Planet disk interaction

Size: px
Start display at page:

Download "Planet disk interaction"

Transcription

1 Planet disk interaction Wilhelm Kley Institut für Astronomie & Astrophysik & Kepler Center for Astro and Particle Physics Tübingen March 2015

2 4. Planet-Disk: Organisation Lecture overview: 4.1 Introduction 4.2 Type I 4.3 Type II 4.4 Type III 4.5 Stochastic 4.6 Elements W. Kley Planet Formation, Planet-disk interaction, 45th Saas-Fee Lectures,

3 4.1 Introduction: Planet Formation Problems Not possible to form hot Jupiters in situ - disk too hot for material to condense - not enough material Difficult to form massive planets - gap formation Eccentric and inclined orbits - planets form in flat disks (on circular orbits) But planets grow and evolve in disks: Have a closer look at planet-disk interaction Consider Late Phase of Planet Formation: Assume protoplanets (embryos) have already been formed Investigate subsequent evolution in disk, consider gravitational interaction with star and disk W. Kley Planet Formation, Planet-disk interaction, 45th Saas-Fee Lectures,

4 4.1 Introduction: Two main contributions 1) Spiral arms 2) Horseshoe region (Lindblad Torques) (Corotation Torques) (Kley & Nelson, ARAA, 50, 2012) W. Kley Planet Formation, Planet-disk interaction, 45th Saas-Fee Lectures,

5 4.1 Introduction: Evidence for migration many multi-planet extrasolar planetary systems high fraction in or close to a low-order mean-motion resonance (MMR) In Solar System: 3:2 between Neptune and Pluto (plutinos) Resonant capture through convergent migration process dissipative forces due to disk-planet interaction Existence of resonant systems - Clear evidence for planetary migration Hot Jupiters (Neptunes) & Kepler systems - Clear evidence for planetary migration The main Problem: (for Type-I and Type-II) Migration Speed W. Kley Planet Formation, Planet-disk interaction, 45th Saas-Fee Lectures,

6 4.1 Introduction: Torque calculation 2 approaches: a) Linearization: for low mass planets only basic state: axisymmetric disk, in Keplerian rotation, and given Σ(r) add planet potential as a small disturbance of planet linearize equations calculate new (perturbed) disk structure calculate torque acting on planet b) Non-linear: for all planet masses full non-linear hydrodynamical evolution of embedded planets in disks Will not go into details of these methods but just quote the main results W. Kley Planet Formation, Planet-disk interaction, 45th Saas-Fee Lectures,

7 4.1 Introduction: Torques and migration Angular momentum of planet (z-direction) J p = (mru ϕ ) p = m p rp 2 Ω p (1) change in time by torques (z-component) acting on the planet J p = Γ p (2) Γ p is calculated over the whole disk Γ p = Σ( r p F) df = Σ( r p ψ p ) df = disk disk disk Σ ψ p df (3) ϕ Migration Timescale τ M 1 dr P r P dt = 1 τ M = 2 Γ p J P (4) Compare τ m to evolution of disk W. Kley Planet Formation, Planet-disk interaction, 45th Saas-Fee Lectures,

8 4. Planet-Disk: Organisation Lecture overview: 4.1 Introduction 4.2 Type I 4.3 Type II 4.4 Type III 4.5 Stochastic 4.6 Elements W. Kley Planet Formation, Planet-disk interaction, 45th Saas-Fee Lectures,

9 4.2 Type I: Lindblad torque: radial torque density Γ tot = 2π dγ (r) Σ(r) rdr dm isothermal adiabatic: γ = 1.40 adiabatic: γ = dγ/dm / (dγ/dm) (r-a p )/H W. Kley Planet Formation, Planet-disk interaction, 45th Saas-Fee Lectures,

10 4.2 Type I: The linear Torque Results for a locally isothermal disk. Fixed T (r)). Torque on the planet: (for lower mass planets, a few M ) 3D analytical (Tanaka et al. 2002) and numerical (D Angelo & Lubow, 2010) where and normalisation Γ tot = ( β Σ β T ) Γ 0. (5) Σ(r) = Σ 0 r β Σ and T (r) = T 0 r β T (6) Γ 0 = Classic Type I migration: ( mp M ) 2 ( H r p ) 2 ( Σp r 2 p ) r 2 p Ω 2 p, (7) Migration Jp = Γ tot ȧp a p = 2 Γ tot J p (8) Inward and fast Too fast to be in agreement with observations (see lecture 5) W. Kley Planet Formation, Planet-disk interaction, 45th Saas-Fee Lectures,

11 4.2 Type I: Torque Saturation 2D hydro-simulations: - small mass - inviscid Result: Torques are positive initially and then diminish with time and settle to the Lindblad torques (from spirals) That means: Corotation torques decline = saturate How to maintain the full corotation torques? Total torque vs. time - isothermal - adiabatic W. Kley Planet Formation, Planet-disk interaction, 45th Saas-Fee Lectures,

12 4.2 Type I: Torque Saturation How to prevent corotation-torque saturation? From linear analysis: Corotation torque depends on the radial gradients of the entropy, S, and vortensity ω where the vortensity is defined as: ω = ω z Σ = ( u) z Σ (9) Now: For inviscid and barotropic (p = p(ρ)) flows: d dt ( ωz ) = 0 and Σ ds dt These quantities are constant along streamlines. = 0 (10) Initial gradients (in S and ω) are wiped out in the corotation region = Need mechanism to maintain gradients These are viscosity and radiative diffusion (or cooling) W. Kley Planet Formation, Planet-disk interaction, 45th Saas-Fee Lectures,

13 4.2 Type I: Saturation - Origin (F. Masset) Red and Blue Orbits have different periods Phase mixing (Balmforth & Korycanski) 3D radiative disk (B. Bitsch) W. Kley Planet Formation, Planet-disk interaction, 45th Saas-Fee Lectures,

14 4.2 Type I: Disk physics dσc v T dt + (Σc v T u) = p u +D Q 2H F Adiabatic: Pressure Work, Viscous heating (D), radiative cooling (Q) radiative Diffusion: in disk plane (realistic opacities) Specific Torque [(a 2 Ω 2 ) Jup ] 4e-05 3e-05 2e-05 1e e-05-2e-05-3e-05-4e Time [Orbits] local cool/heat fully radiative adiabatic isothermal M p = 20M earth (Kley&Crida 08) Disk Physics determines Direction of motion see also: ( Paardekooper&Mellema 06 Baruteau&Masset 08 Paardekooper&Papaloizou 08) W. Kley Planet Formation, Planet-disk interaction, 45th Saas-Fee Lectures,

15 4.2 Type I: Role of viscosity Total torque vs. viscosity: in viscous α-disk 2D radiative model - in equilibrium Efficiency depends of ratio of timescales τ visc /τ librat τ rad /τ librat Local disk properties matter Need viscosity to prevent saturation! (Kley & Nelson 2012) W. Kley Planet Formation, Planet-disk interaction, 45th Saas-Fee Lectures,

16 4.2 Type I: Mass dependence Isothermal and radiative models. Outward migration for M p 40 M Earth Vary M p (Kley & Crida 2008) In full 3D (Kley ea 2009) With irradition: (Bitsch ea. 2012) W. Kley Planet Formation, Planet-disk interaction, 45th Saas-Fee Lectures,

17 4. Planet-Disk: Organisation Lecture overview: 4.1 Introduction 4.2 Type I 4.3 Type II 4.4 Type III 4.5 Stochastic 4.6 Elements W. Kley Planet Formation, Planet-disk interaction, 45th Saas-Fee Lectures,

18 4.3 Type II: Gap formation: Type I Type II M p = 0.01 M Jup M p = 0.03 M Jup M p = 0.1 M Jup M p = 0.3 M Jup M p = 1.0 M Jup Depth depends on: - M p - Viscosity - Temperature Torques reduced : Migration slows Type I Type II linear non-linear W. Kley Planet Formation, Planet-disk interaction, 45th Saas-Fee Lectures,

19 4.3 Type II: Gap opening criteria Thermal condition Hill sphere R H = r p (q/3) 1/3 comparable/larger than disk scale height H with q = m p /M q 3 with a disk aspect ratio h = 0.05: ( ) 3 H = 3hp 3 (11) r p q , or m p 0.13m Jup Viscous condition Viscosity tends to close gap against gap opening torques. From impulse approximation (Lecture 3) we find q 30παh 2 (12) with h = 0.05 and α = 10 2 : q , or m p 2.5m Jup W. Kley Planet Formation, Planet-disk interaction, 45th Saas-Fee Lectures,

20 4.3 Type II: A combined gap opening criterion Using 2D hydrodynamical viscous disk simulations, (Crida ea. 2006) find gap opening (minimum density within gap smaller 1/10 ambient density) for with the Reynoldsnumber Re = Ω p r 2 p /ν. P = 3 H R H qre 1 (13) In type II regime the planet remains in the middle of the gap which moves with the disk. The disk evolves on a viscous timescale and the planet will move with the same timescale τ mig,ii = τ visc = r p 2 ν = r p 2 αc s H = 1 αh 2 (14) Ω p Question: How well is this assumption really satisfied? W. Kley Planet Formation, Planet-disk interaction, 45th Saas-Fee Lectures,

21 4.3 Type II: New simulations 2D hydro simulations, with net mass flow through the disk. Planet migrates in disk. Different colours different Ṁ disk. Black dot: planet at r = 0.7r 0. Compare migration rate to the viscous speed. Can be smaller/larger than viscous speed. Σ S : reference density for Ṁ = 10 7 M /yr S 0.05 S S 0.20 S a P u r visc S 2.00 S 1.00 S (Dürmann & Kley, 2015) P P J W. Kley Planet Formation, Planet-disk interaction, 45th Saas-Fee Lectures,

22 4.3 Type II: The migration process Result implies that during the migration process material can cross the gap and is transferred from one side to the other W. Kley Planet Formation, Planet-disk interaction, 45th Saas-Fee Lectures,

23 4.3 Type II: Evidence gap formation Moon (S/2005 S1) in Keeler Gap, Cassini (1. May 2005) Gap width 40 km, Moon-diameter 7 km) Here: very clean gap, no pressure, no viscosity W. Kley Planet Formation, Planet-disk interaction, 45th Saas-Fee Lectures,

24 4.4 Type III: Type-III migration principle Stationary Planet Migrating Planet (F. Masset, 2002) Inner material crosses horseshoe region: gains ang.mom. Planet looses ang.mom. Runaway Need massive disk and large radii (Masset & Papaloizou, 2003; P. Artymowicz) Here inward, but outward same argument. W. Kley Planet Formation, Planet-disk interaction, 45th Saas-Fee Lectures,

25 4.4 Type III: Regime (Masset & Papaloizou, 2003) Need massive disk and large radii. W. Kley Planet Formation, Planet-disk interaction, 45th Saas-Fee Lectures,

26 4. Planet-Disk: Organisation Lecture overview: 4.1 Introduction 4.2 Type I 4.3 Type II 4.4 Type III 4.5 Stochastic 4.6 Elements W. Kley Planet Formation, Planet-disk interaction, 45th Saas-Fee Lectures,

27 4.5 Stochastic: Turbulent disks self-gravitating disk MRI turbulent disk (M. Flock) (G. Lodato) W. Kley Planet Formation, Planet-disk interaction, 45th Saas-Fee Lectures,

28 4.5 Stochastic: Planets in turbulent disks Disks are MHD turbulent and embedded planets will feel random (stochastic) perturbations due to the density fluctuations. Analyze impact on migration planet with m p = 10M earth in unstratified turbulent disk with H/r = 0.05 and toroidal B-field plasma-β = p gas /p mag = 50 with effective α = 0.01 (R. Nelson) W. Kley Planet Formation, Planet-disk interaction, 45th Saas-Fee Lectures,

29 4.5 Stochastic: Planets in turbulent disks evolution of semi-major axis smooth lines show migration in equivalent laminar disks On very long time scales similar to laminar cases (R. Nelson) W. Kley Planet Formation, Planet-disk interaction, 45th Saas-Fee Lectures,

30 4. Planet-Disk: Organisation Lecture overview: 4.1 Introduction 4.2 Type I 4.3 Type II 4.4 Type III 4.5 Stochastic 4.6 Elements (ESO April 2010: Turning Planetary Theory Upside Down) W. Kley Planet Formation, Planet-disk interaction, 45th Saas-Fee Lectures,

31 4.6 Elements: Planets on eccentric Orbits Torque on planet due to disk T disk = ( r F) df z disk Power: Energy loss of planet P disk = r p F df disk e 0 = 0.00 e 0 = 0.02 e 0 = 0.05 e 0 = 0.10 e 0 = 0.15 e 0 = 0.20 e 0 = Torque Time [Orbits] L p = m p GM a 1 e 2 L p = 1 ȧ L p 2 a e2 ė 1 e 2 e = T disk L p E p = 1 2 Ė p E p = GM m p a ȧ a = P disk E p W. Kley Planet Formation, Planet-disk interaction, 45th Saas-Fee Lectures,

32 4.6 Elements: Eccentric planets in 3D radiative disks eccentricity Planet mass M p = 20M Earth - Vary Eccentricity Time [Orbits] (Bitsch & Kley 2010) e 0 =0.0 e 0 =0.05 e 0 =0.10 e 0 =0.15 e 0 =0.20 e 0 =0.25 e 0 =0.30 e 0 =0.35 e 0 =0.40 e-damping for all planet masses. Vary Planet Mass M Earth - Fixed e 0 = 0.40 Small e: exponential damping, large e: ė e 2 Damping timescale: eccentricity time [Orbits] (H/r) 2 shorter than migration time 20 M Earth 30 M Earth 50 M Earth 80 M Earth 100 M Earth 200 M Earth W. Kley Planet Formation, Planet-disk interaction, 45th Saas-Fee Lectures,

33 4.6 Elements: Inlined planets in 3D radiative disks Fix planet mass M p = 20M Earth - Vary initial Inclination Vary Planet Mass M Earth - Same i 0 = 4deg i (degrees) i(t) for a 20 Earth-mass planet i 0 = 2 o i 0 = 5 o i 0 = 10 o i 2 di/dt = C t (orbits) (Cresswell ea 2007; Bitsch&Kley 2011) i-damping for all planet masses. Small i: exponential damping, large i: i i 2 Damping timescale: Inclination Time [Orbits] (H/r) 2 shorter than migration time 20 M Earth 25 M Earth 30 M Earth 35 M Earth 40 M Earth 50 M Earth 80 M Earth 100 M Earth Planets are confined to the disk midplane and are on circular orbits W. Kley Planet Formation, Planet-disk interaction, 45th Saas-Fee Lectures,

Planet formation and (orbital) Evolution

Planet formation and (orbital) Evolution W. Kley Planet formation and (orbital) Evolution Wilhelm Kley Institut für Astronomie & Astrophysik & Kepler Center for Astro and Particle Physics Tübingen 31. July, 2013 W. Kley Plato 2.0, ESTEC: 31.

More information

Disc-Planet Interactions during Planet Formation

Disc-Planet Interactions during Planet Formation Disc-Planet Interactions during Planet Formation Richard Nelson Queen Mary, University of London Collaborators: Paul Cresswell (QMUL), Martin Ilgner (QMUL), Sebastien Fromang (DAMTP), John Papaloizou (DAMTP),

More information

Global models of planetary system formation. Richard Nelson Queen Mary, University of London

Global models of planetary system formation. Richard Nelson Queen Mary, University of London Global models of planetary system formation Richard Nelson Queen Mary, University of London Hot Jupiters Cold Jupiters Super-Earths/ Neptunes 2 Sumi et al (2016) Occurence rates 30-50% of FGK stars host

More information

F. Marzari, Dept. Physics, Padova Univ. Planetary migration

F. Marzari, Dept. Physics, Padova Univ. Planetary migration F. Marzari, Dept. Physics, Padova Univ. Planetary migration Standard model of planet formation based on Solar system exploration Small semimajor axes Large eccentricities The standard model Protostar +Disk

More information

PLANETARY MIGRATION. Review presented at the Protostars & Planets VI conference in Heidelberg, september 2013 (updated).

PLANETARY MIGRATION. Review presented at the Protostars & Planets VI conference in Heidelberg, september 2013 (updated). PLANETARY MIGRATION Review presented at the Protostars & Planets VI conference in Heidelberg, september 2013 (updated). Reference : Baruteau et al. (2014) (arxiv:1312.4293) see also : https://www.youtube.com/watch?v=_hmw4lh7ioo

More information

PLANETARY MIGRATION A. CRIDA

PLANETARY MIGRATION A. CRIDA PLANETARY MIGRATION A. CRIDA (the migration of Jupiter carrying its satellites. Alegory.) 1 INTRODUCTION A planet orbiting in a protoplanetary disk launches a one-armed, spiral wake. p star planet Orange

More information

Evolution of protoplanetary discs

Evolution of protoplanetary discs Evolution of protoplanetary discs and why it is important for planet formation Bertram Bitsch Lund Observatory April 2015 Bertram Bitsch (Lund) Evolution of protoplanetary discs April 2015 1 / 41 Observations

More information

PLANETARY MIGRATION A. CRIDA

PLANETARY MIGRATION A. CRIDA PLANETARY MIGRATION A. CRIDA (the migration of Jupiter carrying its satellites. Alegory.) 1 INTRODUCTION A planet orbiting in a protoplanetary disk launches a one-armed, spiral wake. Ωp star planet Orange

More information

Orbital migration. Lecture 14. Lecture Universität Heidelberg WS 11/12 Dr. C. Mordasini & PD Dr. H. Klahr. Based partially on script of Prof. W.

Orbital migration. Lecture 14. Lecture Universität Heidelberg WS 11/12 Dr. C. Mordasini & PD Dr. H. Klahr. Based partially on script of Prof. W. Lecture 14 Orbital migration Klahr & Kley Lecture Universität Heidelberg WS 11/12 Dr. C. Mordasini & PD Dr. H. Klahr Based partially on script of Prof. W. Benz Mentor Prof. T. Henning Lecture 14 overview

More information

arxiv: v1 [astro-ph] 14 Feb 2008

arxiv: v1 [astro-ph] 14 Feb 2008 Astronomy & Astrophysics manuscript no. paper c ESO 2008 February 14, 2008 arxiv:0802.2033v1 [astro-ph] 14 Feb 2008 Constraints on resonant trapping for two planets embedded in a protoplanetary disc A.

More information

Migration. Phil Armitage (University of Colorado) 4Migration regimes 4Time scale for massive planet formation 4Observational signatures

Migration. Phil Armitage (University of Colorado) 4Migration regimes 4Time scale for massive planet formation 4Observational signatures Phil Armitage (University of Colorado) Migration 4Migration regimes 4Time scale for massive planet formation 4Observational signatures Ken Rice (UC Riverside) Dimitri Veras (Colorado) + Mario Livio, Steve

More information

Numerical simulations of disc-planet interactions

Numerical simulations of disc-planet interactions Earth, Moon and Planets manuscript No. (will be inserted by the editor) Numerical simulations of disc-planet interactions Richard P. Nelson Sijme-Jan Paardekooper arxiv:96.4347v1 [astro-ph.ep] 23 Jun 29

More information

PLANET-DISC INTERACTIONS and EARLY EVOLUTION of PLANETARY SYSTEMS

PLANET-DISC INTERACTIONS and EARLY EVOLUTION of PLANETARY SYSTEMS PLANET-DISC INTERACTIONS and EARLY EVOLUTION of PLANETARY SYSTEMS C. Baruteau, A. Crida, B. Bitsch, J. Guilet, W. Kley, F. Masset, R. Nelson, S-J. Paardekooper, J. Papaloizou INTRODUCTION Planets form

More information

Planetary system dynamics. Planetary migration Kozai resonance Apsidal resonance and secular theories Mean motion resonances Gravitational scattering

Planetary system dynamics. Planetary migration Kozai resonance Apsidal resonance and secular theories Mean motion resonances Gravitational scattering Planetary system dynamics Planetary migration Kozai resonance Apsidal resonance and secular theories Mean motion resonances Gravitational scattering How should the planets of a typical planetary system

More information

3D-radiation hydro simulations of disk-planet interactions. I. Numerical algorithm and test cases ABSTRACT

3D-radiation hydro simulations of disk-planet interactions. I. Numerical algorithm and test cases ABSTRACT A&A 445, 747 758 (2006) DOI: 10.1051/0004-6361:20053238 c ESO 2005 Astronomy & Astrophysics 3D-radiation hydro simulations of disk-planet interactions I. Numerical algorithm and test cases H. Klahr 1,2

More information

Dynamical Evolution of Planets in Disks

Dynamical Evolution of Planets in Disks Dynamical Evolution of Planets in Disks Planets in resonant Orbits W. Kley (wilhelm.kley@uni-tuebingen.de) Astronomie und Astrophysik, Abt. Computational Physics, Universität Tübingen, D-72076 Tübingen,

More information

Disk-Planet Interactions During Planet Formation

Disk-Planet Interactions During Planet Formation Disk-Planet Interactions During Planet Formation J. C. B. Papaloizou University of Cambridge R. P. Nelson Queen Mary, University of London W. Kley Universität Tübingen F. S. Masset Saclay, France and UNAM

More information

Dynamically Unstable Planetary Systems Emerging Out of Gas Disks

Dynamically Unstable Planetary Systems Emerging Out of Gas Disks EXTREME SOLAR SYSTEMS ASP Conference Series, Vol. 398, 2008 D. Fischer, F. A. Rasio, S. E. Thorsett, and A. Wolszczan Dynamically Unstable Planetary Systems Emerging Out of Gas Disks Soko Matsumura, Edward

More information

arxiv: v1 [astro-ph.ep] 6 Oct 2015

arxiv: v1 [astro-ph.ep] 6 Oct 2015 Astronomy & Astrophysics manuscript no. PicognaKley15 c ESO 2015 October 7, 2015 How do giant planetary cores shape the dust disk? HL Tau system Giovanni Picogna, Wilhelm Kley Institut für Astronomie und

More information

Vortices in planetary migration

Vortices in planetary migration Vortices in planetary migration Min-Kai Lin John Papaloizou DAMTP University of Cambridge October 20, 2009 Outline Introduction: planet migration types Numerical methods, first results and motivation Type

More information

arxiv: v2 [astro-ph.ep] 16 Aug 2018

arxiv: v2 [astro-ph.ep] 16 Aug 2018 Astronomy & Astrophysics manuscript no. cb_planets ESO 2018 August 17, 2018 Migration of planets in circumbinary discs Daniel Thun 1 and Wilhelm Kley 1 Institut für Astronomie und Astrophysik, Universität

More information

arxiv: v2 [astro-ph.ep] 7 Apr 2016

arxiv: v2 [astro-ph.ep] 7 Apr 2016 Astronomy & Astrophysics manuscript no. PlanetTrapping_KB c ESO 2016 April 8, 2016 Trapping planets in an evolving protoplanetary disk: preferred time, locations, and planet mass. K. Baillié 1, 2, 3, S.

More information

Disk planet interaction during the formation of extrasolar planets

Disk planet interaction during the formation of extrasolar planets Examensarbete i Astronomi / Rymd- och Plasmafysik 20p Juni 2004 Nr: 02 Disk planet interaction during the formation of extrasolar planets Martin Thörnqvist c Institutionen för Astronomi och Rymdfysik Uppsala

More information

On the migration of protogiant solid cores

On the migration of protogiant solid cores On the migration of protogiant solid cores F. S. Masset 1,2 AIM - UMR 7158, CEA/CNRS/Univ. Paris 7, SAp, Orme des Merisiers, CE-Saclay, 91191 Gif/Yvette Cedex, France fmasset@cea.fr G. D Angelo 3 NASA-ARC,

More information

arxiv:astro-ph/ v1 27 Mar 2005

arxiv:astro-ph/ v1 27 Mar 2005 Astronomy & Astrophysics manuscript no. 2656 December 27, 217 (DOI: will be inserted by hand later) Modeling the resonant planetary system GJ 876 Wilhelm Kley 1, Man Hoi Lee 2, Norman Murray 3, and Stanton

More information

arxiv: v2 [astro-ph.ep] 6 Feb 2018

arxiv: v2 [astro-ph.ep] 6 Feb 2018 Mon. Not. R. Astron. Soc. 000, 1 12 (2017) Printed 30 March 2018 (MN LATEX style file v2.2) Three-Dimensional Disk-Satellite Interaction: Torques, Migration, and Observational Signatures Lev Arzamasskiy

More information

How Shadowing and Illumination in Disks Affect Planet Formation

How Shadowing and Illumination in Disks Affect Planet Formation From Disks to Planets March 10, 2005 How Shadowing and Illumination in Disks Affect Planet Formation Hannah Jang-Condell Carnegie Institution of Washington, DTM Dimitar D. Sasselov (CfA) Overview Analytic

More information

Formation, Orbital and Internal Evolutions of Young Planetary Systems

Formation, Orbital and Internal Evolutions of Young Planetary Systems Accepted for publication in Space Science Reviews Formation, Orbital and Internal Evolutions of Young Planetary Systems Clément Baruteau Xuening Bai Christoph Mordasini Paul Mollière arxiv:1604.07558v1

More information

arxiv:astro-ph/ v1 31 Aug 1998

arxiv:astro-ph/ v1 31 Aug 1998 A&A manuscript no. (will be inserted by hand later) Your thesaurus codes are: (3.3.4;..; 7..; 7.9.; 8..3) ASTRONOMY AND ASTROPHYSICS On the treatment of the Coriolis force in computational astrophysics

More information

Planet formation in protoplanetary disks. Dmitry Semenov Max Planck Institute for Astronomy Heidelberg, Germany

Planet formation in protoplanetary disks. Dmitry Semenov Max Planck Institute for Astronomy Heidelberg, Germany Planet formation in protoplanetary disks Dmitry Semenov Max Planck Institute for Astronomy Heidelberg, Germany Suggested literature "Protoplanetary Dust" (2010), eds. D. Apai & D. Lauretta, CUP "Protostars

More information

arxiv: v1 [astro-ph.ep] 15 Mar 2012

arxiv: v1 [astro-ph.ep] 15 Mar 2012 Recent developments in planet migration theory Clément Baruteau and Frédéric Masset arxiv:1203.3294v1 [astro-ph.ep] 15 Mar 2012 Abstract Planetary migration is the process by which a forming planet undergoes

More information

arxiv: v1 [astro-ph.ep] 15 Aug 2012

arxiv: v1 [astro-ph.ep] 15 Aug 2012 Astronomy & Astrophysics manuscript no. wake c ESO 28 August 29, 28 Low-mass planets in nearly inviscid disks: Numerical treatment Wilhelm Kley, Tobias W. A. Müller, Stefan M. Kolb, Pablo Benítez-Llambay

More information

arxiv: v1 [astro-ph.ep] 1 Feb 2019

arxiv: v1 [astro-ph.ep] 1 Feb 2019 DRAFT VERSION FEBRUARY 4, 019 Typeset using L A TEX twocolumn style in AASTeX6 On the 9:7 Mean Motion Resonance Capture in a System of Two Equal-mass Super-Earths ZIJIA CUI, 1 JOHN C. B. PAPALOIZOU, AND

More information

Sta%s%cal Proper%es of Exoplanets

Sta%s%cal Proper%es of Exoplanets Sta%s%cal Proper%es of Exoplanets Mordasini et al. 2009, A&A, 501, 1139 Next: Popula%on Synthesis 1 Goals of Population Synthesis: incorporate essential planet formation processes, with simplifying approximation

More information

Type III migration in a low viscosity disc

Type III migration in a low viscosity disc Type III migration in a low viscosity disc Min-Kai Lin John Papaloizou mkl23@cam.ac.uk, minkailin@hotmail.com DAMTP University of Cambridge KIAA, Beijing, December 13, 2009 Outline Introduction: type III

More information

The migration and growth of protoplanets in protostellar discs

The migration and growth of protoplanets in protostellar discs Mon. Not. R. Astron. Soc. 318, 18 36 (2000) The migration and growth of protoplanets in protostellar discs Richard P. Nelson, 1 John C. B. Papaloizou, 1 Frédéric Masset 1 and Willy Kley 2,3 1 Astronomy

More information

Numerical simulations of type III planetary migration I. Disc model and convergence tests

Numerical simulations of type III planetary migration I. Disc model and convergence tests Mon. Not. R. Astron. Soc. (8) doi:./j.65-966.8.45.x Numerical simulations of type III planetary migration I. Disc model and convergence tests A. Pepliński, P. Artymowicz and G. Mellema Stockholm University,

More information

arxiv: v2 [astro-ph.ep] 7 Aug 2015

arxiv: v2 [astro-ph.ep] 7 Aug 2015 Astronomy& Astrophysics manuscript no. Planetgrowth c ESO 205 August, 205 The growth of planets by pebble accretion in evolving protoplanetary discs Bertram Bitsch, Michiel Lambrechts, and Anders Johansen

More information

Astronomy 405 Solar System and ISM

Astronomy 405 Solar System and ISM Astronomy 405 Solar System and ISM Lecture 17 Planetary System Formation and Evolution February 22, 2013 grav collapse opposed by turbulence, B field, thermal Cartoon of Star Formation isolated, quasi-static,

More information

The dynamics of extra-solar planets

The dynamics of extra-solar planets Institute for Advanced Study The dynamics of extra-solar planets Hanno Rein @ Franklin Institute, November 2011 Planet formation Planet formation Credit: NASA/JPL-Caltech/T. Pyle (SSC) Planet Migration

More information

Solar System evolution and the diversity of planetary systems

Solar System evolution and the diversity of planetary systems Solar System evolution and the diversity of planetary systems Alessandro Morbidelli (OCA, Nice) Work in collaboration with: R. Brasser, A. Crida, R. Gomes, H. Levison, F. Masset, D. O brien, S. Raymond,

More information

arxiv: v1 [astro-ph.ep] 8 Dec 2016

arxiv: v1 [astro-ph.ep] 8 Dec 2016 Astronomy & Astrophysics manuscript no. draft_arxiv c ESO March, Highly inclined and eccentric massive planets II. Planet-planet interactions during the disc phase Sotiris Sotiriadis, Anne-Sophie Libert,

More information

arxiv:astro-ph/ v1 11 Oct 2003

arxiv:astro-ph/ v1 11 Oct 2003 Astronomy & Astrophysics manuscript no. r5 May 14, 218 (DOI: will be inserted by hand later) Evolution of Planetary Systems in Resonance Wilhelm Kley 1, Jochen Peitz 1, and Geoffrey Bryden 2 arxiv:astro-ph/31321v1

More information

Formation of Planets around M & L dwarfs

Formation of Planets around M & L dwarfs Formation of Planets around & L dwarfs D.N.C. Lin University of California with S. Ida, H. Li, S.L.Li, E. Thommes, I. Dobbs-Dixon, S.T. Lee,P. Garaud,. Nagasawa AAS Washington Jan 11th, 006 17 slides Disk

More information

Accretion of Uranus and Neptune

Accretion of Uranus and Neptune Accretion of Uranus and Neptune by collisions among planetary embryos Jakubík M., Morbidelli A., Neslušan L., Brasser R. Astronomical Institute SAS, Tatranska Lomnica Observatoire de la Côte d Azur, Nice,

More information

Tides and Lagrange Points

Tides and Lagrange Points Ast111, Lecture 3a Tides and Lagrange Points Arial view of Tidal surge in Alaska (S. Sharnoff) Tides Tidal disruption Lagrange Points Tadpole Orbits and Trojans Tidal Bulges Tides Tidal Force The force

More information

Testing Theories of Planet Formation & Dynamical Evolution of Planetary Systems using Orbital Properties of Exoplanets

Testing Theories of Planet Formation & Dynamical Evolution of Planetary Systems using Orbital Properties of Exoplanets Testing Theories of Planet Formation & Dynamical Evolution of Planetary Systems using Orbital Properties of Exoplanets Eric B. Ford Harvard-Smithsonian Center for Astrophysics (Starting at UF in August

More information

Simulations of gaseous disc-embedded planet interaction

Simulations of gaseous disc-embedded planet interaction Mon. Not. R. Astron. Soc. 347, 421 429 (2004) Simulations of gaseous disc-embedded planet interaction Graeme Lufkin, 1 Thomas Quinn, 1 James Wadsley, 2 Joachim Stadel 3 and Fabio Governato 1 1 Department

More information

Planetary System Stability and Evolution. N. Jeremy Kasdin Princeton University

Planetary System Stability and Evolution. N. Jeremy Kasdin Princeton University Planetary System Stability and Evolution N. Jeremy Kasdin Princeton University (Lots of help from Eric Ford, Florida and Robert Vanderbei, Princeton) KISS Exoplanet Workshop 10 November 2009 Motivation

More information

Introduction. Convergence of the fragmentation boundary in self-gravitating discs

Introduction. Convergence of the fragmentation boundary in self-gravitating discs Convergence of the fragmentation boundary in self-gravitating discs Collaborators : Phil Armitage - University of Colorado Duncan Forgan- University of St Andrews Sijme-Jan Paardekooper Queen Mary, University

More information

arxiv:astro-ph/ v2 17 Aug 2006

arxiv:astro-ph/ v2 17 Aug 2006 Evolution of Giant Planets in Eccentric Disks Gennaro D Angelo 1 School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL, United Kingdom NASA-ARC, Space Science and Astrobiology Division,

More information

Theory of mean motion resonances.

Theory of mean motion resonances. Theory of mean motion resonances. Mean motion resonances are ubiquitous in space. They can be found between planets and asteroids, planets and rings in gaseous disks or satellites and planetary rings.

More information

Observational Cosmology Journal Club

Observational Cosmology Journal Club Observational Cosmology Journal Club 07/09/2018 Shijie Wang 1. Heller, R. (2018). Formation of hot Jupiters through disk migration and evolving stellar tides. Retrieved from arxiv.1806.06601 2. Rey, J.,

More information

How do we model each process of planet formation? How do results depend on the model parameters?

How do we model each process of planet formation? How do results depend on the model parameters? How do we model each process of planet formation? How do results depend on the model parameters? Planetary Population Synthesis: The Predictive Power of Planet Formation Theory, Ringberg, Nov 29, 2010

More information

What Have We Found? 1978 planets in 1488 systems as of 11/15/15 (http://exoplanet.eu/ ) 1642 planets candidates (http://exoplanets.

What Have We Found? 1978 planets in 1488 systems as of 11/15/15 (http://exoplanet.eu/ ) 1642 planets candidates (http://exoplanets. Exoplanets. II What Have We Found? 1978 planets in 1488 systems as of 11/15/15 (http://exoplanet.eu/ ) 1642 planets + 3787 candidates (http://exoplanets.org) Detected by radial velocity/astrometry: 621

More information

Institute for. Advanced Study. Multi-planetary systems. Hanno of Toronto, Scarborough, March 2013

Institute for. Advanced Study. Multi-planetary systems. Hanno of Toronto, Scarborough, March 2013 Institute for Advanced Study Multi-planetary systems Hanno Rein @University of Toronto, Scarborough, March 2013 Projects that I will not talk about today Symplectic integrators Viscous overstability Parallel

More information

arxiv: v1 [astro-ph.ep] 8 Jan 2013

arxiv: v1 [astro-ph.ep] 8 Jan 2013 Astronomy & Astrophysics manuscript no. g7final c ESO 218 January 29, 218 Influence of viscosity and the adiabatic index on planetary migration Bertram Bitsch 1,2, Aaron Boley 3 and Wilhelm Kley 1 1 Institut

More information

A torque formula for non-isothermal Type I planetary migration - II. Effects of diffusion

A torque formula for non-isothermal Type I planetary migration - II. Effects of diffusion Mon. Not. R. Astron. Soc., 1 1 (8) Printed 1 November 17 (MN LATEX style file v.) A torque formula for non-isothermal Type I planetary migration - II. Effects of diffusion In this paper, we study Type

More information

DISK SURFACE DENSITY TRANSITIONS AS PROTOPLANET TRAPS

DISK SURFACE DENSITY TRANSITIONS AS PROTOPLANET TRAPS The Astrophysical Journal, 642:478 487, 2006 May 1 # 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A. DISK SURFACE DENSITY TRANSITIONS AS PROTOPLANET TRAPS F. S. Masset 1,2

More information

planet migration driven by a planetesimal disk Solar System & extra solar planets: evidence for/against planet migration?

planet migration driven by a planetesimal disk Solar System & extra solar planets: evidence for/against planet migration? 2 planet migration driven by a gas disk: type I & type II planet migration driven by a planetesimal disk Solar System & extra solar planets: evidence for/against planet migration? 3 Type I migration: follow

More information

Planet formation in the ALMA era. Giuseppe Lodato

Planet formation in the ALMA era. Giuseppe Lodato Planet formation in the ALMA era Giuseppe Lodato A revolution in planet formation theory New facilities are revolutionizing our understanding of the planet formation process Extra-solar planet detection

More information

Lecture 20: Planet formation II. Clues from Exoplanets

Lecture 20: Planet formation II. Clues from Exoplanets Lecture 20: Planet formation II. Clues from Exoplanets 1 Outline Definition of a planet Properties of exoplanets Formation models for exoplanets gravitational instability model core accretion scenario

More information

Formation of a disc gap induced by a planet: effect of the deviation from Keplerian disc rotation

Formation of a disc gap induced by a planet: effect of the deviation from Keplerian disc rotation doi:10.1093/mnras/stv025 Formation of a disc gap induced by a planet: effect of the deviation from Keplerian disc rotation K. D. Kanagawa, 1 H. Tanaka, 1 T. Muto, 2 T. Tanigawa 3 and T. Takeuchi 4 1 Institute

More information

arxiv: v1 [astro-ph.ep] 4 Jun 2009

arxiv: v1 [astro-ph.ep] 4 Jun 2009 Astronomy & Astrophysics manuscript no. CPD-3 c ESO 28 June 5, 28 The dynamical role of the circumplanetary disc in planetary migration. Aurélien Crida,2, Clément Baruteau 3,4, Wilhelm Kley, and Frédéric

More information

arxiv: v1 [astro-ph.ep] 23 Oct 2015

arxiv: v1 [astro-ph.ep] 23 Oct 2015 Submitted to ApJ arxiv:1510.06848v1 [astro-ph.ep] 23 Oct 2015 Final Masses of Giant Planets II: Jupiter Formation in a Gas-Depleted Disk Takayuki Tanigawa School of Medicine, University of Occupational

More information

Accretion disks. AGN-7:HR-2007 p. 1. AGN-7:HR-2007 p. 2

Accretion disks. AGN-7:HR-2007 p. 1. AGN-7:HR-2007 p. 2 Accretion disks AGN-7:HR-2007 p. 1 AGN-7:HR-2007 p. 2 1 Quantitative overview Gas orbits in nearly circular fashion Each gas element has a small inward motion due to viscous torques, resulting in an outward

More information

Astronomy 241: Review Questions #2 Distributed: November 7, 2013

Astronomy 241: Review Questions #2 Distributed: November 7, 2013 Astronomy 241: Review Questions #2 Distributed: November 7, 2013 Review the questions below, and be prepared to discuss them in class. For each question, list (a) the general topic, and (b) the key laws

More information

Astronomy 405 Solar System and ISM

Astronomy 405 Solar System and ISM Astronomy 405 Solar System and ISM Lecture 18 Planetary System Formation and Evolution February 25, 2013 grav collapse opposed by turbulence, B field, thermal Cartoon of Star Formation isolated, quasi-static,

More information

arxiv: v1 [astro-ph.ep] 18 Jul 2013

arxiv: v1 [astro-ph.ep] 18 Jul 2013 Astronomy & Astrophysics manuscript no. ms c ESO 23 July 9, 23 arxiv:37.4864v [astro-ph.ep] 8 Jul 23 Theoretical models of planetary system formation: mass vs semi-major axis Y. Alibert,2, F. Carron, A.

More information

arxiv: v1 [astro-ph.ep] 9 Jun 2015

arxiv: v1 [astro-ph.ep] 9 Jun 2015 Astronomy & Astrophysics manuscript no. Izidoro_et_al_1_U-N_9Jun c ESO 1 June, 1 Accretion of Uranus and Neptune from inward-migrating planetary embryos blocked by and André Izidoro 1, 2,,, Alessandro

More information

Possible commensurabilities among pairs of extrasolar planets

Possible commensurabilities among pairs of extrasolar planets Mon. Not. R. Astron. Soc. 333, L26 L30 (2002) Possible commensurabilities among pairs of extrasolar planets Richard P. Nelson P and John C. B. Papaloizou Astronomy Unit, Queen Mary, University of London,

More information

The Physics of Collisionless Accretion Flows. Eliot Quataert (UC Berkeley)

The Physics of Collisionless Accretion Flows. Eliot Quataert (UC Berkeley) The Physics of Collisionless Accretion Flows Eliot Quataert (UC Berkeley) Accretion Disks: Physical Picture Simple Consequences of Mass, Momentum, & Energy Conservation Matter Inspirals on Approximately

More information

arxiv: v1 [astro-ph.ep] 1 Aug 2018

arxiv: v1 [astro-ph.ep] 1 Aug 2018 Astronomy & Astrophysics manuscript no. kill c ESO 018 November 1, 018 Toward a new paradigm for Type II migration C. M. T. Robert 1, A. Crida 1,, E. Lega 1, H. Méheut 1, and A. Morbidelli 1 1 Université

More information

A Beta-Viscosity Model

A Beta-Viscosity Model A Beta-Viscosity Model for the Evolving Solar Nebula Sanford S Davis Workshop on Modeling the Structure, Chemistry, and Appearance of Protoplanetary Disks 13-17 April, 2004 Ringberg, Baveria, Germany 1

More information

What is it like? When did it form? How did it form. The Solar System. Fall, 2005 Astronomy 110 1

What is it like? When did it form? How did it form. The Solar System. Fall, 2005 Astronomy 110 1 What is it like? When did it form? How did it form The Solar System Fall, 2005 Astronomy 110 1 Fall, 2005 Astronomy 110 2 The planets all orbit the sun in the same direction. The Sun spins in the same

More information

Growth of terrestrial planets

Growth of terrestrial planets Growth of terrestrial planets Wilhelm Kley Institut für Astronomie & Astrophysik & Kepler Center for Astro and Particle Physics Tübingen March 2015 2. Growth to terrestrial planets: Organisation Lecture

More information

Terrestrial planet formation: planetesimal mixing KEVIN WALSH (SWRI)

Terrestrial planet formation: planetesimal mixing KEVIN WALSH (SWRI) Terrestrial planet formation: planetesimal mixing KEVIN WALSH (SWRI) Questions How are terrestrial planets put together? Where do they get their material? Questions How are terrestrial planets put together?

More information

arxiv:astro-ph/ v1 11 Aug 2004

arxiv:astro-ph/ v1 11 Aug 2004 Astronomy & Astrophysics manuscript no. February 2, 2008 (DOI: will be inserted by hand later) Planets opening dust gaps in gas disks Sijme-Jan Paardekooper 1 and Garrelt Mellema 2,1 arxiv:astro-ph/0408202v1

More information

Star formation. Protostellar accretion disks

Star formation. Protostellar accretion disks Star formation Protostellar accretion disks Summary of previous lectures and goal for today Collapse Protostars - main accretion phase - not visible in optical (dust envelope) Pre-main-sequence phase -

More information

Today in Astronomy 111: rings, gaps and orbits

Today in Astronomy 111: rings, gaps and orbits Today in Astronomy 111: rings, gaps and orbits Gap sizes: the Hill radius Perturbations and resonances The variety of structures in planetary rings Spiral density waves Titan Bending waves Horseshoe and

More information

Minimum Mass Solar Nebulae, Nice model, & Planetary Migration.

Minimum Mass Solar Nebulae, Nice model, & Planetary Migration. Minimum Mass Solar Nebulae, Nice model, & Planetary Migration. Aurélien CRIDA 1) MMSN : definition, recipe Minimum Mass Solar Nebula Little reminder : It is not a nebula, but a protoplanetary disc. Solar

More information

arxiv: v3 [astro-ph.ep] 1 Aug 2013

arxiv: v3 [astro-ph.ep] 1 Aug 2013 Mon. Not. R. Astron. Soc. 000, 000 000 (0000) Printed 19 August 2017 (MN LATEX style file v2.2) Origin Scenarios for the Kepler 36 Planetary System Alice C. Quillen, Eva Bodman, & Alexander Moore Department

More information

arxiv: v2 [astro-ph.ep] 4 Nov 2014

arxiv: v2 [astro-ph.ep] 4 Nov 2014 Preprint typeset using L A TEX style emulateapj v. 5/2/11 MIGRATION AND GROWTH OF PROTOPLANETARY EMBRYOS I: CONVERGENCE OF EMBRYOS IN PROTOPLANETARY DISKS Xiaojia Zhang 1, Beibei Liu 2, Douglas N. C. Lin

More information

Planetary Migration: What Does It Mean for Planet Formation?

Planetary Migration: What Does It Mean for Planet Formation? Annu. Rev. Earth Planet. Sci. 2009. 37:321 44 First published online as a Review in Advance on January 22, 2009 The Annual Review of Earth and Planetary Sciences is online at earth.annualreviews.org This

More information

arxiv: v1 [astro-ph.ep] 30 Sep 2014

arxiv: v1 [astro-ph.ep] 30 Sep 2014 Astronomy & Astrophysics manuscript no. vsi-paper c ESO 18 November 5, 18 Vertical shear instability in accretion disc models with radiation transport Moritz H. R. Stoll and Wilhelm Kley Institut für Astronomie

More information

On the width and shape of gaps in protoplanetary disks

On the width and shape of gaps in protoplanetary disks Icarus 181 (2006) 587 604 www.elsevier.com/locate/icarus On the width and shape of gaps in protoplanetary disks A. Crida a,, A. Morbidelli a,f.masset b,c a O.C.A., B.P. 4229, 06304 Nice Cedex 4, France

More information

Lecture 14: Viscous Accretion Disks. HST: μm image of the A0e star AB Aurigae

Lecture 14: Viscous Accretion Disks. HST: μm image of the A0e star AB Aurigae Lecture 14: Viscous Accretion Disks HST: 0.2-1 μm image of the A0e star AB Aurigae OB1a (10 Myr) Subgroups in the Orion OB1 Associations OB1b (5 Myr) OB1c (2.5 Myr) OB1d (1 Myr) The Orion OB1 association

More information

arxiv: v1 [astro-ph.ep] 29 Oct 2014

arxiv: v1 [astro-ph.ep] 29 Oct 2014 Submitted to the Astrophysical Journal Preprint typeset using L A TEX style emulateapj v. 5/2/11 MIGRATION AND GROWTH OF PROTOPLANETARY EMBRYOS II: EMERGENCE OF PROTO-GAS-GIANTS CORES VERSUS SUPER EARTHS

More information

EART164: PLANETARY ATMOSPHERES

EART164: PLANETARY ATMOSPHERES EART164: PLANETARY ATMOSPHERES Francis Nimmo Last Week - Dynamics Reynolds number, turbulent vs. laminar flow Velocity fluctuations, Kolmogorov cascade Brunt-Vaisala frequency, gravity waves Rossby waves,

More information

Resonance Capture. Alice Quillen. University of Rochester. Isaac Newton Institute Dec 2009

Resonance Capture. Alice Quillen. University of Rochester. Isaac Newton Institute Dec 2009 Resonance Capture Alice Quillen University of Rochester Isaac Newton Institute Dec 2009 This Talk Resonance Capture extension to nonadiabatic regime Astrophysical settings: Dust spiraling inward via radiation

More information

Kuiper Belt Dynamics and Interactions

Kuiper Belt Dynamics and Interactions Kuiper Belt Dynamics and Interactions Minor Planet Center Ruth Murray-Clay Harvard-Smithsonian Center for Astrophysics Kuiper belt µm ejected by radiation pressure larger grains migrate in via PR drag

More information

arxiv: v1 [astro-ph.ep] 19 Oct 2016

arxiv: v1 [astro-ph.ep] 19 Oct 2016 Preprint 9 October 2018 Compiled using MNRAS LATEX style file v3.0 Coevolution of Binaries and Circumbinary Gaseous Discs David P. Fleming and Thomas R. Quinn Department of Astronomy, University of Washington,

More information

EXOPLANET LECTURE PLANET FORMATION. Dr. Judit Szulagyi - ETH Fellow

EXOPLANET LECTURE PLANET FORMATION. Dr. Judit Szulagyi - ETH Fellow EXOPLANET LECTURE PLANET FORMATION Dr. Judit Szulagyi - ETH Fellow (judits@ethz.ch) I. YOUNG STELLAR OBJECTS AND THEIR DISKS (YSOs) Star Formation Young stars born in 10 4 10 6 M Sun Giant Molecular Clouds.

More information

A few points on the dynamical evolution of the young solar system. Renu Malhotra The University of Arizona

A few points on the dynamical evolution of the young solar system. Renu Malhotra The University of Arizona A few points on the dynamical evolution of the young solar system Renu Malhotra The University of Arizona A few points on the dynamical evolution of the young solar system Renu Malhotra The University

More information

Planet Formation: theory and observations. Sean Raymond University of Colorado (until Friday) Observatoire de Bordeaux

Planet Formation: theory and observations. Sean Raymond University of Colorado (until Friday) Observatoire de Bordeaux Planet Formation: theory and observations Sean Raymond University of Colorado (until Friday) Observatoire de Bordeaux Outline Stages of Planet Formation Solar System Formation Cores to disks (c2d) Observational

More information

Lecture XIX: Particle motion exterior to a spherical star

Lecture XIX: Particle motion exterior to a spherical star Lecture XIX: Particle motion exterior to a spherical star Christopher M. Hirata Caltech M/C 350-7, Pasadena CA 95, USA Dated: January 8, 0 I. OVERVIEW Our next objective is to consider the motion of test

More information

Eccentricity pumping of a planet on an inclined orbit by a disc

Eccentricity pumping of a planet on an inclined orbit by a disc Mon. Not. R. Astron. Soc. 44, 49 414 21) doi:1.1111/j.1365-2966.21.16295.x Eccentricity pumping of a planet on an inclined orbit by a disc Caroline Terquem 1,2 and Aikel Ajmia 1 1 Institut d Astrophysique

More information

Alibert,Y., Mordasini, C., Benz, W., Winisdoerffer, C Models of Giant Planet Formation with Migration and Disc Evolution. A&A. 434.

Alibert,Y., Mordasini, C., Benz, W., Winisdoerffer, C Models of Giant Planet Formation with Migration and Disc Evolution. A&A. 434. Kepustakaan Photometer and Spacecraft Kepler Mission: A Search for Habitable Planet. (http://kepler.nasa.gov/sci/design/spacecraft.html) Alexander, A.. Astrometry: The Past And Future of Planet Hunting.

More information

Accretion of Planets. Bill Hartmann. Star & Planet Formation Minicourse, U of T Astronomy Dept. Lecture 5 - Ed Thommes

Accretion of Planets. Bill Hartmann. Star & Planet Formation Minicourse, U of T Astronomy Dept. Lecture 5 - Ed Thommes Accretion of Planets Bill Hartmann Star & Planet Formation Minicourse, U of T Astronomy Dept. Lecture 5 - Ed Thommes Overview Start with planetesimals: km-size bodies, interactions are gravitational (formation

More information