Chapter 10 Mars Friday, March 12, 2010

Size: px
Start display at page:

Download "Chapter 10 Mars Friday, March 12, 2010"

Transcription

1 Chapter 10 Mars

2 10.1 Orbital Properties Mars s orbit is fairly eccentric which affects amount of sunlight reaching it Mars can be either in the direction of the Sun (conjunction) or not (opposition)

3 10.2 Physical Properties Mars Radius: 3394 km Moons: 2- Deimos, Phobos Mass: 6.4 x kg Density: 3900 kg/m 3 Length of day: 24.6 hours Earth Radius: 6378 km Moons: 1 Mass: 5.79 x kg Density: 5520 kg/m 3 Length of day: 24 hours

4 10.3 Long-Distance Observations of Mars From Earth, we can see polar ice caps that grow and shrink with the seasons- seasonal caps Changing polar ice caps are frozen carbon dioxide

5 10.3 Long-Distance Observations of Mars Residual Caps: mostly carbon dioxide, but possibly contain water ice- permanently frozen BIG temperature difference in the residual caps is caused by shifting dust cover during the southern summer- frequent dust storms, with high winds makes surface look like it is changing

6 10.4 The Martian Surface Major feature: Tharsis bulge, size of North America and 10 km above surroundings Minimal cratering; youngest surface on Mars

7 10.4 The Martian Surface This map shows the main surface features of Mars. There is no evidence for plate tectonics.

8 10.4 The Martian Surface Northern hemisphere (left) is rolling volcanic terrain Southern hemisphere (right) is heavily cratered highlands; average altitude 5 km above northern Assumption is that northern surface is younger than southern Means that northern hemisphere must have been lowered in elevation and then flooded with lava

9 10.4 The Martian Surface Valles Marineris: Huge canyon, created by crustal forces 4000 km long Maximum 120 km wide, 7 km deep Top right: Grand Canyon on same scale

10 10.4 The Martian Surface Mars has largest volcano in solar system: Olympus Mons 700 km diameter at base 25 km high Caldera is 80 km in diameter Three other Martian volcanoes are only slightly smaller

11 10.5 Water on Mars Was there running water on Mars? Runoff channels resemble those on Earth Left: Mars Right: Louisiana

12 10.5 Water on Mars Current thinking: Open water (rivers, lakes) once existed on Mars

13 10.5 Water on Mars This may be an ancient Martian river delta (Or it may not)

14 10.5 Water on Mars Recently, gullies have been seen that seem to indicate the presence of liquid water; interpretation is still in doubt

15 10.5 Water on Mars Viking landers both landed in low-latitude northern plains Rocky surface, red due to iron content Viking 1:

16 10.5 Water on Mars The landing site for Opportunity was chosen to maximize the chances of finding water, or evidence for water

17 Discovery 10-1: Life on Mars? Viking landers looked for evidence of living organisms; did not find anything conclusive

18 Discovery 10-1: Life on Mars? Two Martian meteorites found in Antarctica show possible signs of microbial life, but evidence is disputed

19 10.6 The Martian Atmosphere Martian atmosphere is mostly carbon dioxide, and very thin Too thin to retain much heat; temperature drops sharply at night

20 10.6 The Martian Atmosphere Mars may be victim of runaway greenhouse effect in the opposite sense of Venus s: As water ice froze, Mars became more and more reflective and its atmosphere thinner and thinner, freezing more and more water and eventually carbon dioxide as well.

21 10.7 Martian Internal Structure No seismic studies have been done From behavior of crust, it is estimated to be 100 km thick No magnetic field, so core is probably not metallic, not liquid, or both

22 10.8 The Moons of Mars Mars has two tiny moons: Phobos (left, 28 km x 20 km) Deimos (right, 16 km x 10 km) Both probably captured from the asteroid belt

23 Summary of Chapter 10 Mars orbit is more eccentric than Earth s Rotates in 24.6 hours; axial tilt similar to Earth s Atmosphere very thin, mostly carbon dioxide Temperature averages 50 K below Earth s, but seasons are otherwise similar Mars landers have yielded substantial amounts of data

24 Summary of Chapter 10 (cont.) Northern and southern hemispheres are very different South is higher and heavily cratered North is lower and relatively flat Major features: Tharsis bulge, Olympus Mons, Valles Marineris Crater ejecta provide evidence for permafrost layer under surface (easily liquidized) Two small moons, probably captured asteroids

25 Chapter 11 Jupiter

26 11.1 Orbital and Physical Properties This figure shows the solar system from a vantage point that emphasizes the relationship of the jovian planets to the rest of the system

27 11.1 Orbital and Physical Properties Three views of Jupiter: From a small telescope on Earth; from the Hubble Space Telescope; and from the Cassini spacecraft

28 11.1 Orbital and Physical Properties Mass: kg (twice as much as all other planets put together) Radius: 71,500 km (112 times Earth s) Density: 1300 kg/m 3 cannot be rocky or metallic as inner planets are Rotation rate: Problematic, as Jupiter has no solid surface; different parts of atmosphere rotate at different rates From magnetic field, rotation period is 9 hr, 55 min

29 11.2 The Atmosphere of Jupiter Major visible features: Bands of clouds; Great Red Spot

30 11.2 The Atmosphere of Jupiter Atmosphere has bright zones and dark belts Zones are cooler, and are higher than belts Stable flow underlies zones and bands, called zonal flow Simplified model:

31 11.2 The Atmosphere of Jupiter Real picture is much more complicated Here: Wind speed with respect to internal rotation rate

32 11.2 The Atmosphere of Jupiter Composition of atmosphere: Mostly molecular hydrogen and helium; small amounts of methane, ammonia, and water vapor These cannot account for color; probably due to complex chemical interactions

33 11.2 The Atmosphere of Jupiter No solid surface; take top of troposphere to be at 0 km Lowest cloud layer cannot be seen by optical telescopes Measurements by Galileo probe show high wind speeds even at great depth probably due to heating from planet, not from Sun

34 11.2 The Atmosphere of Jupiter Great Red Spot has existed for at least 300 years, possibly much longer Color and energy source still not understoodpossibly sustained by large scale atmospheric motion

35 11.2 The Atmosphere of Jupiter Lightning-like flashes have been seen; also shorter-lived rotating storms One example: Brown Oval, really a large gap in clouds

36 11.2 The Atmosphere of Jupiter Recently, three white storms were observed to merge into a single storm, which then turned red. This may provide some clues to the dynamics behind Jupiter s cloud movements.

37 11.3 Internal Structure No direct information is available about Jupiter s interior, but its main components, hydrogen and helium, are quite well understood. The central portion is a rocky core.

38 Discovery 11-1: A Cometary Impact July 1994: Comet Shoemaker-Levy 9, in fragments, struck Jupiter, providing valuable information about cometary impacts

39 Discovery 11-2: Almost a Star? Jupiter is much too small to have become a star needs 80 times more mass! But its energy output was larger in the past; could have been 100 times brighter than the Moon as seen from Earth Dwarf star in Jupiter s place probably would have made stable planetary orbits impossible Jupiter played invaluable role in sweeping solar system clear of debris before too much reached Earth otherwise life might not have been possible

40 11.4 Jupiter s Magnetosphere Jupiter is surrounded by belts of charged particles, much like the Van Allen belts but vastly larger. Magnetosphere is 30 million km across

41 11.4 Jupiter s Magnetosphere Intrinsic field strength is 20,000 times that of Earth Magnetosphere can extend beyond the orbit of Saturn

42 11.5 The Moons of Jupiter 63 moons have now been found orbiting Jupiter, but most are very small The four largest are the Galilean moons, so called because they were first observed by Galileo: Io, Europa, Ganymede, Callisto Galilean moons have similarities to terrestrial planets: orbits are roughly circular, largest is somewhat larger than Mercury, and density decreases as distance from Jupiter increases

43 11.5 The Moons of Jupiter Jupiter with Io and Europa. Note the relative sizes!

44 11.5 The Moons of Jupiter Interiors of the Galilean moons:

45 11.5 The Moons of Jupiter Io is the densest of Jupiter s moons, and the most geologically active object in the solar system: Many active volcanoes, some quite large Can change surface features in a few weeks No craters; they fill in too fast Io has the youngest surface of any solar system object

46 11.5 The Moons of Jupiter Orange color is probably from sulfur compounds in the ejecta

47 11.5 The Moons of Jupiter Cause of volcanism: Gravity! Io is very close to Jupiter and also experiences gravitational forces from Europa. The tidal forces are huge and provide the energy for the volcanoes.

48 11.5 The Moons of Jupiter Europa has no craters; surface is water ice, possibly with liquid water below Tidal forces stress and crack ice; water flows, keeping surface relatively flat

49 11.5 The Moons of Jupiter Ganymede is the largest moon in the solar system larger than Pluto and Mercury History similar to Earth s Moon, but water ice instead of lunar rock

50 11.5 The Moons of Jupiter Callisto is similar to Ganymede; no evidence of plate activity

51 11.6 Jupiter s Ring Jupiter has been found to have a small, thin ring

52 Jupiter is the largest planet in the solar system Rotates rapidly Summary of Chapter 11 Cloud cover has three main layers, forms zone and band pattern Great Red Spot is a very stable storm Pressure and density of atmosphere increase with depth; atmosphere becomes liquid and then metallic

53 Summary of Chapter 11 (cont.) Relatively small rocky core (but still about 10x size of Earth) Still radiating energy from original formation 63 moons, four very large Io: Active volcanoes, due to tidal forces Europa: Cracked, icy surface; may be liquid water underneath Ganymede and Callisto: Similar; rock and ice

54 Chapter 12 Saturn

55 12.1 Orbital and Physical Properties Mass: kg Radius: 60,000 km Density: 700 kg/m 3 less than water! Rotation: Rapid and differential, enough to flatten Saturn considerably Rings: Very prominent; wide but extremely thin

56 12.1 Orbital and Physical Properties View of rings from Earth changes as Saturn orbits the Sun

57 12.2 Saturn s Atmosphere Saturn s atmosphere also shows zone and band structure, but coloration is much more subdued than Jupiter s Mostly molecular hydrogen, helium, methane, and ammonia; helium fraction is much less than on Jupiter

58 12.2 Saturn s Atmosphere This true-color image shows the delicate coloration of the cloud patterns on Saturn

59 12.2 Saturn s Atmosphere Similar to Jupiter s, except pressure is lower Three cloud layers Cloud layers are thicker than Jupiter s; see only top layer

60 12.2 Saturn s Atmosphere Wind patterns on Saturn are similar to those on Jupiter, with zonal flow

61 12.2 Saturn s Atmosphere Jupiter-style spots rare on Saturn; don t form often and quickly dissipate if they do

62 12.2 Saturn s Atmosphere This dragon storm was first spotted in 2004; it is believed to be a long-lived phenomenon but is usually hidden under the clouds

63 12.2 Saturn s Atmosphere As expected for a planet with an atmosphere, there is a vortex at Saturn s south pole.

64 12.3 Saturn s Interior and Magnetosphere Interior structure similar to Jupiter s

65 12.3 Saturn s Interior and Magnetosphere Saturn also radiates more energy than it gets from the Sun, but not because of cooling: Helium and hydrogen are not well mixed; helium tends to condense into droplets and then fall Gravitational field compresses helium and heats it up

66 12.3 Saturn s Interior and Magnetosphere Saturn also has a strong magnetic field, but only 5% as strong as Jupiter s Creates aurorae:

67 12.4 Saturn s Spectacular Ring Saturn has an extraordinarily large and complex ring system, which was visible even to the first telescopes System

68 12.4 Saturn s Spectacular Ring System Overview of the ring system:

69 12.4 Saturn s Spectacular Ring Ring particles range in size from fractions of a millimeter to tens of meters Composition: Water ice similar to snowballs Why rings? System Too close to planet for moon to form tidal forces would tear it apart

70 12.4 Saturn s Spectacular Ring System Closest distance that moon could survive is called Roche limit; ring systems are all inside this limit

71 12.4 Saturn s Spectacular Ring System This backlit view shows the fainter F, G, and E rings

72 12.4 Saturn s Spectacular Ring System Voyager also found radial spikes that formed and then dissipated; this probably happens frequently

73 12.4 Saturn s Spectacular Ring System Strangest ring is outermost, F ring; it appears to have braids and kinks

74 12.4 Saturn s Spectacular Ring System F ring s oddities probably caused by two shepherd moons, one of which can be seen here:

75 12.4 Saturn s Spectacular Ring System Details of formation are unknown: Too active to have lasted since birth of solar system Either must be continually replenished, or are the result of a catastrophic event

76 12.5 The Moons of Saturn Saturn s many moons appear to be made of water ice In addition to the small moons, Saturn has: Six medium-sized moons (Mimas, Enceladus, Tethys, Dione, Rhea, and Iapetus) One large moon (Titan) which is almost as large as Ganymede

77 12.5 The Moons of Saturn Titan has been known for many years to have an atmosphere thicker and denser than Earth s; mostly nitrogen and argon Makes surface impossible to see; the upper picture at right was taken from only 4000 km away

78 12.5 The Moons of Saturn The Huygens spacecraft has landed on Titan and is returning images directly from the surface

79 Discovery 12-1: Dancing Among Saturn s Moons The Cassini spacecraft uses multiple gravitational slingshots to make multiple close passes around Saturn s moons. Precise orbits are decided on the fly.

80 12.5 The Moons of Saturn Iapetus is tidally locked- two-faced moon

81 Summary of Chapter 12 Saturn, like Jupiter, rotates differentially and is significantly flattened Saturn s weather patterns are in some ways similar to Jupiter s, but there are far fewer storms Saturn generates its own heat through the compression of helium raindrops Saturn has a large magnetic field and extensive magnetosphere

82 Summary of Chapter 12 (cont.) Saturn s most prominent feature is its rings, which are in its equatorial plane The rings have considerable gross and fine structure, with segments and gaps; their particles are icy and grain- to boulder-sized Interactions with medium and small moons determine the ring structure The rings are entirely within the Roche limit, where larger bodies would be torn apart by tidal forces

83 Summary of Chapter 12 (cont.) Titan is the second-largest moon in the solar system Titan has an extremely thick atmosphere, and little is known about its surface or interior Medium-sized moons are rock and water ice; their terrains vary These moons are tidally locked to Saturn Several of the small moons share orbits, either with each other or with larger moons

84 Chapter 13 Uranus and Neptune

85 13.1 The Discoveries of Uranus and Neptune Uranus was discovered in 1781 by Herschel; first planet to be discovered in more than 2000 years Little detail can be seen from Earth; arrows point to three of Uranus s moons:

86 13.1 The Discoveries of Uranus and Neptune Slightly more detail can be seen in this image taken by Voyager 2 at a distance of 1 million km

87 13.1 The Discoveries of Uranus and Neptune Neptune was discovered in 1846, after analysis of Uranus s orbit indicated its presence Details of Neptune cannot be made out from Earth either; arrows again point to moons:

88 13.1 The Discoveries of Uranus and Neptune More detail is visible in these Voyager 2 images, also taken from a distance of 1 million km:

89 13.2 Orbital and Physical Properties Uranus and Neptune are very similar

90 13.2 Orbital and Physical Properties Uranus Neptune Mass 14.5 x Earth 17.1 x Earth Radius 4.0 x Earth 3.9 x Earth Density 1300 kg/m kg/m 3

91 13.2 Orbital and Physical Properties Peculiarity of Uranus: Axis of rotation lies almost in the plane of its orbit. Seasonal variations are extreme.

92 13.3 The Atmospheres of Uranus and Neptune Outer atmospheres of Uranus and Neptune are similar to those of Jupiter and Saturn Uranus and Neptune are cold enough that ammonia freezes; methane dominates and gives the characteristic blue color

93 13.3 The Atmospheres of Uranus and Neptune Band structure of Neptune is more visible; it had a Dark Spot similar to Jupiter s storms (now vanished)

94 13.4 Magnetospheres and Internal Structure Uranus and Neptune both have substantial magnetic fields, but at a large angle to their rotation axes. The rectangle within each planet shows a bar magnet that would produce a similar field. Note that both Uranus s and Neptune s are significantly off center.

95 13.4 Magnetospheres and Internal Structure Magnetic fields of Uranus and Neptune must not be produced by dynamos, as the other planets fields are Interior structure of Uranus and Neptune, compared to that of Jupiter and Saturn:

96 13.5 The Moon Systems of Uranus and Neptune

97 13.5 The Moon Systems of Uranus and Neptune Uranus has 27 moons, five of which are major: Miranda, Ariel, Umbriel, Titania, and Oberon Similar to Saturn s medium-sized moons, except that all are much less reflective Umbriel is the darkest

98 13.5 The Moon Systems of Uranus and Neptune Neptune has 13 moons, but only two can be seen from Earth: Triton and Nereid Triton is in a retrograde orbit; Nereid s is highly eccentric Triton s surface has few craters, indicating an active surface

99 13.5 The Moon Systems of Uranus and Neptune Nitrogen geysers have been observed on Triton, contributing to the surface features Triton s fate: the moon is spinning towards Neptune- Roche Limit

100 13.5 The Moon Systems of Uranus and Neptune Also, there appear to be ice volcanoes

101 13.6 The Rings of the Outermost Jovian Planets Uranus and Neptune have faint ring systems, recently detected via stellar occultation

102 13.6 The Rings of the Outermost Jovian Planets Neptune has five rings: three narrow and two wide

103 Pluto - Irregularities in Uranus and Neptune s orbit suggested another planet - Tomaugh discovered Pluto - Irregularities do not exist- Pluto s mass, radius and density are closer to a icy moon than a planet

104 Summary of Chapter 13 Uranus and Neptune were discovered in the last 350 years Uranus and Neptune are similar: gaseous and cold Uranus s spin axis is almost in the plane of its orbit Surface features are hard to discern on Uranus but are more obvious on Neptune Uranus has no excess heat emission, but Neptune does

105 Summary of Chapter 13 (cont.) Uranus s midsized moons are similar to those of Saturn Neptune s moon Triton has a retrograde orbit Uranus and Neptune both have faint ring systems

Lecture Outlines. Chapter 11. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 11. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 11 Astronomy Today 8th Edition Chaisson/McMillan Chapter 11 Jupiter Units of Chapter 11 11.1 Orbital and Physical Properties 11.2 Jupiter s Atmosphere Discovery 11.1 A Cometary

More information

Lecture Outlines. Chapter 10. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 10. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 10 Astronomy Today 8th Edition Chaisson/McMillan Chapter 10 Mars Units of Chapter 10 10.1 Orbital Properties 10.2 Physical Properties 10.3 Long-Distance Observations of Mars 10.4

More information

Lecture Outlines. Chapter 13. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 13. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 13 Astronomy Today 7th Edition Chaisson/McMillan Chapter 13 Uranus and Neptune Units of Chapter 13 13.1 The Discoveries of Uranus and Neptune 13.2 Orbital and Physical Properties

More information

Chapter 8 2/19/2014. Lecture Outline. 8.1 The Galilean Moons of Jupiter. Moons, Rings, and Plutoids. 8.1 The Galilean Moons of Jupiter

Chapter 8 2/19/2014. Lecture Outline. 8.1 The Galilean Moons of Jupiter. Moons, Rings, and Plutoids. 8.1 The Galilean Moons of Jupiter Lecture Outline Chapter 8 Moons, Rings, and Plutoids All four Jovian planets have extensive moon systems, and more are continually being discovered. The Galilean moons of Jupiter are those observed by

More information

The Jovian Planets and Their Moons

The Jovian Planets and Their Moons The Jovian Planets and Their Moons Jupiter 1 Physical Properties of Earth and Jupiter Jupiter Earth Equatorial lradius 11.2 R Earth 6378 km Mass 318 M Earth 5.976 10 24 kg Average Density 1.34 g/cm 3 5.497

More information

Chapter 11 Jovian Planet Systems. Comparing the Jovian Planets. Jovian Planet Composition 4/10/16. Spacecraft Missions

Chapter 11 Jovian Planet Systems. Comparing the Jovian Planets. Jovian Planet Composition 4/10/16. Spacecraft Missions Chapter 11 Jovian Planet Systems Jovian Planet Interiors and Atmospheres How are jovian planets alike? What are jovian planets like on the inside? What is the weather like on jovian planets? Do jovian

More information

Overview of Solar System

Overview of Solar System Overview of Solar System The solar system is a disk Rotation of sun, orbits of planets all in same direction. Most planets rotate in this same sense. (Venus, Uranus, Pluto are exceptions). Angular momentum

More information

A Look at Our Solar System: The Sun, the planets and more. by Firdevs Duru

A Look at Our Solar System: The Sun, the planets and more. by Firdevs Duru A Look at Our Solar System: The Sun, the planets and more by Firdevs Duru Week 1 An overview of our place in the universe An overview of our solar system History of the astronomy Physics of motion of the

More information

Our Planetary System. Chapter 7

Our Planetary System. Chapter 7 Our Planetary System Chapter 7 Key Concepts for Chapter 7 and 8 Inventory of the Solar System Origin of the Solar System What does the Solar System consist of? The Sun: It has 99.85% of the mass of the

More information

Lecture #11: Plan. Terrestrial Planets (cont d) Jovian Planets

Lecture #11: Plan. Terrestrial Planets (cont d) Jovian Planets Lecture #11: Plan Terrestrial Planets (cont d) Jovian Planets Mercury (review) Density = 5.4 kg / liter.. ~ Earth s Rocky mantle + iron/nickel core Slow spin: 59 days (orbital period = 88 days) No satellites

More information

The Solar System. Tour of the Solar System

The Solar System. Tour of the Solar System The Solar System Tour of the Solar System The Sun more later 8 planets Mercury Venus Earth more later Mars Jupiter Saturn Uranus Neptune Various other objects Asteroids Comets Pluto The Terrestrial Planets

More information

The Solar System 6/23

The Solar System 6/23 6/23 The Solar System I. Earth A. Earth is the prototype terrestrial planet 1. Only planet in the solar system (we know of so far) with life 2. Temperature 290 K B. Physical Characteristics 1. Mass: 6

More information

Universe Now. 4. Solar System II: Jovian planets

Universe Now. 4. Solar System II: Jovian planets Universe Now 4. Solar System II: Jovian planets An overview of the known Solar System The Sun 4 terrestrial planets: Mercury, Venus, The Earth, Mars 4 Jovian planets: Jupiter, Saturn, Uranus, Neptune 5

More information

Jupiter. Jupiter is the third-brightest object in the night sky (after the Moon and Venus). Exploration by Spacecrafts

Jupiter. Jupiter is the third-brightest object in the night sky (after the Moon and Venus). Exploration by Spacecrafts Jupiter Orbit, Rotation Physical Properties Atmosphere, surface Interior Magnetosphere Moons (Voyager 1) Jupiter is the third-brightest object in the night sky (after the Moon and Venus). Exploration by

More information

ASTR-1010: Astronomy I Course Notes Section X

ASTR-1010: Astronomy I Course Notes Section X ASTR-1010: Astronomy I Course Notes Section X Dr. Donald G. Luttermoser Department of Physics and Astronomy East Tennessee State University Edition 2.0 Abstract These class notes are designed for use of

More information

UNIT 3: Chapter 8: The Solar System (pages )

UNIT 3: Chapter 8: The Solar System (pages ) CORNELL NOTES Directions: You must create a minimum of 5 questions in this column per page (average). Use these to study your notes and prepare for tests and quizzes. Notes will be turned in to your teacher

More information

The Fathers of the Gods: Jupiter and Saturn

The Fathers of the Gods: Jupiter and Saturn The Fathers of the Gods: Jupiter and Saturn Learning Objectives! Order all the planets by size and distance from the Sun! How are clouds on Jupiter (and Saturn) different to the Earth? What 2 factors drive

More information

Jupiter and Saturn. Guiding Questions. Long orbital periods of Jupiter and Saturn cause favorable viewing times to shift

Jupiter and Saturn. Guiding Questions. Long orbital periods of Jupiter and Saturn cause favorable viewing times to shift Jupiter and Saturn 1 2 Guiding Questions 1. Why is the best month to see Jupiter different from one year to the next? 2. Why are there important differences between the atmospheres of Jupiter and Saturn?

More information

Jovian Planet Systems

Jovian Planet Systems Jovian Planet Systems Reading: Chapter 14.1-14.5 Jovian Planet Systems Voyager 1 and 2 explored the outer planets in the 1970s and 1980s. The Galileo spacecraft circled Jupiter dozens of times in the late

More information

Moons of Sol Lecture 13 3/5/2018

Moons of Sol Lecture 13 3/5/2018 Moons of Sol Lecture 13 3/5/2018 Tidal locking We always see the same face of the Moon. This means: period of orbit = period of spin Top view of Moon orbiting Earth Earth Why? The tidal bulge in the solid

More information

The Outermost Planets. The 7 Wanderers known since Antiquity. Uranus and Neptune distinctly Blue-ish!

The Outermost Planets. The 7 Wanderers known since Antiquity. Uranus and Neptune distinctly Blue-ish! The Outermost Planets The 7 Wanderers known since Antiquity. Uranus and Neptune distinctly Blue-ish! Uranus Uranus and 3 of its moons, barely visible from Earth. Discovered by William Herschel 1781. (Accidentally!)

More information

Chapter 11 Jovian Planet Systems. Jovian Planet Composition. Are jovian planets all alike? Density Differences. Density Differences

Chapter 11 Jovian Planet Systems. Jovian Planet Composition. Are jovian planets all alike? Density Differences. Density Differences Chapter 11 Jovian Planet Systems 11.1 A Different Kind of Planet Our goals for learning Are jovian planets all alike? What are jovian planets like on the inside? What is the weather like on jovian planets?

More information

Chapter 11 Lecture. The Cosmic Perspective Seventh Edition. Jovian Planet Systems Pearson Education, Inc.

Chapter 11 Lecture. The Cosmic Perspective Seventh Edition. Jovian Planet Systems Pearson Education, Inc. Chapter 11 Lecture The Cosmic Perspective Seventh Edition Jovian Planet Systems Jovian Planet Systems 11.1 A Different Kind of Planet Our goals for learning: Are jovian planets all alike? What are jovian

More information

Similarities & Differences to Inner Planets

Similarities & Differences to Inner Planets Similarities & Differences to Inner Planets Jupiter Jupiter: Basic Characteristics Mass = 1.898 10 27 kg (318 x Earth) Radius = 71,492 km (11x Earth) Albedo (reflectivity) = 0.34 (Earth = 0.39) Average

More information

Chapter 10 The Outer Planets

Chapter 10 The Outer Planets Chapter 10 The Outer Planets Jupiter, Saturn, Uranus, and Neptune Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. The Outer Worlds Beyond the orbit of Mars,

More information

Chapter 11 Jovian Planet Systems

Chapter 11 Jovian Planet Systems Chapter 11 Jovian Planet Systems 11.1 A Different Kind of Planet Our goals for learning: Are jovian planets all alike? What are jovian planets like on the inside? What is the weather like on jovian planets?

More information

Chapter 11 Jovian Planet Systems. Jovian Planet Composition. Are jovian planets all alike? Density Differences. Density Differences

Chapter 11 Jovian Planet Systems. Jovian Planet Composition. Are jovian planets all alike? Density Differences. Density Differences Chapter 11 Jovian Planet Systems 11.1 A Different Kind of Planet Our goals for learning:! Are jovian planets all alike?! What are jovian planets like on the inside?! What is the weather like on jovian

More information

Saturn. Slightly smaller 1/3 the mass density 700 kg/m 3. Interior - light elements, lack of rocky materials. Voyager 2, NASA

Saturn. Slightly smaller 1/3 the mass density 700 kg/m 3. Interior - light elements, lack of rocky materials. Voyager 2, NASA Saturn Slightly smaller 1/3 the mass density 700 kg/m 3 Interior - light elements, lack of rocky materials Voyager 2, NASA 1 Saturn - Atmosphere belts - driven by rapid rotation period - 10 hrs 14 min

More information

SOLAR SYSTEM NOTES. Scientists believe its at least 4.6 billion years old!!! 10/26/2017 ENERGY TRANSFERS RADIATION FROM THE SUN

SOLAR SYSTEM NOTES. Scientists believe its at least 4.6 billion years old!!! 10/26/2017 ENERGY TRANSFERS RADIATION FROM THE SUN SOLAR SYSTEM NOTES Our Solar System is composed of: 1. The Sun 2. The Planets 3. Asteroids 4. Comets 5. Meteors 6. Natural & Artificial satellites Remember: How old is our Solar System? Scientists believe

More information

Investigating Astronomy Timothy F. Slater, Roger A. Freeman Chapter 7 Observing the Dynamic Giant Planets

Investigating Astronomy Timothy F. Slater, Roger A. Freeman Chapter 7 Observing the Dynamic Giant Planets Investigating Astronomy Timothy F. Slater, Roger A. Freeman Chapter 7 Observing the Dynamic Giant Planets Observing Jupiter and Saturn The disk of Jupiter at opposition appears about two times larger than

More information

Jupiter and its Moons

Jupiter and its Moons Jupiter and its Moons Summary 1. At an average distance of over 5 AU, Jupiter takes nearly 12 years to orbit the Sun 2. Jupiter is by far the largest and most massive planet in the solar system being over

More information

Jupiter & Saturn. Moons of the Planets. Jupiter s Galilean satellites are easily seen with Earth-based telescopes. The Moons

Jupiter & Saturn. Moons of the Planets. Jupiter s Galilean satellites are easily seen with Earth-based telescopes. The Moons The Moons Jupiter & Saturn Earth 1 Mars 2 Jupiter 63 Saturn 47 Uranus 27 Neptune 13 Pluto 3 Moons of the Planets Galileo (1610) found the first four moons of Jupiter. Total 156 (as of Nov. 8, 2005) Shortened

More information

Starting from closest to the Sun, name the orbiting planets in order.

Starting from closest to the Sun, name the orbiting planets in order. Chapter 9 Section 1: Our Solar System Solar System: The solar system includes the sun, planets and many smaller structures. A planet and its moon(s) make up smaller systems in the solar system. Scientist

More information

Unit 3 Lesson 5 The Gas Giant Planets. Copyright Houghton Mifflin Harcourt Publishing Company

Unit 3 Lesson 5 The Gas Giant Planets. Copyright Houghton Mifflin Harcourt Publishing Company Florida Benchmarks SC.8.E.5.3 Distinguish the hierarchical relationships between planets and other astronomical bodies relative to solar system, galaxy, and universe, including distance, size, and composition.

More information

Solar System Research Teacher Notes The Sun

Solar System Research Teacher Notes The Sun The Sun G-type main sequence star (G2V), also known as a yellow dwarf Mass = 1.99 x 10 30 kg or 333,000 Earths. Volume = 1.41 x 10 18 km 3 or 1,300,000 Earths. Density (average) = 1.41 g/cm 3 or 0.255

More information

Solar System revised.notebook October 12, 2016 Solar Nebula Theory

Solar System revised.notebook October 12, 2016 Solar Nebula Theory Solar System revised.notebook The Solar System Solar Nebula Theory Solar Nebula was a rotating disk of dust and gas w/ a dense center dense center eventually becomes the sun start to condense b/c of gravity

More information

Lecture 24: Saturn. The Solar System. Saturn s Rings. First we focus on solar distance, average density, and mass: (where we have used Earth units)

Lecture 24: Saturn. The Solar System. Saturn s Rings. First we focus on solar distance, average density, and mass: (where we have used Earth units) Lecture 24: Saturn The Solar System First we focus on solar distance, average density, and mass: Planet Distance Density Mass Mercury 0.4 1.0 0.06 Venus 0.7 0.9 0.8 Earth 1.0 1.0 1.0 Mars 1.5 0.7 0.1 (asteroid)

More information

Mercury Named after: Mercury, the fast-footed Roman messenger of the gods. Mean Distance from the Sun: 57,909,175 km (35,983,093.1 miles) or 0.

Mercury Named after: Mercury, the fast-footed Roman messenger of the gods. Mean Distance from the Sun: 57,909,175 km (35,983,093.1 miles) or 0. Mercury Named after: Mercury, the fast-footed Roman messenger of the gods. Mean Distance from the Sun: 57,909,175 km (35,983,093.1 miles) or 0.387 astronomical units Diameter: 4,879.4 km (3,031.92 miles)

More information

11.2 A Wealth of Worlds: Satellites of Ice and Rock

11.2 A Wealth of Worlds: Satellites of Ice and Rock 11.2 A Wealth of Worlds: Satellites of Ice and Rock Our goals for learning: What kinds of moons orbit the jovian planets? Why are Jupiter's Galilean moons so geologically active? What is remarkable about

More information

12a. Jupiter. Jupiter Data (Table 12-1) Jupiter Data: Numbers

12a. Jupiter. Jupiter Data (Table 12-1) Jupiter Data: Numbers 12a. Jupiter Jupiter & Saturn data Jupiter & Saturn seen from the Earth Jupiter & Saturn rotation & structure Jupiter & Saturn clouds Jupiter & Saturn atmospheric motions Jupiter & Saturn rocky cores Jupiter

More information

Edmonds Community College ASTRONOMY 100 Sample Test #2 Fall Quarter 2006

Edmonds Community College ASTRONOMY 100 Sample Test #2 Fall Quarter 2006 Edmonds Community College ASTRONOMY 100 Sample Test #2 Fall Quarter 2006 Instructor: L. M. Khandro 10/19/06 Please Note: the following test derives from a course and text that covers the entire topic of

More information

Lecture 11 The Structure and Atmospheres of the Outer Planets October 9, 2017

Lecture 11 The Structure and Atmospheres of the Outer Planets October 9, 2017 Lecture 11 The Structure and Atmospheres of the Outer Planets October 9, 2017 1 2 Jovian Planets 3 Jovian Planets -- Basic Information Jupiter Saturn Uranus Neptune Distance 5.2 AU 9.5 AU 19 AU 30 AU Spin

More information

Chapter 11 Jovian Planet Systems

Chapter 11 Jovian Planet Systems Chapter 11 Jovian Planet Systems 11.1 A Different Kind of Planet Our goals for learning: Are jovian planets all alike? What are jovian planets like on the inside? What is the weather like on jovian planets?

More information

Jovian planets, their moons & rings

Jovian planets, their moons & rings Jovian planets, their moons & rings The Moons of the Jovian Planets The terrestrial planets have a total of 3 moons. The jovian planets have a total of 166 moons. Each collection of moons orbiting the

More information

Astronomy A BEGINNER S GUIDE TO THE UNIVERSE EIGHTH EDITION

Astronomy A BEGINNER S GUIDE TO THE UNIVERSE EIGHTH EDITION Astronomy A BEGINNER S GUIDE TO THE UNIVERSE EIGHTH EDITION CHAPTER 8 Moons, Rings, and Plutoids Lecture Presentation Lower right: Europa and the shadow of Io, have now been joined by 12 recently discovered

More information

3. The name of a particularly large member of the asteroid belt is A) Halley B) Charon C) Eris D) Ceres E) Triton

3. The name of a particularly large member of the asteroid belt is A) Halley B) Charon C) Eris D) Ceres E) Triton Summer 2013 Astronomy - Test 2 Test form A Name Do not forget to write your name and fill in the bubbles with your student number, and fill in test form A on the answer sheet. Write your name above as

More information

1781: Uranus Discovered. The Outer Worlds. 1846: Neptune Discovered. Distance Comparison. Uranus Rotates Sideways. Exaggerated Seasons On Uranus

1781: Uranus Discovered. The Outer Worlds. 1846: Neptune Discovered. Distance Comparison. Uranus Rotates Sideways. Exaggerated Seasons On Uranus The Outer Worlds 1781: Discovered (accidentally!) by William Herschel using a 6 inch telescope [he thought it was a comet!] 2 Draft 12/03/2006 Updated May 05, 2011 1846: Discovered Le Verrier: proposed

More information

Physics Homework 4 Fall 2015

Physics Homework 4 Fall 2015 1) How were the rings of Uranus discovered? 1) A) by Percival Lowell, who observed two "bumps" on either side of Uranus B) photometric observations of the occultation of a star made from Earth C) by Voyager

More information

Uranus and Neptune. Uranus and Neptune Properties. Discovery of Uranus

Uranus and Neptune. Uranus and Neptune Properties. Discovery of Uranus Uranus and Neptune Uranus and Neptune are much smaller than Jupiter and Saturn, but still giants compared to Earth Both are worlds we know relatively little about Voyager 2 is the only spacecraft to visit

More information

Astronomy Ch. 11 Jupiter. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Astronomy Ch. 11 Jupiter. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Name: Period: Date: Astronomy Ch. 11 Jupiter MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Jupiter is noticeably oblate because: A) it has a

More information

Chapter 8 Jovian Planet Systems

Chapter 8 Jovian Planet Systems Chapter 8 Jovian Planet Systems How do jovian planets differ from terrestrials? They are much larger than terrestrial planets They do not have solid surfaces The things they are made of are quite different

More information

Which of the following statements best describes the general pattern of composition among the four jovian

Which of the following statements best describes the general pattern of composition among the four jovian Part A Which of the following statements best describes the general pattern of composition among the four jovian planets? Hint A.1 Major categories of ingredients in planetary composition The following

More information

Astronomy 1140 Quiz 4 Review

Astronomy 1140 Quiz 4 Review Astronomy 1140 Quiz 4 Review Anil Pradhan November 16, 2017 I Jupiter 1. How do Jupiter s mass, size, day and year compare to Earth s? Mass: 318 Earth masses (or about 1/1000th the mass of the Sun). Radius:

More information

Charting the Solar System

Charting the Solar System Diameter (km) Surface Temperature Interior Temperature Charting the Solar System (Source: http://solarsystem.nasa.gov; http://solarviews.com) Rotation (length of day ) The Sun 1,391,940 11,000 o F 28,000,000

More information

Jupiter and Saturn s Satellites of Fire and Ice. Chapter Fifteen. Guiding Questions

Jupiter and Saturn s Satellites of Fire and Ice. Chapter Fifteen. Guiding Questions Jupiter and Saturn s Satellites of Fire and Ice Chapter Fifteen Guiding Questions 1. What is special about the orbits of Jupiter s Galilean satellites? 2. Are all the Galilean satellites made of rocky

More information

Exam# 2 Review. Exam #2 is Wednesday November 8th at 10:40 AM in room FLG-280

Exam# 2 Review. Exam #2 is Wednesday November 8th at 10:40 AM in room FLG-280 Exam# 2 Review Exam #2 is Wednesday November 8th at 10:40 AM in room FLG-280 Bring Gator 1 ID card Bring pencil #2 with eraser No use of calculator or any electronic device during the exam We provide the

More information

Unit 8. The Outer Planets

Unit 8. The Outer Planets Unit 8 The Outer Planets The Outer Worlds Beyond the orbit of Mars, the low temperatures of the solar nebula allowed condensing bodies there to capture hydrogen and hydrogen-rich gases This, together with

More information

11/11/08 Announce: Chapter 9. Jupiter. The Outer Worlds. Jupiter s Interior. Jupiter 11/11/2008. The Outer Planets

11/11/08 Announce: Chapter 9. Jupiter. The Outer Worlds. Jupiter s Interior. Jupiter 11/11/2008. The Outer Planets 11/11/08 Announce: Can take AST 302 for Advanced Honors credit Will be late for office hours tomorrow Thursday: Meet in Library 229 computer lab Project Part II Due Thursday Email in plain text (no Microsoft

More information

Mars: The Red Planet. Roman God of war Blood Reflects 30% of its incident sunlight 2 small moons : Phobos and Deimos

Mars: The Red Planet. Roman God of war Blood Reflects 30% of its incident sunlight 2 small moons : Phobos and Deimos Mars: The Red Planet Roman God of war Blood Reflects 30% of its incident sunlight 2 small moons : Phobos and Deimos Property Earth Mars Radius 6378km 3394km ~ 0.51R E Mass 5.97x10 24 kg 6.42x10 23 kg =

More information

Astronomy. physics.wm.edu/~hancock/171/ A. Dayle Hancock. Small 239. Office hours: MTWR 10-11am. Page 1

Astronomy.  physics.wm.edu/~hancock/171/ A. Dayle Hancock. Small 239. Office hours: MTWR 10-11am. Page 1 Astronomy A. Dayle Hancock adhancock@wm.edu Small 239 Office hours: MTWR 10-11am Planetology I Terrestrial and Jovian planets Similarities/differences between planetary satellites Surface and atmosphere

More information

Did you know that ALL Jovian Planets have rings??

Did you know that ALL Jovian Planets have rings?? Outer Planets Did you know that ALL Jovian Planets have rings?? Jupiter: faint, dusty rings Saturn: bright, spectacular rings Uranus: dark, thin rings Neptune: dark, thin rings & ring arcs PLANET DATA

More information

The Outer Planets (pages )

The Outer Planets (pages ) The Outer Planets (pages 720 727) Gas Giants and Pluto (page 721) Key Concept: The first four outer planets Jupiter, Saturn, Uranus, and Neptune are much larger and more massive than Earth, and they do

More information

Planets. Chapter 5 5-1

Planets. Chapter 5 5-1 Planets Chapter 5 5-1 The Solar System Terrestrial Planets: Earth-Like Jovian Planets: Gaseous Sun Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Pluto Inferior Planets Superior Planets Inferior

More information

Object Type Moons Rings Planet Terrestrial none none. Max Distance from Sun. Min Distance from Sun. Avg. Distance from Sun 57,910,000 km 0.

Object Type Moons Rings Planet Terrestrial none none. Max Distance from Sun. Min Distance from Sun. Avg. Distance from Sun 57,910,000 km 0. Mercury Mercury is the closest planet to the sun. It is extremely hot on the side of the planet facing the sun and very cold on the other. There is no water on the surface. There is practically no atmosphere.

More information

Jupiter: Giant of the Solar System

Jupiter: Giant of the Solar System Jupiter: Giant of the Solar System Jupiter s Red spot : A huge storm that has raged for over 300 years that is ~2x size of the Earth. Gas Giant is really a Liquid Giant! Pictures over ~7 years from Hubble

More information

Astronomy. Uranus Neptune & Remote Worlds

Astronomy. Uranus Neptune & Remote Worlds Astronomy A. Dayle Hancock adhancock@wm.edu Small 239 Office hours: MTWR 10-11am Uranus Neptune & Remote Worlds Uranus and Neptune Orbits and Atmospheres Internal Structure Magnetic Fields Rings Uranus's

More information

Chapter 8 Jovian Planet Systems

Chapter 8 Jovian Planet Systems Chapter 8 Jovian Planet Systems How do jovian planets differ from terrestrials? They are much larger than terrestrial planets They do not have solid surfaces The things they are made of are quite different

More information

Jupiter and Saturn s Satellites of Fire and Ice. Chapter Fifteen

Jupiter and Saturn s Satellites of Fire and Ice. Chapter Fifteen Jupiter and Saturn s Satellites of Fire and Ice Chapter Fifteen ASTR 111 003 Fall 2006 Lecture 12 Nov. 20, 2006 Introduction To Modern Astronomy I Introducing Astronomy (chap. 1-6) Planets and Moons (chap.

More information

SOLAR SYSTEM B Division

SOLAR SYSTEM B Division SOLAR SYSTEM B Division Team Name: Team #: Student Names: IMAGE SHEET A E B C D F G H Spectrum I Spectrum II SS2014 Spectrum III Spectrum IV Spectrum V Spectrum VI 1. A. What satellite is pictured in Image

More information

The Jovian Planets. Why do we expect planets like this in the outer reaches of the solar system?(lc)

The Jovian Planets. Why do we expect planets like this in the outer reaches of the solar system?(lc) The Jovian Planets Beyond Mars and the Asteroid belt are the Jovian or Gas Giant Planets that are totally different than the terrestrial planets: They are composed almost entirely of gas They do not have

More information

Chapter 7 Our Planetary System

Chapter 7 Our Planetary System Chapter 7 Our Planetary System What does the solar system look like? Earth, as viewed by the Voyager spacecraft Eight major planets with nearly circular orbits Pluto is smaller than the major planets and

More information

Physics Homework Set 3 Fall 2015

Physics Homework Set 3 Fall 2015 1) Mercury presents the same side to the Sun 1) A) every third orbit. B) every 12 hours. C) all the time, just like our Moon. D) every other orbit. E) Twice every orbit. 2) Both the Moon and Mercury are

More information

Inner and Outer Planets

Inner and Outer Planets Inner and Outer Planets Inner Planets Terrestrial planets are those that are closest to the Sun. Terrestrial planets are made mostly of rock and have similar characteristics to Earth. There are four terrestrial

More information

Classification atmosphere, composition, distance, rotation, revolution? Phases vs. Epicycles (position with respect to sun)

Classification atmosphere, composition, distance, rotation, revolution? Phases vs. Epicycles (position with respect to sun) Feb. 16 th Feb. 23 rd Classification atmosphere, composition, distance, rotation, revolution? Phases vs. Epicycles (position with respect to sun) Terrestrial 1. Mercury (moon like) Rotation 58.65 days

More information

Inner and Outer Planets

Inner and Outer Planets Inner and Outer Planets SPI 0607.6.2 Explain how the relative distance of objects from the earth affects how they appear. Inner Planets Terrestrial planets are those that are closest to the Sun. Terrestrial

More information

Lecture 23: Jupiter. Solar System. Jupiter s Orbit. The semi-major axis of Jupiter s orbit is a = 5.2 AU

Lecture 23: Jupiter. Solar System. Jupiter s Orbit. The semi-major axis of Jupiter s orbit is a = 5.2 AU Lecture 23: Jupiter Solar System Jupiter s Orbit The semi-major axis of Jupiter s orbit is a = 5.2 AU Jupiter Sun a Kepler s third law relates the semi-major axis to the orbital period 1 Jupiter s Orbit

More information

The Jovian Planets (Gas Giants)

The Jovian Planets (Gas Giants) The Jovian Planets (Gas Giants) Discoveries and known to ancient astronomers. discovered in 1781 by Sir William Herschel (England). discovered in 1845 by Johann Galle (Germany). Predicted to exist by John

More information

Astronomy 1140 Quiz 3 Review

Astronomy 1140 Quiz 3 Review Astronomy 1140 Quiz 3 Review Anil Pradhan October 26, 2016 I The Inner Planets 1. What are the terrestrial planets? What do they have in common? Terrestrial planets: Mercury, Venus, Earth, Mars. Theses

More information

Satellites of giant planets. Satellites and rings of giant planets. Satellites of giant planets

Satellites of giant planets. Satellites and rings of giant planets. Satellites of giant planets Satellites of giant planets Satellites and rings of giant planets Regular and irregular satellites Regular satellites: The orbits around the planet have low eccentricity and are approximately coplanar

More information

LEARNING ABOUT THE OUTER PLANETS. NASA's Cassini spacecraft. Io Above Jupiter s Clouds on New Year's Day, Credit: NASA/JPL/University of Arizona

LEARNING ABOUT THE OUTER PLANETS. NASA's Cassini spacecraft. Io Above Jupiter s Clouds on New Year's Day, Credit: NASA/JPL/University of Arizona LEARNING ABOUT THE OUTER PLANETS Can see basic features through Earth-based telescopes. Hubble Space Telescope especially useful because of sharp imaging. Distances from Kepler s 3 rd law, diameters from

More information

Saturn. AST 101 chapter 12. Spectacular Rings and Mysterious Moons Orbital and Physical Properties Orbital and Physical Properties

Saturn. AST 101 chapter 12. Spectacular Rings and Mysterious Moons Orbital and Physical Properties Orbital and Physical Properties Saturn Spectacular Rings and Mysterious Moons 12.1 Orbital and Physical Properties This figure shows the solar system from a vantage point that emphasizes the relationship of the jovian planets to the

More information

ASTR 380 Possibilities for Life in the Outer Solar System

ASTR 380 Possibilities for Life in the Outer Solar System ASTR 380 Possibilities for Life in the Outer Solar System Possibility of Life in the Inner Solar System The Moon, Mercury, and the Moons of Mars Deimos NO LIFE NOW or EVER This is a 98% conclusion! Phobos

More information

Chapter 8 Jovian Planet Systems

Chapter 8 Jovian Planet Systems Chapter 8 Jovian Planet Systems 8.1 A Different Kind of Planet Goals for learning: How are jovian planets different from terrestrials? What are jovian planets made of? What are jovian planets like on the

More information

Lecture: Planetology. Part II: Solar System Planetology. Orbits of Planets. Rotational Oddities. A. Structure of Solar System. B.

Lecture: Planetology. Part II: Solar System Planetology. Orbits of Planets. Rotational Oddities. A. Structure of Solar System. B. Part II: Solar System Planetology 2 A. Structure of Solar System B. Planetology Lecture: Planetology C. The Planets and Moons Updated: 2012Feb10 A. Components of Solar System 3 Orbits of Planets 4 1. Planets

More information

The Jovian Planets. The Jovian planets: Jupiter, Saturn, Uranus and Neptune

The Jovian Planets. The Jovian planets: Jupiter, Saturn, Uranus and Neptune The Jovian planets: Jupiter, Saturn, Uranus and Neptune Their masses are large compared with terrestrial planets, from 15 to 320 times the Earth s mass They are gaseous Low density All of them have rings

More information

3. Titan is a moon that orbits A) Jupiter B) Mars C) Saturn D) Neptune E) Uranus

3. Titan is a moon that orbits A) Jupiter B) Mars C) Saturn D) Neptune E) Uranus Fall 2013 Astronomy - Test 2 Test form A Name Do not forget to write your name and fill in the bubbles with your student number, and fill in test form A on the answer sheet. Write your name above as well.

More information

A Survey of the Planets Earth Mercury Moon Venus

A Survey of the Planets Earth Mercury Moon Venus A Survey of the Planets [Slides] Mercury Difficult to observe - never more than 28 degree angle from the Sun. Mariner 10 flyby (1974) Found cratered terrain. Messenger Orbiter (Launch 2004; Orbit 2009)

More information

Ag Earth Science Chapter 23

Ag Earth Science Chapter 23 Ag Earth Science Chapter 23 Chapter 23.1 Vocabulary Any of the Earth- like planets, including Mercury, Venus, and Earth terrestrial planet Jovian planet The Jupiter- like planets: Jupiter, Saturn, Uranus,

More information

The Moons of the Solar System

The Moons of the Solar System The Moons of the Solar System By Jordan Smith, Kaitlin McAfee, Erinn Capko, and Ashley Dominguez Survey of the Universe, EMPACTS Project, Spring 2017 Kelly Howe, Instructo4r, Northwest Arkansas Community

More information

Chapter 11 The Jovian Planets

Chapter 11 The Jovian Planets Chapter 11 The Jovian Planets The Jovian planets: Jupiter, Saturn, Uranus and Neptune Using Venus transit it was possible to get a good value of the AU (1639). Knowing the AU, it is possible to calculate

More information

Lecture 25: The Outer Planets

Lecture 25: The Outer Planets Lecture 25: The Outer Planets Neptune Uranus Pluto/Charon Uranus and three moons Neptune and two moons 1 The Outer Planets Uranus Discovered by William Herschel in 1781, who realized that this extended

More information

Spacecraft to the Outer Solar System

Spacecraft to the Outer Solar System Spacecraft to the Outer Solar System Flybys: Pioneer 10, 11 Voyager 1, 2 Orbiters/ : Galileo, Cassini Landers (Jupiter) (Saturn) Voyager 2 is the only spacecraft to visit all four outer planets. Gas Giant

More information

10/6/16. Observing the Universe with Gravitational Waves

10/6/16. Observing the Universe with Gravitational Waves Lecture Outline Observing the Universe with Gravitational Waves Thursday, October 13 7:00 PM Bell Museum Auditorium This event is free and open to the public, and will be followed by telescope observing.

More information

The Gas Giants Astronomy Lesson 13

The Gas Giants Astronomy Lesson 13 The Gas Giants Astronomy Lesson 13 The four outer planets: Jupiter, Saturn, Uranus, and Neptune, are much larger and more massive than Earth, and they do not have solid surfaces. Because these planets

More information

ASTR 1050: Survey of Astronomy Fall 2012 PRACTICE Exam #2 Instructor: Michael Brotherton Covers Solar System and Exoplanet Topics

ASTR 1050: Survey of Astronomy Fall 2012 PRACTICE Exam #2 Instructor: Michael Brotherton Covers Solar System and Exoplanet Topics ASTR 1050: Survey of Astronomy Fall 2012 PRACTICE Exam #2 Instructor: Michael Brotherton Covers Solar System and Exoplanet Topics Instructions This exam is closed book and closed notes, although you may

More information

After you read this section, you should be able to answer these questions:

After you read this section, you should be able to answer these questions: CHAPTER 16 4 Moons SECTION Our Solar System California Science Standards 8.2.g, 8.4.d, 8.4.e BEFORE YOU READ After you read this section, you should be able to answer these questions: How did Earth s moon

More information

Chapter 11 Review Clickers. The Cosmic Perspective Seventh Edition. Jovian Planet Systems Pearson Education, Inc.

Chapter 11 Review Clickers. The Cosmic Perspective Seventh Edition. Jovian Planet Systems Pearson Education, Inc. Review Clickers The Cosmic Perspective Seventh Edition Jovian Planet Systems If Jupiter was the size of a basketball, Earth would be the size of a(n) a) bacterium. b) grain of rice. c) marble. d) orange.

More information

- newmanlib.ibri.org - The Solar System. Robert C. Newman. Abstracts of Powerpoint Talks

- newmanlib.ibri.org - The Solar System. Robert C. Newman. Abstracts of Powerpoint Talks The Solar System Robert C. Newman The Solar System This is the name we give to the sun (Latin, sol) and its planets, plus the other objects that are gravitationally bound to the sun. In this talk, we will

More information

PHYS101 Sec 001 Hour Exam No. 2 Page: 1

PHYS101 Sec 001 Hour Exam No. 2 Page: 1 PHYS101 Sec 001 Hour Exam No. 2 Page: 1 1 The angle between the rotation axis of a planet and the perpendicular to the plane of its orbit is called its axial tilt. Which of these planets has an axial tilt

More information

Chapter 23 Earth Science 11

Chapter 23 Earth Science 11 Chapter 23 Earth Science 11 Inner planets: Closest planets to the sun A.k.a. terrestrial planets All have a rocky crust, dense mantle layer, and a very dense core Mercury, Venus, Earth, and Mars Outer

More information