution and assembly of dark matter halos. subhalo Abundance Matching: a very simple (one parameter) model The HALO MASSES of galaxies of a given number density (above a given stellar mass) are very well constrained in the context of LCDM To the extent that the true stellar masses of these galaxies are well known, the galaxy mass-halo mass relation is very well constrained. It is still difficult to produce this well-constrained relation in galaxy formation models and simulations (as we also heard from White, Steinmetz, Navarro)

the galaxy-halo connection from abundance matching: simplicity and complications

the galaxy-halo connection from abundance matching: simplicity and complications the galaxy-halo connection from abundance matching: simplicity and complications R isa Wechsler with Peter Behroozi, Michael Busha, Rachel Reddick (KIPAC/Stanford) & Charlie Conroy (Harvard/CfA) subhalo

More information

halo formation in peaks halo bias if halos are formed without regard to the underlying density, then δn h n h halo bias in simulations

halo formation in peaks halo bias if halos are formed without regard to the underlying density, then δn h n h halo bias in simulations Physics 463, Spring 07 Bias, the Halo Model & Halo Occupation Statistics Lecture 8 Halo Bias the matter distribution is highly clustered. halos form at the peaks of this distribution 3 2 1 0 halo formation

More information

Simulations and the Galaxy Halo Connection

Simulations and the Galaxy Halo Connection Simulations and the Galaxy Halo Connection Yao-Yuan Mao (Stanford/SLAC PITT PACC) @yaoyuanmao yymao.github.io SCMA6 @ CMU 6/10/16 My collaborators at Stanford/SLAC Joe DeRose Ben Lehmann ( UCSC) Vincent

More information

A Self-Consistent, Dynamic Model for the Evolution of the Galaxy-Dark Matter Connection across Cosmic Time. Frank van den Bosch.

A Self-Consistent, Dynamic Model for the Evolution of the Galaxy-Dark Matter Connection across Cosmic Time. Frank van den Bosch. A Self-Consistent, Dynamic Model for the Evolution of the Galaxy-Dark Matter Connection across Cosmic Time Frank van den Bosch Yale University In collaboration with: Marcello Cacciato (HU), Surhud More

More information

On the Assembly of Galaxies in Dark Matter Halos

On the Assembly of Galaxies in Dark Matter Halos On the Assembly of Galaxies in Dark Matter Halos...new insights from halo occupation modeling... collaborators: Zhankhui Lu, Houjun Mo, Neal Katz, Martin Weinberg (UMass), Xiaohu Yang, Youcai Zhang, Jiaxin

More information

What can we learn from galaxy clustering measurements II. Shaun Cole Institute for Computational Cosmology Durham University

What can we learn from galaxy clustering measurements II. Shaun Cole Institute for Computational Cosmology Durham University What can we learn from galaxy clustering measurements II Shaun Cole Institute for Computational Cosmology Durham University Introduction Galaxy clustering has two distinct uses: 1. Large scale tracers

More information

ASTR 610 Theory of Galaxy Formation

ASTR 610 Theory of Galaxy Formation ASTR 610 Theory of Galaxy Formation Lecture 13: The Halo Model & Halo Occupation Statistics Frank van den Bosch Yale University, Fall 2018 The Halo Model & Occupation Statistics In this lecture we discuss

More information

What Can We Learn from Galaxy Clustering 1: Why Galaxy Clustering is Useful for AGN Clustering. Alison Coil UCSD

What Can We Learn from Galaxy Clustering 1: Why Galaxy Clustering is Useful for AGN Clustering. Alison Coil UCSD What Can We Learn from Galaxy Clustering 1: Why Galaxy Clustering is Useful for AGN Clustering Alison Coil UCSD Talk Outline 1. Brief review of what we know about galaxy clustering from observations 2.

More information

arxiv: v2 [astro-ph.co] 26 Mar 2013

arxiv: v2 [astro-ph.co] 26 Mar 2013 Submitted to ApJ Preprint typeset using L A TEX style emulateapj v. 11/10/09 THE GALAXY HALO/SUBHALO CONNECTION: MASS RELATIONS AND IMPLICATIONS FOR SOME SATELLITE OCCUPATIONAL DISTRIBUTIONS A. Rodríguez-Puebla,

More information

Galaxy population simulations

Galaxy population simulations Aspen, February 2014 Galaxy population simulations Simon White Max Planck Institute for Astrophysics semi-analytic simulations provide a tool... To explore the statistics and interactions of the many processes

More information

Satellite Galaxy Evolution in Groups & Clusters

Satellite Galaxy Evolution in Groups & Clusters Satellite Galaxy Evolution in Groups & Clusters Andrew Wetzel Yale University Jeremy Tinker (NYU) & Charlie Conroy (Harvard/CfA) Tinker, Wetzel & Conroy 2011, ArXiv 1107.5046 Wetzel, Tinker & Conroy 2011,

More information

Modelling the galaxy population

Modelling the galaxy population Modelling the galaxy population Simon White Max Planck Institut für Astrophysik IAU 277 Ouagadougou 1 The standard model reproduces -- the linear initial conditions -- IGM structure during galaxy formation

More information

Stellar-to-Halo Mass Relation in X-ray Groups at 0.5<z<1

Stellar-to-Halo Mass Relation in X-ray Groups at 0.5<z<1 Stellar-to-Halo Mass Relation in X-ray Groups at 0.5

More information

A.Klypin. Dark Matter Halos

A.Klypin. Dark Matter Halos A.Klypin Dark Matter Halos 1 Major codes: GADET N-body Hydro Cooling/Heating/SF Metal enrichment Radiative transfer Multistepping/Multiple masses Springel, SDM White PKDGRAV - GASOLINE ART ENZO Quinn,

More information

N-body Simulations. Initial conditions: What kind of Dark Matter? How much Dark Matter? Initial density fluctuations P(k) GRAVITY

N-body Simulations. Initial conditions: What kind of Dark Matter? How much Dark Matter? Initial density fluctuations P(k) GRAVITY N-body Simulations N-body Simulations N-body Simulations Initial conditions: What kind of Dark Matter? How much Dark Matter? Initial density fluctuations P(k) GRAVITY Final distribution of dark matter.

More information

Galaxies in dark matter halos: luminosity-velocity relation, abundance and baryon content

Galaxies in dark matter halos: luminosity-velocity relation, abundance and baryon content Galaxies in dark matter halos: luminosity-velocity relation, abundance and baryon content arxiv:1005.1289 arxiv:1002.3660 S. Trujillo-Gomez (NMSU) in collaboration with: A. Klypin (NMSU), J. Primack (UCSC)

More information

Cosmological Constraints from a Combined Analysis of Clustering & Galaxy-Galaxy Lensing in the SDSS. Frank van den Bosch.

Cosmological Constraints from a Combined Analysis of Clustering & Galaxy-Galaxy Lensing in the SDSS. Frank van den Bosch. Cosmological Constraints from a Combined Analysis of Clustering & Galaxy-Galaxy Lensing in the SDSS In collaboration with: Marcello Cacciato (Leiden), Surhud More (IPMU), Houjun Mo (UMass), Xiaohu Yang

More information

The Galaxy Dark Matter Connection

The Galaxy Dark Matter Connection The Galaxy Dark Matter Connection constraining cosmology & galaxy formation Frank C. van den Bosch (MPIA) Collaborators: Houjun Mo (UMass), Xiaohu Yang (SHAO) Marcello Cacciato, Surhud More, Simone Weinmann

More information

THE HIERARCHICAL BUILD-UP OF MASSIVE GALAXIES AND THE INTRACLUSTER LIGHT SINCE z = 1

THE HIERARCHICAL BUILD-UP OF MASSIVE GALAXIES AND THE INTRACLUSTER LIGHT SINCE z = 1 SLAC-PUB-12401 SUBMITTED TO APJ, 14 JULY 1789 Preprint typeset using LATEX style emulateapj v. 10/09/06 astro-ph/0703374 March 2007 THE HIERARCHICAL BUILD-UP OF MASSIVE GALAXIES AND THE INTRACLUSTER LIGHT

More information

THE BOLSHOI COSMOLOGICAL SIMULATIONS AND THEIR IMPLICATIONS

THE BOLSHOI COSMOLOGICAL SIMULATIONS AND THEIR IMPLICATIONS GALAXY FORMATION - Durham -18 July 2011 THE BOLSHOI COSMOLOGICAL SIMULATIONS AND THEIR IMPLICATIONS JOEL PRIMACK, UCSC ΛCDM Cosmological Parameters for Bolshoi and BigBolshoi Halo Mass Function is 10x

More information

STAR FORMATION HISTORIES FROM Z=0 TO Z=8

STAR FORMATION HISTORIES FROM Z=0 TO Z=8 STAR FORMATION HISTORIES FROM Z=0 TO Z=8 Peter Behroozi, Stanford University Risa Wechsler, Stanford University Charlie Conroy, Harvard / UCSC Santa Cruz Galaxy Workshop 2011 Major Questions When did galaxies

More information

Kai Noeske Keck Foundation Fellow Harvard-Smithsonian Center for Astrophysics

Kai Noeske Keck Foundation Fellow Harvard-Smithsonian Center for Astrophysics Star Formation Histories and Stellar Mass Growth out to z~1 Kai Noeske Keck Foundation Fellow Harvard-Smithsonian Center for Astrophysics and the AEGIS collaboration Galaxy Evolution: Emerging Insights

More information

arxiv: v3 [astro-ph.co] 18 Nov 2018

arxiv: v3 [astro-ph.co] 18 Nov 2018 DRAFT VERSION NOVEMBER 20, 2018 Typeset using L A TEX twocolumn style in AASTeX61 HOW ARE GALAXIES ASSIGNED TO HALOS? SEARCHING FOR ASSEMBLY BIAS IN THE SDSS GALAXY CLUSTERING MOHAMMADJAVAD VAKILI 1, 2

More information

The Galaxy Dark Matter Connection

The Galaxy Dark Matter Connection The Galaxy Dark Matter Connection constraining cosmology & galaxy formation Frank C. van den Bosch (MPIA) Collaborators: Houjun Mo (UMass), Xiaohu Yang (SHAO) Marcello Cacciato, Surhud More, Simone Weinmann

More information

Structure formation in the concordance cosmology

Structure formation in the concordance cosmology Structure formation in the Universe, Chamonix, May 2007 Structure formation in the concordance cosmology Simon White Max Planck Institute for Astrophysics WMAP3 team WMAP3 team WMAP3 team WMAP3 team In

More information

Weak lensing measurements of Dark Matter Halos around galaxies

Weak lensing measurements of Dark Matter Halos around galaxies Weak lensing measurements of Dark Matter Halos around galaxies Rachel Mandelbaum Carnegie Mellon University 1 Image credits: NASA, ESA, S. Beckwith (STScI), the HUDF Team 2 Image credit: ESA/Planck 3 The

More information

The Mass of the Milky Way from its Satellites. Michael Busha KIPAC/Stanford Collaborators: Phil Marshall, Risa Wechsler

The Mass of the Milky Way from its Satellites. Michael Busha KIPAC/Stanford Collaborators: Phil Marshall, Risa Wechsler The Mass of the Milky Way from its Satellites Michael Busha KIPAC/Stanford Collaborators: Phil Marshall, Risa Wechsler Introduction As seen earlier in this conference, the Bolshoi simulation + SHAM does

More information

Structure and substructure in dark matter halos

Structure and substructure in dark matter halos Satellites and Tidal Streams ING IAC joint Conference La Palma, May 2003 Structure and substructure in dark matter halos Simon D.M. White Max Planck Institute for Astrophysics 500 kpc A CDM Milky Way Does

More information

arxiv: v1 [astro-ph.ga] 12 Nov 2014

arxiv: v1 [astro-ph.ga] 12 Nov 2014 Mon. Not. R. Astron. Soc. 000, 000-000 (0000) Printed 13 November 2014 (MN LATEX style file v2.2) An algorithm to build mock galaxy catalogues using MICE simulations J. Carretero 1,2, F. J. Castander 1,

More information

Origin and Evolution of Disk Galaxy Scaling Relations

Origin and Evolution of Disk Galaxy Scaling Relations Origin and Evolution of Disk Galaxy Scaling Relations Aaron A. Dutton (CITA National Fellow, University of Victoria) Collaborators: Frank C. van den Bosch (Utah), Avishai Dekel (HU Jerusalem), + DEEP2

More information

RHAPSODY: II. SUBHALO PROPERTIES AND THE IMPACT OF TIDAL STRIPPING FROM A STATISTICAL SAMPLE OF CLUSTER-SIZE HALOS

RHAPSODY: II. SUBHALO PROPERTIES AND THE IMPACT OF TIDAL STRIPPING FROM A STATISTICAL SAMPLE OF CLUSTER-SIZE HALOS Draft version October 23, 212 Preprint typeset using L A TEX style emulateapj v. 12/16/11 SLAC-PUB-15314 RHAPSODY: II. SUBHALO PROPERTIES AND THE IMPACT OF TIDAL STRIPPING FROM A STATISTICAL SAMPLE OF

More information

Cosmological Merger Rates

Cosmological Merger Rates Cosmological Merger Rates C. Brook, F. Governato, P. Jonsson Not Phil Hopkins Kelly Holley-Bockelmann Vanderbilt University and Fisk University k.holley@vanderbilt.edu Why do we care so much about the

More information

Observations of galaxy evolution. Pieter van Dokkum

Observations of galaxy evolution. Pieter van Dokkum Observations of galaxy evolution Pieter van Dokkum Overview Broad topic! Split in three conceptually-different parts: ç ç low redshift high redshift 1. Census: what is out there? N (z, L, Mstars, Mdark,

More information

arxiv: v2 [astro-ph.ga] 8 May 2018

arxiv: v2 [astro-ph.ga] 8 May 2018 Draft version May 9, 2018 Preprint typeset using L A TEX style emulateapj v. 8/13/10 THE INCOMPLETE CONDITIONAL STELLAR MASS FUNCTION: UNVEILING THE STELLAR MASS FUNCTIONS OF GALAXIES AT 0.1 < Z < 0.8

More information

Cosmology on small scales: Emulating galaxy clustering and galaxy-galaxy lensing into the deeply nonlinear regime

Cosmology on small scales: Emulating galaxy clustering and galaxy-galaxy lensing into the deeply nonlinear regime Cosmology on small scales: Emulating galaxy clustering and galaxy-galaxy lensing into the deeply nonlinear regime Ben Wibking Department of Astronomy Ohio State University with Andres Salcedo, David Weinberg,

More information

Next Generation (Semi-)Empirical galaxy formation models - Matching individual galaxies

Next Generation (Semi-)Empirical galaxy formation models - Matching individual galaxies Next Generation (Semi-)Empirical galaxy formation models - Matching individual galaxies Benjamin Moster (IoA/KICC)! Simon White, Thorsten Naab (MPA), Rachel Somerville (Rutgers), Frank van den Bosch (Yale),

More information

STAR FORMATION HISTORIES OF GALAXIES FROM Z=0-8

STAR FORMATION HISTORIES OF GALAXIES FROM Z=0-8 STAR FORMATION HISTORIES OF GALAXIES FROM Z=0-8 Picture Credit: John Davis Peter Behroozi, Stanford University / KIPAC Risa Wechsler and Charlie Conroy Basic Approach Basic Approach Basic Approach Repeat

More information

Probing growth of cosmic structure using galaxy dynamics: a converging picture of velocity bias. Hao-Yi Wu University of Michigan

Probing growth of cosmic structure using galaxy dynamics: a converging picture of velocity bias. Hao-Yi Wu University of Michigan Probing growth of cosmic structure using galaxy dynamics: a converging picture of velocity bias Hao-Yi Wu University of Michigan Galaxies are not necessarily test particles Probing dark energy with growth

More information

The Galaxy Dark Matter Connection

The Galaxy Dark Matter Connection The Galaxy Dark Matter Connection constraining cosmology & galaxy formation Frank C. van den Bosch (MPIA) Collaborators: Houjun Mo (UMass), Xiaohu Yang (SHAO) Marcello Cacciato, Surhud More (MPIA) Kunming,

More information

Probing the End of Dark Ages with High-redshift Quasars. Xiaohui Fan University of Arizona Dec 14, 2004

Probing the End of Dark Ages with High-redshift Quasars. Xiaohui Fan University of Arizona Dec 14, 2004 Probing the End of Dark Ages with High-redshift Quasars Xiaohui Fan University of Arizona Dec 14, 2004 High-redshift Quasars and the End of Cosmic Dark Ages Existence of SBHs at the end of Dark Ages BH

More information

MAPPING THE DARK MATTER FROM UV LIGHT AT HIGH REDSHIFT: AN EMPIRICAL APPROACH TO UNDERSTAND GALAXY STATISTICS

MAPPING THE DARK MATTER FROM UV LIGHT AT HIGH REDSHIFT: AN EMPIRICAL APPROACH TO UNDERSTAND GALAXY STATISTICS Preprint typeset using L A TEX style emulateapj v. 10/09/06 SLAC-PUB-13733 July 2009 MAPPING THE DARK MATTER FROM UV LIGHT AT HIGH REDSHIFT: AN EMPIRICAL APPROACH TO UNDERSTAND GALAXY STATISTICS Kyoung-Soo

More information

Probing Dark Matter Halos with Satellite Kinematics & Weak Lensing

Probing Dark Matter Halos with Satellite Kinematics & Weak Lensing Probing Dark Matter Halos with & Weak Lensing Frank C. van den Bosch (MPIA) Collaborators: Surhud More, Marcello Cacciato UMass, August 2008 Probing Dark Matter Halos - p. 1/35 Galaxy Formation in a Nutshell

More information

Durham Research Online

Durham Research Online Durham Research Online Deposited in DRO: 31 March 2017 Version of attached le: Published Version Peer-review status of attached le: Peer-reviewed Citation for published item: Contreras, S. and Zehavi,

More information

Galaxy Formation Made Simple thanks to Sloan! Sloan Science Symposium Sandra M. Faber August 1 5,

Galaxy Formation Made Simple thanks to Sloan! Sloan Science Symposium Sandra M. Faber August 1 5, Galaxy Formation Made Simple thanks to Sloan! Sloan Science Symposium Sandra M. Faber August 1 5, 2 0 0 8 Outline of talk Part I: Review of basic galaxy formation Part II: Emerging paradigm: mass sequence

More information

Princeton December 2009 The fine-scale structure of dark matter halos

Princeton December 2009 The fine-scale structure of dark matter halos Princeton December 2009 The fine-scale structure of dark matter halos Simon White Max Planck Institute for Astrophysics The dark matter structure of CDM halos A rich galaxy cluster halo Springel et al

More information

A unified multi-wavelength model of galaxy formation. Carlton Baugh Institute for Computational Cosmology

A unified multi-wavelength model of galaxy formation. Carlton Baugh Institute for Computational Cosmology A unified multi-wavelength model of galaxy formation Carlton Baugh Institute for Computational Cosmology M81 Angel Lopez Sanchez A unified multi-wavelength model of galaxy formation Lacey et al. 2015 arxiv:1509.08473

More information

An Empirical Model for the Star Formation History in Dark Matter Halos

An Empirical Model for the Star Formation History in Dark Matter Halos University of Massachusetts Amherst From the SelectedWorks of Neal S. Katz 2014 An Empirical Model for the Star Formation History in Dark Matter Halos Zhankui Lu H. J. Mo Yu Lu Neal S. Katz, University

More information

arxiv: v2 [astro-ph.ga] 4 Nov 2015

arxiv: v2 [astro-ph.ga] 4 Nov 2015 Mon. Not. R. Astron. Soc. 000, 1 26 (2013) Printed 5 November 2015 (MN LATEX style file v2.2) The evolution of the stellar mass versus halo mass relationship Peter D. Mitchell, Cedric G. Lacey, Carlton

More information

arxiv: v2 [astro-ph.co] 11 Feb 2011

arxiv: v2 [astro-ph.co] 11 Feb 2011 Mon. Not. R. Astron. Soc. 000, 2 (20) Printed 3 June 208 (MN LATEX style file v2.2) Linking haloes to galaxies: how many halo properties are needed? arxiv:.2492v2 [astro-ph.co] Feb 20 Eyal Neistein,2,

More information

The Radial Distribution of Galactic Satellites. Jacqueline Chen

The Radial Distribution of Galactic Satellites. Jacqueline Chen The Radial Distribution of Galactic Satellites Jacqueline Chen December 12, 2006 Introduction In the hierarchical assembly of dark matter (DM) halos, progenitor halos merge to form larger systems. Some

More information

Star Formation and Stellar Mass Assembly in Dark Matter Halos: From Giants to Dwarfs

Star Formation and Stellar Mass Assembly in Dark Matter Halos: From Giants to Dwarfs University of Massachusetts - Amherst From the SelectedWorks of Neal S. Katz 214 Star Formation and Stellar Mass Assembly in Dark Matter Halos: From Giants to Dwarfs Zhankui Lu H.J. Mo Yu Lu Neal S. Katz,

More information

The theoretical view of high-z Clusters. Nelson Padilla, PUC, Chile Pucón, November 2009

The theoretical view of high-z Clusters. Nelson Padilla, PUC, Chile Pucón, November 2009 The theoretical view of high-z Clusters Nelson Padilla, PUC, Chile Pucón, November 2009 The Plan: 1) To see what the observations are telling us using models that agree with the cosmology, and with other

More information

Dark Matter Substructure and their associated Galaxies. Frank C. van den Bosch (MPIA)

Dark Matter Substructure and their associated Galaxies. Frank C. van den Bosch (MPIA) Dark Matter Substructure and their associated Galaxies Frank C. van den Bosch (MPIA) Outline PART I: The Subhalo Mass Function (van den Bosch, Tormen & Giocoli, 2005) PART II: Statistical Properties of

More information

The angular momentum of disc galaxies: implications for gas accretion, outflows, and dynamical friction

The angular momentum of disc galaxies: implications for gas accretion, outflows, and dynamical friction Mon. Not. R. Astron. Soc. 421, 608 620 (2012) doi:10.1111/j.1365-2966.2011.20339.x The angular momentum of disc galaxies: implications for gas accretion, outflows, and dynamical friction Aaron A. Dutton

More information

The Milky Way and Near-Field Cosmology

The Milky Way and Near-Field Cosmology The Milky Way and Near-Field Cosmology Kathryn V Johnston (Columbia University) Collaborators (theorists): James S Bullock (Irvine), Andreea Font (Durham), Brant Robertson (Chicago), Sanjib Sharma (Columbia),

More information

How Massive is the Milky Way?

How Massive is the Milky Way? How Massive is the Milky Way? See also: Klypin et al. (2002) Simon s talk Matthias Steinmetz Astrophysical Institute Potsdam Overview Spectroscopic Surveys of the MW Geneva-Copenhagen, SDSS, RAVE Mass

More information

The rise of galaxy surveys and mocks (DESI progress and challenges) Shaun Cole Institute for Computational Cosmology, Durham University, UK

The rise of galaxy surveys and mocks (DESI progress and challenges) Shaun Cole Institute for Computational Cosmology, Durham University, UK The rise of galaxy surveys and mocks (DESI progress and challenges) Shaun Cole Institute for Computational Cosmology, Durham University, UK Mock Santiago Welcome to Mock Santiago The goal of this workshop

More information

GALAXY CLUSTERING. Emmanuel Schaan AST 542 April 10th 2013

GALAXY CLUSTERING. Emmanuel Schaan AST 542 April 10th 2013 GALAXY CLUSTERING Emmanuel Schaan AST 542 April 10th 2013 INTRODUCTION: SCALES GALAXIES: 10kpc Milky Way: 10kpc, 10 12 Mo GALAXY GROUPS: 100kpc or «poor clusters» Local Group: ~50gal, 3Mpc, 10 13 Mo GALAXY

More information

Deep Keck Spectroscopy of High-Redshift Quiescent Galaxies

Deep Keck Spectroscopy of High-Redshift Quiescent Galaxies Sirio Belli Max-Planck Institute for Extraterrestrial Physics Deep Keck Spectroscopy of High-Redshift Quiescent Galaxies with Andrew Newman and Richard Ellis Introduction Schawinski et al. 2014 red sequence

More information

arxiv: v2 [astro-ph.co] 29 May 2013

arxiv: v2 [astro-ph.co] 29 May 2013 DRAFT VERSION MAY 30, 2013 Preprint typeset using LATEX style emulateapj v. 11/10/09 THE AVERAGE STAR FORMATION HISTORIES OF GALAXIES IN DARK MATTER HALOS FROM Z = 0 8 PETER S. BEHROOZI, RISA H. WECHSLER

More information

THE AVERAGE STAR FORMATION HISTORIES OF GALAXIES IN DARK MATTER HALOS FROM Z = 0 8

THE AVERAGE STAR FORMATION HISTORIES OF GALAXIES IN DARK MATTER HALOS FROM Z = 0 8 DRAFT VERSION MARCH 27, 2013 Preprint typeset using LATEX style emulateapj v. 11/10/09 SLAC-PUB-15457 THE AVERAGE STAR FORMATION HISTORIES OF GALAXIES IN DARK MATTER HALOS FROM Z = 0 8 PETER S. BEHROOZI,

More information

The Current Status of Too Big To Fail problem! based on Warm Dark Matter cosmology

The Current Status of Too Big To Fail problem! based on Warm Dark Matter cosmology The Current Status of Too Big To Fail problem! based on Warm Dark Matter cosmology 172th Astronomical Seminar Dec.3 2013 Chiba Lab.M2 Yusuke Komuro Key Word s Too Big To Fail TBTF Cold Dark Matter CDM

More information

Galaxy formation in WMAP1andWMAP7 cosmologies

Galaxy formation in WMAP1andWMAP7 cosmologies MNRAS 428, 1351 1365 (2013) doi:10.1093/mnras/sts115 Galaxy formation in WMAP1andWMAP7 cosmologies Qi Guo, 1,2,3 Simon White, 2 Raul E. Angulo, 2 Bruno Henriques, 2 Gerard Lemson, 2 Michael Boylan-Kolchin,

More information

The fine-scale structure of dark matter halos

The fine-scale structure of dark matter halos COSMO11, Porto, August 2011 The fine-scale structure of dark matter halos Simon White Max-Planck-Institute for Astrophysics COSMO11, Porto, August 2011 Mark Vogelsberger The fine-scale structure of dark

More information

Co-Evolution of Central Black Holes and Nuclear Star Clusters

Co-Evolution of Central Black Holes and Nuclear Star Clusters Co-Evolution of Central Black Holes and Nuclear Star Clusters Oleg Gnedin (University of Michigan) Globular clusters in the Galaxy median distance from the center is 5 kpc Resolved star cluster highest

More information

Where are the missing baryons? Craig Hogan SLAC Summer Institute 2007

Where are the missing baryons? Craig Hogan SLAC Summer Institute 2007 Where are the missing baryons? Craig Hogan SLAC Summer Institute 2007 Reasons to care Concordance of many measures of baryon number (BBN, CMB,.) Evolution of our personal baryons (galaxies, stars, planets,

More information

Non-Standard Cosmological Simulations

Non-Standard Cosmological Simulations 7 th SSG:17/01/2018 Non-Standard Cosmological Simulations Juhan Kim, Changbom Park, & Benjamin L Huillier, Sungwook E. Hong KIAS & KASI Cosmology in Problem The Concordance LCDM: The Dark Age of Cosmology!

More information

The Milky Way in the cosmological context. Andrey Kravtsov The University of Chicago

The Milky Way in the cosmological context. Andrey Kravtsov The University of Chicago The Milky Way in the cosmological context Andrey Kravtsov The University of Chicago Milky Way and Its Stars, KITP, 2 February 2015 Cosmological context: hierarchical structure formation from a Gaussian

More information

arxiv: v1 [astro-ph.co] 13 Aug 2013

arxiv: v1 [astro-ph.co] 13 Aug 2013 DRAFT VERSION MAY 11, 2014 Preprint typeset using LATEX style emulateapj v. 4/12/04 EVOLUTION OF THE STELLAR-TO-DARK MATTER RELATION: SEPARATING STAR-FORMING AND PASSIVE GALAXIES FROM Z = 1 TO 0 JEREMY

More information

SHAM Beyond Clustering: New Tests of Galaxy-Halo Abundance Matching with Galaxy Groups

SHAM Beyond Clustering: New Tests of Galaxy-Halo Abundance Matching with Galaxy Groups Mon. Not. R. Astron. Soc. 000, 000 000 (0000) Printed 3 May 2014 (MN LATEX style file v2.2) SHAM Beyond Clustering: New Tests of Galaxy-Halo Abundance Matching with Galaxy Groups Andrew P. Hearin 1,2,

More information

THE EDGES OF DARK MATTER HALOS: THEORY AND OBSERVATIONS

THE EDGES OF DARK MATTER HALOS: THEORY AND OBSERVATIONS THE EDGES OF DARK MATTER HALOS: THEORY AND OBSERVATIONS SURHUD MORE (KAVLI IPMU) Collaborators : Benedikt Diemer, Andrey Kravtsov, Philip Mansfield, Masahiro Takada, Hironao Miyatake, Neal Dalal, Rachel

More information

Some useful spherically symmetric profiles used to model galaxies

Some useful spherically symmetric profiles used to model galaxies Some useful spherically symmetric profiles used to model galaxies de Vaucouleurs R 1/4 law for ellipticals and bulges A good fit to the light profile of many ellipticals and bulges: (constant such that

More information

A halo model of galaxy colours and clustering in the Sloan Digital Sky Survey

A halo model of galaxy colours and clustering in the Sloan Digital Sky Survey Mon. Not. R. Astron. Soc. 392, 1080 1091 (2009) doi:10.1111/j.1365-2966.2008.14007.x A halo model of galaxy colours and clustering in the Sloan Digital Sky Survey Ramin A. Skibba 1 and Ravi K. Sheth 2

More information

arxiv: v3 [astro-ph.ga] 18 Jun 2017

arxiv: v3 [astro-ph.ga] 18 Jun 2017 Mon. Not. R. Astron. Soc. 000, 1 13 (2015) Printed 30 July 2018 (MN LATEX style file v2.2) An observational proxy of halo assembly time and its correlation with galaxy properties arxiv:1502.01256v3 [astro-ph.ga]

More information

Are most galaxies in the Universe TSTS:Too shy to shine?

Are most galaxies in the Universe TSTS:Too shy to shine? Are most galaxies in the Universe TSTS:Too shy to shine? R. Giovanelli UAT Workshop @ AO is grand Jan 2015 Some statistical tools with paucity of flashy pix (* ): The HI mass function which tells us the

More information

Recent Progress in Modeling of Galaxy Formation. Oleg Gnedin (University of Michigan)

Recent Progress in Modeling of Galaxy Formation. Oleg Gnedin (University of Michigan) Recent Progress in Modeling of Galaxy Formation Oleg Gnedin (University of Michigan) In current simulations, galaxies look like this: 10 kpc Disk galaxy at z=3: stars, molecular gas, atomic gas (Zemp,

More information

Clusters of Galaxies with Euclid

Clusters of Galaxies with Euclid Clusters of Galaxies with Euclid Figure by L. Caridà A. Biviano (INAF-OATS) largely based on Sartoris, AB, Fedeli et al. 2016 Euclid: ESA medium class A&A mission, selected Oct 2011, to be launched in

More information

How much of their stellar mass have group galaxies lost to the ICL?

How much of their stellar mass have group galaxies lost to the ICL? GEPI How much of their stellar mass have group galaxies lost to the ICL? Édouard Tollet Andrea Cattaneo Gary Mamon 3 1,2 * 1 1 Observatoire de Paris - GEPI Université Paris Diderot 3 Institut d'astrophysique

More information

The impact of Sagittarius on the disk of the Milky Way

The impact of Sagittarius on the disk of the Milky Way The impact of Sagittarius on the disk of the Milky Way David Law James Bullock (UC Irvine) The impact of Sagittarius on the disk of the Milky Way Chris Purcell (Irvine U Pittsburgh) Erik Tollerud (Irvine)

More information

Dark Matter Dominated Objects. Louie Strigari Stanford

Dark Matter Dominated Objects. Louie Strigari Stanford Dark Matter Dominated Objects Louie Strigari Stanford Milky Way Circa 2009 Satellite Year Discovered LMC 1519 SMC 1519 Sculptor 1937 Fornax 1938 Leo II 1950 Leo I 1950 Ursa Minor 1954 Draco 1954 Carina

More information

NYU Nov 5, R isa Wechsler. The Dark Matter and Satellites in the Milky Way and its Twins

NYU Nov 5, R isa Wechsler. The Dark Matter and Satellites in the Milky Way and its Twins NYU Nov 5, 2010 R isa Wechsler The Dark Matter and Satellites in the Milky Way and its Twins What is the formation history of the Milky Way? Can we understand the population of satellites in the Milky

More information

A Systematic Approach to Cluster Formation in the Early Universe - Observations, Simulations, and New Surveys

A Systematic Approach to Cluster Formation in the Early Universe - Observations, Simulations, and New Surveys A Systematic Approach to Cluster Formation in the Early Universe - Observations, Simulations, and New Surveys Yi-Kuan Chiang Roderik Overzier Karl Gebhardt University of Texas at Austin 09/10/2012 From

More information

Revista Mexicana de Astronomía y Astrofísica ISSN: Instituto de Astronomía México

Revista Mexicana de Astronomía y Astrofísica ISSN: Instituto de Astronomía México Revista Mexicana de Astronomía y Astrofísica ISSN: 0185-1101 rmaa@astroscu.unam.mx Instituto de Astronomía México Rodríguez-Puebla, A.; Avila-Reese, V.; Firmani, C.; Colín, P. ON THE STELLAR AND BARYONIC

More information

Theoretical models of the halo occupation distribution: Separating central and satellite galaxies

Theoretical models of the halo occupation distribution: Separating central and satellite galaxies University of Massachusetts Amherst ScholarWorks@UMass Amherst Astronomy Department Faculty Publication Series Astronomy 2005 Theoretical models of the halo occupation distribution: Separating central

More information

The Iguaçu Lectures. Nonlinear Structure Formation: The growth of galaxies and larger scale structures

The Iguaçu Lectures. Nonlinear Structure Formation: The growth of galaxies and larger scale structures April 2006 The Iguaçu Lectures Nonlinear Structure Formation: The growth of galaxies and larger scale structures Simon White Max Planck Institute for Astrophysics z = 0 Dark Matter ROT EVOL Cluster structure

More information

Formation and growth of galaxies in the young Universe: progress & challenges

Formation and growth of galaxies in the young Universe: progress & challenges Obergurgl. April 2014 Formation and growth of galaxies in the young Universe: progress & challenges Simon White Max Planck Institute for Astrophysics Ly α forest spectra and small-scale initial structure

More information

Mergers and Mass Assembly of Dark Matter Halos & Galaxies

Mergers and Mass Assembly of Dark Matter Halos & Galaxies Mergers and Mass Assembly of Dark Matter Halos & Galaxies Chung-Pei Ma Onsi Fakhouri James McBride (UC Berkeley) Mike Boylan-Kolchin (MPA --> Southern UC) Claude-Andre Faucher-Giguere Dusan Keres (Harvard

More information

The Stellar Initial Mass Function of Massive Galaxies

The Stellar Initial Mass Function of Massive Galaxies The Stellar Initial Mass Function of Massive Galaxies Aaron A. Dutton Max Planck Institute for Astronomy (MPIA), Heidelberg, Germany Quenching and Quiescence, Heidelberg, July 2014 Motivation What is the

More information

Comparing l-galaxies, galform and eagle

Comparing l-galaxies, galform and eagle V. Gonzalez-Perez /9 Comparing l-galaxies, galform and eagle Violeta Gonzalez-Perez @violegp Quan Guo (Postdam), Qi Guo (Beijing), Matthieu Schaller (Durham), Michelle Furlong (Durham), Richard Bower (Durham),

More information

arxiv: v1 [astro-ph.co] 5 May 2017

arxiv: v1 [astro-ph.co] 5 May 2017 Draft version May 8, 2017 Preprint typeset using L A TEX style emulateapj v. 01/23/15 PROPERTIES AND ORIGIN OF GALAXY VELOCITY BIAS IN THE ILLUSTRIS SIMULATION Jia-Ni Ye 1,2,Hong Guo 1,Zheng Zheng 3, Idit

More information

Stellar Population Mass Estimates. Roelof de Jong (STScI AIP) Eric Bell (MPIA Univ. of Michigan)

Stellar Population Mass Estimates. Roelof de Jong (STScI AIP) Eric Bell (MPIA Univ. of Michigan) Stellar Population Mass Estimates Roelof de Jong (STScI AIP) Eric Bell (MPIA Univ. of Michigan) Overview Stellar Mass-to-Light (M/L) ratios from SEDs Comparing different SED fitting techniques Comparing

More information

arxiv: v2 [astro-ph] 16 Oct 2009

arxiv: v2 [astro-ph] 16 Oct 2009 Draft version October 25, 2018 Preprint typeset using L A TEX style emulateapj v. 08/22/09 HALO OCCUPATION DISTRIBUTION MODELING OF CLUSTERING OF LUMINOUS RED GALAXIES Zheng Zheng 1,2,3, Idit Zehavi 4,

More information

arxiv: v2 [astro-ph.ga] 31 Mar 2015

arxiv: v2 [astro-ph.ga] 31 Mar 2015 Mon. Not. R. Astron. Soc., 1 17 (214) Printed 6 October 218 (MN LATEX style file v2.2) Star Formation and Stellar Mass Assembly in Dark Matter Halos: From Giants to Dwarfs Zhankui Lu 1, H.J. Mo 1, Yu Lu

More information

X- Ray and UV Baryon Accoun1ng

X- Ray and UV Baryon Accoun1ng X- Ray and UV Baryon Accoun1ng Mike Anderson University of Michigan Jess Werk UC Santa Cruz Baryon Budgets of Galaxies Frac%on 24% 24% Stars ISM 24% 24% 4% 0% HVCs Cool CGM Warm CGM Hot Halo A late- type

More information

The Formation of Galaxies: connecting theory to data

The Formation of Galaxies: connecting theory to data Venice, October 2003 The Formation of Galaxies: connecting theory to data Simon D.M. White Max Planck Institute for Astrophysics The Emergence of the Cosmic Initial Conditions > 105 independent ~ 5 measurements

More information

Evolution of massive galaxies over cosmic time

Evolution of massive galaxies over cosmic time Evolution of massive galaxies over cosmic time Nacho Trujillo Instituto de Astrofísica de Canarias www.iac.es/project/traces he enormous size evolution: how that it happens? M * 10 11 M sun z=0 z=2 r e

More information

ASTRON 449: Stellar (Galactic) Dynamics. Fall 2014

ASTRON 449: Stellar (Galactic) Dynamics. Fall 2014 ASTRON 449: Stellar (Galactic) Dynamics Fall 2014 In this course, we will cover the basic phenomenology of galaxies (including dark matter halos, stars clusters, nuclear black holes) theoretical tools

More information

How many arcmin-separation lenses are expected in the 2dF QSO survey?

How many arcmin-separation lenses are expected in the 2dF QSO survey? Mon. Not. R. Astron. Soc. 339, L23 L27 (2003) How many arcmin-separation lenses are expected in the 2dF QSO survey? Masamune Oguri Department of Physics, School of Science, University of Tokyo, Tokyo 113-0033,

More information

The gas-galaxy-halo connection

The gas-galaxy-halo connection The gas-galaxy-halo connection Jean Coupon (University of Geneva) Collaborators: Miriam Ramos, Dominique Eckert, Stefano Ettori, Mauro Sereno, Keiichi Umetsu, Sotiria Fotopoulou, Stéphane Paltani, and

More information

arxiv: v1 [astro-ph.co] 11 Sep 2013

arxiv: v1 [astro-ph.co] 11 Sep 2013 To be submitted to the Astrophysical Journal Preprint typeset using L A TEX style emulateapj v. 5/2/11 COSMOLOGICAL DEPENDENCE OF THE MEASUREMENTS OF LUMINOSITY FUNCTION, PROJECTED CLUSTERING AND GALAXY-GALAXY

More information