ASTR 200 : Lecture 26. Gravitational Lensing

Size: px
Start display at page:

Download "ASTR 200 : Lecture 26. Gravitational Lensing"

Transcription

1 ASTR 200 : Lecture 26 Gravitational Lensing 1

2 Announcements HW 7 due Thursday Nov 15. No office hours today No office hour next Monday (UBC closed) No class on Monday Nov 12 (UBC closed for holiday in lieu of Remembrance day. Homework Graphs 2

3 If mass produces acceleration, light could be lensed GMm GM Remember that m a= a= 2 2 r r and so in Newtonian physics, acceleration is independent of mass of the object being accelerated (Galileo with cannonballs and grapes) Even in the 18th century, based on Newton's belief that light was made of particles, people realized that if light skimmed past the Sun, there would be an angular deflection, with an angle a of 0.85 The effect would be to make the star appear to shift away from the Sun Of course, the issue is that it is difficult to see background stars behind the Sun... 3

4 But, during a solar eclipse... -But in 19th century there was no way to make the measurement. - Couldn't look through a telescope and see 1 deviation The bending falls off if the light path is further from the Sun 4

5 General Relativity made a DIFFERENT prediction GR predicts a deflection angle a 1 4 GM b c2 where b is the impact parameter the distance between the photon and the center of the mass at closest approach along the path (see diagram) For the Sun, a skimming path is deflected by ~1.7'', which is twice the Newtonian expectation This was a 1915 prediction of GR that was different than Newtonian physics, and so testing it (which had now become possible due to the invention of photographic plates) was the subject of an expedition to a solar eclipse in Africa in b

6 GR : 1 Newtonian : 0 6 This was the only detection of gravitational lensing for a long time...

7 The general approach: The lens equation 7

8 The general approach: The lens equation (Must have dimensions of length squared) 8 DS

9 The Einstein radius Suppose source precisely behind the lens. r=0 and then r'=re and the source appears moved by re. Because configuration symmetric, we see a ring of re angular radius 4 GM D LS θe = DS = c 2 DL Ds θe 9 DS

10 An Einstein Ring 10 The central 'lensing' elliptical galaxy is lensing a background galaxy - Requires nearly perfect alignment of the background object, thus rare

11 A collection of Einstein rings 11

12 x Amplification in Lensing Lensing magnifies/amplifies the brightness of background sources because more total light is delivered to the observer Imagine placing the background object at various places along a line (above) with a given y=b. As a function of x, you get various brightenings (right) 12 `horizontal' x

13 Multiple images in gravitational lensing In the realistic case an object is lensed into a finite number of images, with different amplifications and offsets The number of images, their amplification, and their position actually probes the mass distribution of the lensing distribution So, this allows one to: (1) see, via amplification, very distant sources (2) probe mass (of lens) using lensing physics (independent of dynamics) 13

14 Gravitational lensing by clusters of galaxies These arcs are commonly seen when looking through massive galaxy clusters 14

15 Gravitational lensing by clusters of galaxies One can model the amount and distribution of mass in the cluster using the image shapes This probe has no dependence on velocities, etc 15

16 Other types of lensing What we have discussed today is all what is called 'strong' gravitational lensing We have also discussed : Micro Lensing, where there is no resolved image of the lensed object, there is only amplification 16 (review on next slide) And there is also 'weak lensing' (subsequent slides)

17 brighter 17 Microlensing Previously discussed when taking about the halo Can also be used to detect exoplanets around the (invisible) lens (see prior lecture). Here the lens is not seen, and there is only 1 image However, one uses the fact that the geometry of the lens versus source is CHANGING due to relative motion, and one is detecting the changing amplification of the background source in intensity This has been used to study populations statistics in the Milky Way halo

18 Weak lensing When light passes a through a low-mass system, a circular cross section has its shape only very slightly affected The lens may be essentially invisible If there were only one lensed object, almost nothing can be learned from such weak lensing 18

19 Weak lensing, on a large number of background sources This is done statistically using the observed shape of large numbers of galaxies affected by some foreground mass distribution The are correlations between galaxies on the sky due to the presence of mass in the foreground. This allows detection of mass even if the lens emits no light! 19

20 Abell 502 : The Bullet Cluster 20 A massive cluster which is actually two clusters post a collision

21 Abell 502 : The Bullet Cluster The Chandra X-ray telescope image shows that the two clusters have passed through each other, leaving especially hot stripped gas between them 21

22 Abell 502 : can be studies by weak lensing However, most of the mass will be in dark matter. This can be detected via its weak lensing on background galaxies. Where does it say the dark matter is? (see next slide) 22

23 Abell 502 : Dark matter stays with the galaxies The weak lensing reconstructed mass distribution (contours) shows that the dark matter `stays with the galaxies' and is not distributed like the hot gas This shows that the dark matter interacts only gravitationally, and not like the gas 23

24 Moral: lensing is kewl The Cheshire Cat lens. Will disappear over the next Gyr as the two elliptical lens galaxies merge 24

PHY323:Lecture 7 Dark Matter with Gravitational Lensing

PHY323:Lecture 7 Dark Matter with Gravitational Lensing PHY323:Lecture 7 Dark Matter with Gravitational Lensing Strong Gravitational Lensing Theory of Gravitational Lensing Weak Gravitational Lensing Large Scale Structure Experimental Evidence for Dark Matter

More information

Gravitational Lensing. A Brief History, Theory, and Applications

Gravitational Lensing. A Brief History, Theory, and Applications Gravitational Lensing A Brief History, Theory, and Applications A Brief History Einstein (1915): light deflection by point mass M due to bending of space-time = 2x Newtonian light tangentially grazing

More information

Evidence for/constraints on dark matter in galaxies and clusters

Evidence for/constraints on dark matter in galaxies and clusters Nov 11, 2015 Evidence for/constraints on dark matter in galaxies and clusters HW#9 is due; please hand in your summaries; then you get to talk (I have slides of the different facilities/telescopes. HW#10

More information

Brief update (3 mins/2 slides) on astrophysics behind final project

Brief update (3 mins/2 slides) on astrophysics behind final project Nov 1, 2017 Brief update (3 mins/2 slides) on astrophysics behind final project Evidence for Dark Matter Next Wed: Prelim #2, similar to last one (30 mins). Review especially lecture slides, PEs and non-project

More information

Exploring Dark Matter through Gravitational Lensing. Exploring the Dark Universe Indiana University June 2007

Exploring Dark Matter through Gravitational Lensing. Exploring the Dark Universe Indiana University June 2007 Exploring Dark Matter through Gravitational Lensing Exploring the Dark Universe Indiana University 28-29 June 2007 What is a Gravitational Lens? A gravitational lens is formed when the light from a distant,

More information

Observational Cosmology

Observational Cosmology Astr 102: Introduction to Astronomy Fall Quarter 2009, University of Washington, Željko Ivezić Lecture 15: Observational Cosmology 1 Outline Observational Cosmology: observations that allow us to test

More information

Active Galaxies and Galactic Structure Lecture 22 April 18th

Active Galaxies and Galactic Structure Lecture 22 April 18th Active Galaxies and Galactic Structure Lecture 22 April 18th FINAL Wednesday 5/9/2018 6-8 pm 100 questions, with ~20-30% based on material covered since test 3. Do not miss the final! Extra Credit: Thursday

More information

Gravitational Lensing

Gravitational Lensing Gravitational Lensing Gravitational lensing, which is the deflection of light by gravitational fields and the resulting effect on images, is widely useful in cosmology and, at the same time, a source of

More information

The phenomenon of gravitational lenses

The phenomenon of gravitational lenses The phenomenon of gravitational lenses The phenomenon of gravitational lenses If we look carefully at the image taken with the Hubble Space Telescope, of the Galaxy Cluster Abell 2218 in the constellation

More information

AST1100 Lecture Notes

AST1100 Lecture Notes AST00 Lecture Notes Part E General Relativity: Gravitational lensing Questions to ponder before the lecture. Newton s law of gravitation shows the dependence of the gravitational force on the mass. In

More information

Astro-2: History of the Universe. Lecture 5; April

Astro-2: History of the Universe. Lecture 5; April Astro-2: History of the Universe Lecture 5; April 23 2013 Previously.. On Astro-2 Galaxies do not live in isolation but in larger structures, called groups, clusters, or superclusters This is called the

More information

( ) 2 1 r S. ( dr) 2 r 2 dφ

( ) 2 1 r S. ( dr) 2 r 2 dφ General relativity, 4 Orbital motion of small test masses The starting point for analyzing free fall trajectories in the (-space, 1-time) Schwarzschild spacetime is Equation (3) from GR 3: ( dτ ) = 1 r

More information

Weak Gravitational Lensing

Weak Gravitational Lensing Weak Gravitational Lensing Sofia Sivertsson October 2006 1 General properties of weak lensing. Gravitational lensing is due to the fact that light bends in a gravitational field, in the same fashion as

More information

The Milky Way, Hubble Law, the expansion of the Universe and Dark Matter Chapter 14 and 15 The Milky Way Galaxy and the two Magellanic Clouds.

The Milky Way, Hubble Law, the expansion of the Universe and Dark Matter Chapter 14 and 15 The Milky Way Galaxy and the two Magellanic Clouds. The Milky Way, Hubble Law, the expansion of the Universe and Dark Matter Chapter 14 and 15 The Milky Way Galaxy and the two Magellanic Clouds. Image taken from the European Southern Observatory in Chile

More information

The Gravitational Microlensing Planet Search Technique from Space

The Gravitational Microlensing Planet Search Technique from Space The Gravitational Microlensing Planet Search Technique from Space David Bennett & Sun Hong Rhie (University of Notre Dame) Abstract: Gravitational microlensing is the only known extra-solar planet search

More information

Chapter 16 Dark Matter, Dark Energy, & The Fate of the Universe

Chapter 16 Dark Matter, Dark Energy, & The Fate of the Universe 16.1 Unseen Influences Chapter 16 Dark Matter, Dark Energy, & The Fate of the Universe Dark Matter: An undetected form of mass that emits little or no light but whose existence we infer from its gravitational

More information

Today. Gravitational Lenses 11/19/2013. Astronomy Picture of the Day

Today. Gravitational Lenses 11/19/2013. Astronomy Picture of the Day ASTR 1020: Stars & Galaxies November 15, 2013 Reading for Monday: Chapter 23, section 23.1-23.3. MasteringAstronomy homework on Galaxy Evolution is due tonight at midnight. Exam 3 is on Wednesday, Nov.

More information

(x 2 + ξ 2 ) The integral in (21.02) is analytic, and works out to 2/ξ 2. So. v = 2GM ξc

(x 2 + ξ 2 ) The integral in (21.02) is analytic, and works out to 2/ξ 2. So. v = 2GM ξc Gravitational Lenses [Schneider, Ehlers, & Falco, Gravitational Lenses, Springer-Verlag 199] Consider a photon moving past a point of mass, M, with an starting impact parameter, ξ. From classical Newtonian

More information

ASTRON 331 Astrophysics TEST 1 May 5, This is a closed-book test. No notes, books, or calculators allowed.

ASTRON 331 Astrophysics TEST 1 May 5, This is a closed-book test. No notes, books, or calculators allowed. ASTRON 331 Astrophysics TEST 1 May 5, 2003 Name: This is a closed-book test. No notes, books, or calculators allowed. Orders of Magnitude (20 points): simply circle the correct answer. 1. The brightest

More information

Special Relativity: The laws of physics must be the same in all inertial reference frames.

Special Relativity: The laws of physics must be the same in all inertial reference frames. Special Relativity: The laws of physics must be the same in all inertial reference frames. Inertial Reference Frame: One in which an object is observed to have zero acceleration when no forces act on it

More information

Gravitational Lensing. Einstein deflection angle Lens equation, magnification Galaxy lenses Cluster lenses Weak lensing Time delays in lenses

Gravitational Lensing. Einstein deflection angle Lens equation, magnification Galaxy lenses Cluster lenses Weak lensing Time delays in lenses Gravitational Lensing Einstein deflection angle Lens equation, magnification Galaxy lenses Cluster lenses Weak lensing Time delays in lenses Einstein's deflection angle In General Relativity, light is

More information

REU Final Presentation

REU Final Presentation July 28, 2009 Outline 1 History Historical Background Outline 1 History Historical Background 2 to the project Theory: Deflection angle, lensing diagram, and equations Outline 1 History Historical Background

More information

Homework 9 due Nov. 26 (after Thanksgiving)

Homework 9 due Nov. 26 (after Thanksgiving) Homework 9 due Nov. 26 (after Thanksgiving) [CO 17.6 parts (a), (b)] [16.6 1 st ed., parts (a), (b)] Derive the deflection of the light ray passing a massive object. Note that your answer will come out

More information

Astronomy 182: Origin and Evolution of the Universe

Astronomy 182: Origin and Evolution of the Universe Astronomy 182: Origin and Evolution of the Universe Prof. Josh Frieman Lecture 6 Oct. 28, 2015 Today Wrap up of Einstein s General Relativity Curved Spacetime Gravitational Waves Black Holes Relativistic

More information

3 The lives of galaxies

3 The lives of galaxies Discovering Astronomy : Galaxies and Cosmology 24 3 The lives of galaxies In this section, we look at how galaxies formed and evolved, and likewise how the large scale pattern of galaxies formed. But before

More information

Today: Start Ch. 18: Cosmology. Homework # 5 due next Wed. (HW #6 is online)

Today: Start Ch. 18: Cosmology. Homework # 5 due next Wed. (HW #6 is online) Today: Start Ch. 18: Cosmology Homework # 5 due next Wed. (HW #6 is online) Dark Matter! A rotation curve is a graph of how fast a something is rotating, as a function of distance from the center.! We

More information

Lab 1: Dark Matter in Galaxy Clusters Dynamical Masses, Strong Lensing

Lab 1: Dark Matter in Galaxy Clusters Dynamical Masses, Strong Lensing Dark Matters, Sept. 24-26 2012, KICP Dark Matters, Sept. 24-26, 2012 Lab 1: Dark Matter in Galaxy Clusters Dynamical Masses, Strong Lensing Introduction Although the distribution of galaxies on large scales

More information

Chapter 23: Dark Matter, Dark Energy & Future of the Universe. Galactic rotation curves

Chapter 23: Dark Matter, Dark Energy & Future of the Universe. Galactic rotation curves Chapter 23: Dark Matter, Dark Energy & Future of the Universe Galactic rotation curves Orbital speed as a function of distance from the center: rotation_of_spiral_galaxy.htm Use Kepler s Third Law to get

More information

2. Geometry of lens systems

2. Geometry of lens systems Lens geometry 1 2. Geometry of lens systems Deriving the geometry of a lens system - Method 1 (the Lens Equation) Consider the idealised system shown in Figure 2.1, where the symbols D s, D l and D ls

More information

ASTR 200 : Lecture 25. Galaxies: internal and cluster dynamics

ASTR 200 : Lecture 25. Galaxies: internal and cluster dynamics ASTR 200 : Lecture 25 Galaxies: internal and cluster dynamics 1 Galaxy interactions Isolated galaxies are often spirals One can find small galaxy `groups' (like the Local group) with only a few large spiral

More information

Test #3 Next Tuesday, Nov. 8 Bring your UNM ID! Bring two number 2 pencils. Announcements. Review for test on Monday, Nov 7 at 3:25pm

Test #3 Next Tuesday, Nov. 8 Bring your UNM ID! Bring two number 2 pencils. Announcements. Review for test on Monday, Nov 7 at 3:25pm Test #3 Next Tuesday, Nov. 8 Bring your UNM ID! Bring two number 2 pencils Announcements Review for test on Monday, Nov 7 at 3:25pm Neutron Star - Black Hole merger Review for Test #3 Nov 8 Topics: Stars

More information

7/5. Consequences of the principle of equivalence (#3) 1. Gravity is a manifestation of the curvature of space.

7/5. Consequences of the principle of equivalence (#3) 1. Gravity is a manifestation of the curvature of space. 7/5 Consequences of the principle of equivalence (#3) 1. Gravity is a manifestation of the curvature of space. Follow the path of a light pulse in an elevator accelerating in gravityfree space. The dashed

More information

Gravitational Efects and the Motion of Stars

Gravitational Efects and the Motion of Stars Gravitational Efects and the Motion of Stars On the largest scales (galaxy clusters and larger), strong evidence that the dark matter has to be non-baryonic: Abundances of light elements (hydrogen, helium

More information

Astronomy 422. Lecture 15: Expansion and Large Scale Structure of the Universe

Astronomy 422. Lecture 15: Expansion and Large Scale Structure of the Universe Astronomy 422 Lecture 15: Expansion and Large Scale Structure of the Universe Key concepts: Hubble Flow Clusters and Large scale structure Gravitational Lensing Sunyaev-Zeldovich Effect Expansion and age

More information

The interpretation is that gravity bends spacetime and that light follows the curvature of space.

The interpretation is that gravity bends spacetime and that light follows the curvature of space. 7/8 General Theory of Relativity GR Two Postulates of the General Theory of Relativity: 1. The laws of physics are the same in all frames of reference. 2. The principle of equivalence. Three statements

More information

Direct empirical proof of dark matter?

Direct empirical proof of dark matter? Direct empirical proof of dark matter? Masaki Mori Reference: D. Clowe et al., astro-ph/0608407 J.W. Moffat, astro-ph/0608675 ICRR CANGAROO Group Internal Seminar, 05-OCT-2006 Bergstroem and Goobar, Cosmology

More information

Dark Matter. Homework 3 due. ASTR 433 Projects 4/17: distribute abstracts 4/19: 20 minute talks. 4/24: Homework 4 due 4/26: Exam ASTR 333/433.

Dark Matter. Homework 3 due. ASTR 433 Projects 4/17: distribute abstracts 4/19: 20 minute talks. 4/24: Homework 4 due 4/26: Exam ASTR 333/433. Dark Matter ASTR 333/433 Today Clusters of Galaxies Homework 3 due ASTR 433 Projects 4/17: distribute abstracts 4/19: 20 minute talks 4/24: Homework 4 due 4/26: Exam Galaxy Clusters 4 distinct measures:

More information

Gravitational Lensing

Gravitational Lensing Gravitational Lensing Fatima Zaidouni Thursday, December 20, 2018 PHY 391- Prof. Rajeev - University of Rochester 1 Abstract In this paper, we explore how light bends under the effect of a gravitational

More information

a. 0.5 AU b. 5 AU c. 50 AU d.* AU e AU

a. 0.5 AU b. 5 AU c. 50 AU d.* AU e AU 1 AST104 Sp04: WELCOME TO EXAM 1 Multiple Choice Questions: Mark the best answer choice. Read all answer choices before making selection. (No credit given when multiple answers are marked.) 1. A galaxy

More information

Clusters of Galaxies Groups: Clusters poor rich Superclusters:

Clusters of Galaxies Groups: Clusters poor rich Superclusters: Clusters of Galaxies Galaxies are not randomly strewn throughout space. Instead the majority belong to groups and clusters of galaxies. In these structures, galaxies are bound gravitationally and orbit

More information

Exam 3 Astronomy 100, Section 3. Some Equations You Might Need

Exam 3 Astronomy 100, Section 3. Some Equations You Might Need Exam 3 Astronomy 100, Section 3 Some Equations You Might Need modified Kepler s law: M = [a(au)]3 [p(yr)] (a is radius of the orbit, p is the rotation period. You 2 should also remember that the period

More information

Finding Black Holes Left Behind by Single Stars

Finding Black Holes Left Behind by Single Stars Finding Black Holes Left Behind by Single Stars Finding Black Holes "Yesterday upon the stair I met a man who wasn't there. He wasn't there again today. I wish that man would go away." Hughes Mearns (1875-1965)

More information

Structure of the Milky Way. Structure of the Milky Way. The Milky Way

Structure of the Milky Way. Structure of the Milky Way. The Milky Way Key Concepts: Lecture 29: Our first steps into the Galaxy Exploration of the Galaxy: first attempts to measure its structure (Herschel, Shapley). Structure of the Milky Way Initially, star counting was

More information

Introduction to (Strong) Gravitational Lensing: Basics and History. Joachim Wambsganss Zentrum für Astronomie der Universität Heidelberg (ZAH/ARI)

Introduction to (Strong) Gravitational Lensing: Basics and History. Joachim Wambsganss Zentrum für Astronomie der Universität Heidelberg (ZAH/ARI) Introduction to (Strong) Gravitational Lensing: Basics and History Joachim Wambsganss Zentrum für Astronomie der Universität Heidelberg (ZAH/ARI) Introduction to (Strong) Gravitational Lensing: Basics

More information

Cosmologists dedicate a great deal of effort to determine the density of matter in the universe. Type Ia supernovae observations are consistent with

Cosmologists dedicate a great deal of effort to determine the density of matter in the universe. Type Ia supernovae observations are consistent with Notes for Cosmology course, fall 2005 Dark Matter Prelude Cosmologists dedicate a great deal of effort to determine the density of matter in the universe Type Ia supernovae observations are consistent

More information

Universal gravitation

Universal gravitation Universal gravitation Physics 211 Syracuse University, Physics 211 Spring 2015 Walter Freeman February 22, 2017 W. Freeman Universal gravitation February 22, 2017 1 / 14 Announcements Extra homework help

More information

12:40-2:40 3:00-4:00 PM

12:40-2:40 3:00-4:00 PM Physics 294H l Professor: Joey Huston l email:huston@msu.edu l office: BPS3230 l Homework will be with Mastering Physics (and an average of 1 hand-written problem per week) Help-room hours: 12:40-2:40

More information

ASTR 200 : Lecture 22 Structure of our Galaxy

ASTR 200 : Lecture 22 Structure of our Galaxy ASTR 200 : Lecture 22 Structure of our Galaxy 1 The 'Milky Way' is known to all cultures on Earth (perhaps, unfortunately, except for recent city-bound dwellers) 2 Fish Eye Lens of visible hemisphere (but

More information

Chapter 23 Lecture. The Cosmic Perspective Seventh Edition. Dark Matter, Dark Energy, and the Fate of the Universe Pearson Education, Inc.

Chapter 23 Lecture. The Cosmic Perspective Seventh Edition. Dark Matter, Dark Energy, and the Fate of the Universe Pearson Education, Inc. Chapter 23 Lecture The Cosmic Perspective Seventh Edition Dark Matter, Dark Energy, and the Fate of the Universe Curvature of the Universe The Density Parameter of the Universe Ω 0 is defined as the ratio

More information

Lecture Outlines. Chapter 22. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 22. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 22 Astronomy Today 8th Edition Chaisson/McMillan Chapter 22 Neutron Stars and Black Holes Units of Chapter 22 22.1 Neutron Stars 22.2 Pulsars 22.3 Neutron-Star Binaries 22.4 Gamma-Ray

More information

Gravitational lensing: one of the sharpest tools in an astronomers toolbox. James Binney Rudolf Peierls Centre for Theoretical Physics

Gravitational lensing: one of the sharpest tools in an astronomers toolbox. James Binney Rudolf Peierls Centre for Theoretical Physics Gravitational lensing: one of the sharpest tools in an astronomers toolbox James Binney Rudolf Peierls Centre for Theoretical Physics Outline Physics of gravitational deflection of light, Newton v. Einstein

More information

Using Gravity to Measure the Mass of a Star

Using Gravity to Measure the Mass of a Star STScI Newsletter Vol. 34 Issue 02 Using Gravity to Measure the Mass of a Star Abstract Kailash C. Sahu, ksahu[at]stsci.edu In a reprise of the famous 1919 solar eclipse experiment that confirmed Einstein's

More information

11/1/17. Important Stuff (Section 001: 9:45 am) Important Stuff (Section 002, 1:00 pm) 14.1 White Dwarfs. Chapter 14: The Bizarre Stellar Graveyard

11/1/17. Important Stuff (Section 001: 9:45 am) Important Stuff (Section 002, 1:00 pm) 14.1 White Dwarfs. Chapter 14: The Bizarre Stellar Graveyard 11/1/17 Important Stuff (Section 001: 9:45 am) The Second Midterm is Thursday, November 9 The Second Midterm will be given in a different room: Willey 175 Bring 2 pencils and a photo-id. In accordance

More information

General Relativity and Gravity. Exam 2 Results. Equivalence principle. The Equivalence Principle. Experiment: throw a ball. Now throw some light

General Relativity and Gravity. Exam 2 Results. Equivalence principle. The Equivalence Principle. Experiment: throw a ball. Now throw some light General Relativity and Gravity Special Relativity deals with inertial reference frames, frames moving with a constant relative velocity. It has some rather unusual predictions Time dilation Length contraction

More information

Searching for extrasolar planets using microlensing

Searching for extrasolar planets using microlensing Searching for extrasolar planets using microlensing Dijana Dominis Prester 7.8.2007, Belgrade Extrasolar planets Planets outside of the Solar System (exoplanets) Various methods: mostly massive hot gaseous

More information

2) On a Hertzsprung-Russell diagram, where would you find red giant stars? A) upper right B) lower right C) upper left D) lower left

2) On a Hertzsprung-Russell diagram, where would you find red giant stars? A) upper right B) lower right C) upper left D) lower left Multiple choice test questions 2, Winter Semester 2015. Based on parts covered after mid term. Essentially on Ch. 12-2.3,13.1-3,14,16.1-2,17,18.1-2,4,19.5. You may use a calculator and the useful formulae

More information

Campus Observatory. 7pm. you are here

Campus Observatory. 7pm. you are here Announcements Homework #9 is due today Course Evaluations available on line now Post-test Survey for At Play in the Cosmos now ready For extra credit: - must complete all 8 missions by Dec 10 - must complete

More information

AST1100 Lecture Notes

AST1100 Lecture Notes AST1100 Lecture Notes 4 Stellar orbits and dark matter 1 Using Kepler s laws for stars orbiting the center of a galaxy We will now use Kepler s laws of gravitation on much larger scales. We will study

More information

Clusters of Galaxies Groups: Clusters poor rich Superclusters:

Clusters of Galaxies Groups: Clusters poor rich Superclusters: Clusters of Galaxies Galaxies are not randomly strewn throughout space. Instead the majority belong to groups and clusters of galaxies. In these structures, galaxies are bound gravitationally and orbit

More information

Lecture 12: Extrasolar planets. Astronomy 111 Monday October 9, 2017

Lecture 12: Extrasolar planets. Astronomy 111 Monday October 9, 2017 Lecture 12: Extrasolar planets Astronomy 111 Monday October 9, 2017 Reminders Star party Thursday night! Homework #6 due Monday The search for extrasolar planets The nature of life on earth and the quest

More information

Objectives. HR Diagram

Objectives. HR Diagram Objectives HR Diagram Questions from Yesterday Centripetal Force perpendicular to the rotation axis Acts to slow down collapse Strongest 90 deg from rotation axis Particles with an angle < 90 feel the

More information

ASTR 200 : Lecture 21. Stellar mass Black Holes

ASTR 200 : Lecture 21. Stellar mass Black Holes 1 ASTR 200 : Lecture 21 Stellar mass Black Holes High-mass core collapse Just as there is an upper limit to the mass of a white dwarf (the Chandrasekhar limit), there is an upper limit to the mass of a

More information

Lecture 21: General Relativity Readings: Section 24-2

Lecture 21: General Relativity Readings: Section 24-2 Lecture 21: General Relativity Readings: Section 24-2 Key Ideas: Postulates: Gravitational mass=inertial mass (aka Galileo was right) Laws of physics are the same for all observers Consequences: Matter

More information

Black Hole and Host Galaxy Mass Estimates

Black Hole and Host Galaxy Mass Estimates Black Holes Black Hole and Host Galaxy Mass Estimates 1. Constraining the mass of a BH in a spectroscopic binary. 2. Constraining the mass of a supermassive BH from reverberation mapping and emission line

More information

Part two of a year-long introduction to astrophysics:

Part two of a year-long introduction to astrophysics: ASTR 3830 Astrophysics 2 - Galactic and Extragalactic Phil Armitage office: JILA tower A909 email: pja@jilau1.colorado.edu Spitzer Space telescope image of M81 Part two of a year-long introduction to astrophysics:

More information

Lecture 10: General Relativity I

Lecture 10: General Relativity I Lecture 10: General Relativity I! Einstein Tower Experiment! Gravitational redshifting! Strong Equivalence Principal! Read Chapter 8! Due to snow and confusion the mid-term is delayed to Thursday March

More information

Outline: Galaxy groups & clusters

Outline: Galaxy groups & clusters Outline: Galaxy groups & clusters Outline: Gravitational lensing Galaxy groups and clusters I Galaxy groups and clusters II Cluster classification Increasing rareness Intermission: What are you looking

More information

Lecture 10: General Relativity I

Lecture 10: General Relativity I Lecture 10: General Relativity I! Recap: Special Relativity and the need for a more general theory! The strong equivalence principle! Gravitational time dilation! Curved space-time & Einstein s theory

More information

General Relativity and Cosmology. The End of Absolute Space Cosmological Principle Black Holes CBMR and Big Bang

General Relativity and Cosmology. The End of Absolute Space Cosmological Principle Black Holes CBMR and Big Bang General Relativity and Cosmology The End of Absolute Space Cosmological Principle Black Holes CBMR and Big Bang The End of Absolute Space (AS) Special Relativity (SR) abolished AS only for the special

More information

Review of Lecture 15 3/17/10. Lecture 15: Dark Matter and the Cosmic Web (plus Gamma Ray Bursts) Prof. Tom Megeath

Review of Lecture 15 3/17/10. Lecture 15: Dark Matter and the Cosmic Web (plus Gamma Ray Bursts) Prof. Tom Megeath Lecture 15: Dark Matter and the Cosmic Web (plus Gamma Ray Bursts) Prof. Tom Megeath A2020 Disk Component: stars of all ages, many gas clouds Review of Lecture 15 Spheroidal Component: bulge & halo, old

More information

Peculiar (Interacting) Galaxies

Peculiar (Interacting) Galaxies Peculiar (Interacting) Galaxies Not all galaxies fall on the Hubble sequence: many are peculiar! In 1966, Arp created an Atlas of Peculiar Galaxies based on pictures from the Palomar Sky Survey. In 1982,

More information

a. 0.1 AU b. 10 AU c light years d light years

a. 0.1 AU b. 10 AU c light years d light years 1 AST104 Sp2006: EXAM 1 Multiple Choice Questions: Mark the best answer choice on the bubble form. Read all answer choices before making selection. (No credit given when multiple answers are marked.) 1.

More information

Clusters of galaxies

Clusters of galaxies Clusters of galaxies Most galaxies belong to some larger bound structure. Conventionally consider groups and clusters, with characteristic properties: Groups Clusters Core radius 250 h -1 kpc 250 h -1

More information

BASICS OF GRAVITATIONAL LENSING

BASICS OF GRAVITATIONAL LENSING Introduction 1 BASICS OF GRAVITATIONAL LENSING INTRODUCTION Gravitational lensing is a consequence of one of the most famous predictions of Einstein s General Relativity the idea that light is bent in

More information

ASTR : Stars & Galaxies (Spring 2019)... Study Guide for Midterm 1

ASTR : Stars & Galaxies (Spring 2019)... Study Guide for Midterm 1 ASTR-1200-01: Stars & Galaxies (Spring 2019)........................ Study Guide for Midterm 1 The first midterm exam for ASTR-1200 takes place in class on Wednesday, February 13, 2019. The exam covers

More information

Dark Matter and Dark Energy

Dark Matter and Dark Energy Dark Matter and Dark Energy Jim Pivarski March 4, 2012 Matter as we know it is a minority of the universe. Jim Pivarski 2/51 Jim Pivarski 3/51 Jim Pivarski 4/51 This talk: What is dark matter? The astronomer

More information

Clusters: Observations

Clusters: Observations Clusters: Observations Last time we talked about some of the context of clusters, and why observations of them have importance to cosmological issues. Some of the reasons why clusters are useful probes

More information

Astronomy 114. Lecture 26: Telescopes. Martin D. Weinberg. UMass/Astronomy Department

Astronomy 114. Lecture 26: Telescopes. Martin D. Weinberg. UMass/Astronomy Department Astronomy 114 Lecture 26: Telescopes Martin D. Weinberg weinberg@astro.umass.edu UMass/Astronomy Department A114: Lecture 26 17 Apr 2007 Read: Ch. 6,26 Astronomy 114 1/17 Announcements Quiz #2: we re aiming

More information

Astronomy 1141 Life in the Universe 10/24/12

Astronomy 1141 Life in the Universe 10/24/12 Friday, October 19 Newton vs. Einstein 1) Newton: Gravity is a force acting between massive objects in static, Euclidean space. Guest lecturer: Barbara Ryden 2) Einstein: Gravity is the result of the curvature

More information

Black Holes -Chapter 21

Black Holes -Chapter 21 Black Holes -Chapter 21 The most massive stellar cores If the core is massive enough (~3 M ; total initial mass of star > 25 M or so), even neutron degeneracy pressure can be overwhelmed by gravity. A

More information

Black Holes Thursday, 14 March 2013

Black Holes Thursday, 14 March 2013 Black Holes General Relativity Intro We try to explain the black hole phenomenon by using the concept of escape velocity, the speed to clear the gravitational field of an object. According to Newtonian

More information

Black Holes, or the Monster at the Center of the Galaxy

Black Holes, or the Monster at the Center of the Galaxy Black Holes, or the Monster at the Center of the Galaxy Learning Objectives! How do black holes with masses a few times that of our Sun form? How can we observe such black holes?! Where and how might you

More information

4. Structure of Dark Matter halos. Hence the halo mass, virial radius, and virial velocity are related by

4. Structure of Dark Matter halos. Hence the halo mass, virial radius, and virial velocity are related by 13-4-12see http://www.strw.leidenuniv.nl/ franx/college/galaxies12 12-c04-1 13-4-12see http://www.strw.leidenuniv.nl/ franx/college/galaxies12 12-c04-2 4. Structure of Dark Matter halos Obviously, we cannot

More information

Chapter 23 Lecture. The Cosmic Perspective Seventh Edition. Dark Matter, Dark Energy, and the Fate of the Universe Pearson Education, Inc.

Chapter 23 Lecture. The Cosmic Perspective Seventh Edition. Dark Matter, Dark Energy, and the Fate of the Universe Pearson Education, Inc. Chapter 23 Lecture The Cosmic Perspective Seventh Edition Dark Matter, Dark Energy, and the Fate of the Universe Curvature of the Universe The Density Parameter of the Universe Ω 0 is defined as the ratio

More information

11/1/16. Important Stuff (Section 001: 9:45 am) Important Stuff (Section 002, 1:00 pm) 14.1 White Dwarfs. Chapter 14: The Bizarre Stellar Graveyard

11/1/16. Important Stuff (Section 001: 9:45 am) Important Stuff (Section 002, 1:00 pm) 14.1 White Dwarfs. Chapter 14: The Bizarre Stellar Graveyard Important Stuff (Section 001: 9:45 am) The Second Midterm is Thursday, November 10 The Second Midterm will be given in a different room: Willey 175 Bring 2 pencils and a photo-id. In accordance with the

More information

Lecture Outlines. Chapter 25. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 25. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 25 Astronomy Today 7th Edition Chaisson/McMillan Chapter 25 Galaxies and Dark Matter Units of Chapter 25 25.1 Dark Matter in the Universe 25.2 Galaxy Collisions 25.3 Galaxy Formation

More information

Our Solar System: A Speck in the Milky Way

Our Solar System: A Speck in the Milky Way GALAXIES Lesson 2 Our Solar System: A Speck in the Milky Way The Milky Way appears to be curved when we view it but in reality it is a straight line. It is curved due to the combination of pictures taken

More information

Tuesday, Thursday 2:30-3:45 pm. Astronomy 100. Tom Burbine

Tuesday, Thursday 2:30-3:45 pm.   Astronomy 100. Tom Burbine Astronomy 100 Tuesday, Thursday 2:30-3:45 pm Tom Burbine tburbine@mtholyoke.edu www.xanga.com/astronomy100 OWL assignment (Due Today) There is be an OWL assignment due on Thursday April 14 at 11:59 pm.

More information

Astronomy 421. Lecture 24: Black Holes

Astronomy 421. Lecture 24: Black Holes Astronomy 421 Lecture 24: Black Holes 1 Outline General Relativity Equivalence Principle and its Consequences The Schwarzschild Metric The Kerr Metric for rotating black holes Black holes Black hole candidates

More information

General Relativity. In GR, mass (or energy) warps the spacetime fabric of space.

General Relativity. In GR, mass (or energy) warps the spacetime fabric of space. General Relativity Einstein s theory of General Relativity is a theory of gravity The basic idea is to drop Newton s idea of a mysterious force between masses and replace it with the 4-dimensional SpaceTime

More information

The Milky Way Galaxy is Heading for a Major Cosmic Collision

The Milky Way Galaxy is Heading for a Major Cosmic Collision The Milky Way Galaxy is Heading for a Major Cosmic Collision Roeland van der Marel (STScI) [based on work with a team of collaborators reported in the Astrophysical Journal July 2012] Hubble Science Briefing

More information

Dark Matter ASTR 2120 Sarazin. Bullet Cluster of Galaxies - Dark Matter Lab

Dark Matter ASTR 2120 Sarazin. Bullet Cluster of Galaxies - Dark Matter Lab Dark Matter ASTR 2120 Sarazin Bullet Cluster of Galaxies - Dark Matter Lab Mergers: Test of Dark Matter vs. Modified Gravity Gas behind DM Galaxies DM = location of gravity Gas = location of most baryons

More information

3/6/12! Astro 358/Spring 2012! Galaxies and the Universe! Dark Matter in Spiral Galaxies. Dark Matter in Galaxies!

3/6/12! Astro 358/Spring 2012! Galaxies and the Universe! Dark Matter in Spiral Galaxies. Dark Matter in Galaxies! 3/6/12 Astro 358/Spring 2012 Galaxies and the Universe Dark Matter in Galaxies Figures + Tables for Lectures (Feb 16-Mar 6) Dark Matter in Spiral Galaxies Flat rotation curve of Milky Way at large radii

More information

Extragalactic DM Halos and QSO Properties Through Microlensing

Extragalactic DM Halos and QSO Properties Through Microlensing Extragalactic DM Halos and QSO Properties Through Micro Eduardo Guerras (student) - Evencio Mediavilla (supervisor) Instituto de Astrofísica de Canarias Photon deflection by gravitating mass α = 4GM 2

More information

ASTR Final Examination Phil Armitage, Bruce Ferguson

ASTR Final Examination Phil Armitage, Bruce Ferguson ASTR 1120-001 Final Examination Phil Armitage, Bruce Ferguson FINAL EXAM MAY 6 th 2006: Closed books and notes, 1.5 hours. Please PRINT your name and student ID on the places provided on the scan sheet.

More information

ASTR Midterm 2 Phil Armitage, Bruce Ferguson

ASTR Midterm 2 Phil Armitage, Bruce Ferguson ASTR 1120-001 Midterm 2 Phil Armitage, Bruce Ferguson SECOND MID-TERM EXAM MARCH 21 st 2006: Closed books and notes, 1 hour. Please PRINT your name and student ID on the places provided on the scan sheet.

More information

Aspects of the General Theory of Relativity

Aspects of the General Theory of Relativity Aspects of the General Theory of Relativity Chapter IV 1. How does gravity act 2. Cosmological redshift 3.Gravitational redshift 4. Black holes General Relativity: Gravity and the Curvature of Space A

More information

Copernican revolu5on Copernican principle Olber s paradox Permenancy

Copernican revolu5on Copernican principle Olber s paradox Permenancy Cosmology Backdrop Copernican revolu5on Copernican principle Olber s paradox Permenancy Modern Cosmology Rela5vity The cosmological constant Hubble s discovery An expanding Universe The age of the Universe

More information

GR and Spacetime 3/20/14. Joys of Black Holes. Compact Companions in Binary Systems. What do we mean by the event horizon of a black hole?

GR and Spacetime 3/20/14. Joys of Black Holes. Compact Companions in Binary Systems. What do we mean by the event horizon of a black hole? ASTR 1040: Stars & Galaxies Prof. Juri Toomre TA: Ryan Orvedahl Lecture 20 Thur 20 Mar 2014 zeus.colorado.edu/astr1040-toomre Tycho Brahe SNR (1572) Joys of Black Holes Black holes, their general properties,

More information