Ch Guided Reading Sound and Light

Size: px
Start display at page:

Download "Ch Guided Reading Sound and Light"

Transcription

1 Name Date Hour Chapter 15 Answer Key Ch Guided Reading Sound and Light 1. Compare the speed of sound as it travels within a liquid, a solid, and a gas. Why does the speed of sound differ? Sound travels fastest through solids, at an intermediate rate in liquids, and slowest between gas molecules. This happens because solids are in general more elastic than liquids, which, in turn, are more elastic than gases. 2. If a small piece of space debris were to strike a space station, workers on the inside might hear the sound made by the collision, but workers outside the station would not. Explain. In the space station, the sound would be transmitted through the air; outside there is no air or other media to transmit the sound to the workers. 3. How are pitch and frequency of a sound related? While the pitch of a note is directly proportional to the frequency, pitch is also affected by an individual s brain and ear. The pitch a person hears is determined, in part, by the sounds that precede and follow the sound in question. 4. Your parents complain that the rap you are listening to is not music. Based upon the information in this section, what thoughts can you offer to support your choice of music? According to the text, music is a combination of sound and rhythm that an individual finds pleasant. If rap has both rhythm & sound and is pleasing to you, it can be considered music. That which is pleasing to you may not be to your parents, therefore it might not music to them even though it is to you. 5. As you tune your clarinet, you hear an oscillating sound your instructor calls beats. What causes them and how can you use them to tune your instrument? Beats occur when two notes being played simultaneously are very close to the same frequency. Alternating constructive and destructive interference between superposed waves cause the beats. If you listen to the frequency to which you are to tune your instrument and adjust your clarinet so that no beats are heard, the two frequencies are the same. 6. Why does an A played on a piano not sound exactly like an A produced by a guitar? The sound produced by most sources is a combination of many frequencies. While the fundamental note produced by each source is an A, each source produces its own combination of harmonics that also differ in rise and fall times from one instrument to the next. Each combination is characteristic of a specific instrument. 7. A steel string does not produce a loud sound by itself. Explain how an acoustic guitar produces a loud sound when a string is plucked. The string is attached to the body of an acoustic guitar. The vibrating string causes the body to vibrate at the same frequency that moves a greater volume of air than the string by itself. Also, the hollow body of the guitar produces louder sound through resonance with the many frequencies produced by the vibrating strings.

2 8. How does an electric guitar pickup produce an amplified sound? As the steel string vibrates, it passes through the magnetic field of the pickup, inducing an oscillating electric current whose frequency is that of the vibrating string. The current is amplified to produce a loud sound. 9. The decibel scale is used to measure the loudness of a sound. How is loudness (the decibel scale) of a sound related to the amplitude of the sound wave? For each increase of 20 db on the decibel scale, there is a corresponding ten-fold increase of amplitude in the pressure wave. 10. Most people know that sound is a wave. List at least three pieces of evidence to support the idea that sound is a wave. - Sound has a frequency we can hear and a wavelength we can verify by experiment. - The speed of sound can be calculated as the product of frequency and wavelength. - Sound shows evidence of diffraction & interference, characteristic of wave motion. - Resonance can be demonstrated for sound. 11. How is the wavelength of sound produced by a musical wind instrument related to the size of the instrument? If the instrument is closed on one end (has a closed boundary), the instrument will produce resonance for a wave that is approximately 4 x s as long as the instrument. 12. Explain the two diagrams below. (HINT: Look back to Chapter 14.) Constructive interference When two wave pulses on the same side add up to make a single, bigger pulse when they meet. Destructive interference Two equal wave pulses on opposite sides subtract when they meet. The upward movement of one pulse exactly cancels with the downward movement of the other. For a moment there is no pulse at all. 13. A patron at a concert claims that she cannot hear clearly certain notes being played unless she moves her head slightly to one side or the other. Explain how this could happen. Sounds coming from an instrument may be reflected from several surfaces in a concert hall. If the path length difference from the points of reflection to the patron is an odd number of half wavelengths, the reflections arrive out of phase at her location, destructive interference will occur, & the sound may be much quieter at that spot. 14. Parents are concerned for the hearing of their children who wear stereo headsets adjusted to high volume settings. Using Table 15.1, explain why their concerns are justified. The table summarizes pressure changes that accompany sounds of various intensities. A change in pressure of atmospheres can be detected as a 20 db sound. In fact, a loud sound of 120 db represents an increase of pressure to only atmospheres. That even loud sounds represent only small pressure changes suggests that the structure of the ear is a delicate mechanism. Continued exposure to loud sounds can damage it. 15. When an astronomer observes the sun, she notices that the light from one edge is slightly shifted toward the red end of the visible spectrum while the opposite edge is slightly shifted toward violet. What causes this shift? The sun is spinning on its axis. (One edge is moving toward the observer while it spins while the other moves away.) The Doppler shift causes the observer to see a higher frequency (more blue & violet) light coming from the edge moving toward the observer. Light from the other edge is shifted toward the red as it moves away.

3 16. As the temperature increases, the fundamental frequency produced by a flute changes slightly. Does it increase or decrease? It will increase slightly. Give an explanation for your answer. As the temperature increases, the speed of sound increases. Since the instrument maintains a nearly constant length, the wavelength reinforced remains constant. The frequency must increase in proportion to the increased velocity. 17. What causes consonance and dissonance? Two frequencies of sound occurring simultaneously in the same medium cause beats. If the frequencies are nearly the same, the beats are obvious, and the sound produced is generally irritating, or dissonant. If the frequencies are quite different, the beats are not discernible, and the sound is, in general, pleasing or consonant. Chapter How is an incandescent bulb different from a fluorescent bulb? An incandescent bulb generates light and also a great deal of heat. A fluorescent bulb generates light and only a small amount of heat. 2. In what units is light intensity measured? watts per square meter (W/m 2 ) 3. You wish to read a book in your bedroom. There is enough light for you to read if you use either a 100 W ceiling light or a 15 W desk lamp. Both use the same type of bulb. Explain why you can read with the less powerful desk lamp. You can read with the desk lamp because it is closer to the book than the ceiling light is. Even though the desk light has less power, the intensity of the light on the book is great because it is a small distance away. 4. List three ways light can be used for communication. Television, lasers, and fiber-optic cables use light for communication. 5. Why do we see lightning before we hear thunder? We see lightning before hearing thunder because light travels much faster than sound. 6. Compare reflection and refraction. Reflection is the bouncing of incident light off a surface. Refraction is the bending of light when it moves from one material into another material. 7. What is white light? White light is the combination of all colors of light. 8. How could a blacksmith tell the temperature of a fire long before thermometers were invented? A blacksmith uses color of the fire as a reference. When the fire appears red, it is a relatively low temperature; when it appears blue, it is a relatively high temperature. 9. Why is it difficult to distinguish among different colors in a dimly lit room? Cone cells in our eyes respond to color. They are not as sensitive as rod cells, so the cones do not work well in a dimly lit room. Therefore, it is difficult to distinguish among different colors. 10. How can we see many different colors if our eyes only contain three types of cones? Our eyes can see many colors because all colors of light are combinations of red, green, and blue light. Depending on its color, light can stimulate more than one type of cone. Our brains receive these combined signals and perceive different colors. 11. Add the colors of light: a. red + blue = Magenta b. blue + green = Cyan c. red + green = Yellow d. red + blue + green = White

4 12. Why is mixing pigments called color subtraction? Mixing pigments is called color subtraction because pigments absorb some colors and reflect others. When pigments are mixed, they subtract more colors of light. 13. What color results when cyan, magenta, and yellow pigments are mixed? White 14. Answer true or false for each: a. A green object reflects green light. True c. A yellow object reflects green light. True b. A blue object absorbs red light. True d. A white object absorbs red light. False 15. Why is it a good idea to wear a white shirt rather than a black shirt on a hot sunny day? A white shirt reflects most of the light and keeps the person cool on a hot sunny day while a black shirt absorbs all of the light and makes the person hot. 16. Why will a plant grow more quickly if it is grown in white light rather than green light? Chlorophyll in a plant reflects green light, so the plant will not absorb enough energy if placed in green light. But chlorophyll absorbs light of other colors, so it grows faster if placed in white light. 17. Explain how a television makes pictures of many colors using only three types of pixels. A television s three types of pixels give off red, green, and blue light. By turning on the different color pixels in different amounts, the TV mixes the three colors and produces pictures of many colors. 18. Use the photon theory of light to describe 2 ways to create high intensity with both high energy and low energy photons? One way to make high intensity light is to have high-energy photons; the other is to have a large number of low-energy photons. 19. Explain how glow-in-the-dark materials work. When the glow-in-the-dark plastic is exposed to light, phosphorus atoms absorb the energy from the photons they receive. Then those atoms slowly release the stored energy and the plastic glows. Chapter State the law of reflection. Angle of reflection equals to the angle of incidence. Does this law hold true for specular reflection? YES, this law holds true for specular reflection Does it hold true for diffuse reflection? NO, the law does not hold true for diffused reflection. 2. Refer to the diagram below. State the correct term for each item listed: a. Line A-B Incident ray b. Line D-B Normal line c. Line B-C Reflected ray d. Angle F Angle of incidence e. Angle G Angle of reflection

5 3. Use the diagram to answer the following questions: a. If A is a real object in front of a mirror, is B a real image or a virtual image? Virtual image b. Line 1-2 is the incident ray from the object to the mirror. Identify the corresponding reflected ray. Line 2-3 c. Line 1-2 is the incident ray from the object to the mirror. Identify the ray that our eye creates to allow us to see the virtual image. Line 3-4 d. Object A is 8 cm in front of the mirror. How far away is the image from the object? 8 cm 4. Refer to Table 17.1 in the text. Which material has a greater ability to bend light, ice or glass? Glass Which material listed has the greatest ability to bend light? Diamond How do you know? The greater the index of refraction, the greater the ability to bend light 5. Consider the diagram shown. Ray A-B represents the incident ray. Identify the refracted ray in each case: a. n 1 is greater than n 2 C b. n 1 is equal to n 2 D c. n 1 is less than n 2 E 6. Explain how fiber optic cables utilize the properties of reflection and refraction. Fiber optic cables are made of thin glass fibers. When light enters a glass fiber with an angle greater than the critical angle, it repeatedly reflects off the wall due to total internal reflection. The beam of light then travels from one end of the fiber to the other. 7. When white light passes through a prism, which color refracts more, yellow or green? Green light refracts more because it has a greater index of refraction. 8. The diagram below shows an object to the left of a converging (+) lens and the real image produced to the right of the lens. Use the diagram to identify the following rays: a. The ray of light that travels from the object to the lens along a line parallel to the optical axis. ABG b. The ray of light that travels from the object to the center of the lens. ACF c. The ray of light that travels from the object through the focal point to the lens. ADE 9. What determines the amount of refraction (bending) that takes place when a light ray passes from one substance to another? The amount that light bends as it passes from one substance into another depends on the difference between the index of refraction of the substances. A larger difference causes greater refraction.

6 Chapter Describe an electromagnetic wave. An electromagnetic wave consists of oscillating electric and magnetic waves that travel together perpendicular to each other at the speed of light, 90 out of phase, and at the same frequency and wavelength. 2. Add to the diagram below to show the different types of electromagnetic energy from highest energy to lowest energy. Radio/TV waves Microwaves Infrared Visible light Ultraviolet X-rays Gamma Rays 3. Which color of visible light has the highest frequency? The color with the highest frequency is violet, Which has the lowest frequency? The color with the lowest frequency is red. Compare the wavelengths of these two colors. The wavelength of violet is smaller than that of red. 4. True or False: All electromagnetic waves travel at the same speed in a vacuum. True Bonus Questions! 1. In your own words, define the following terms. (Use your memory the answers are not in the book!) Transparent: When light passes through an object and exists relatively unchanged. Translucent: When light passes through an object and exists scattered. Opaque: When light does not pass through and object. 2. Explain why radio waves can travel through space, but sound waves cannot. A radio wave is an electromagnetic wave; can travel in a vacuum (empty space). A sound wave is a longitudinal wave; must have a medium (molecules) to transmit. 3. Apply what you have learned to answer the following two questions. Why do you think the sky appears blue during the day? The blue color of the sky is due to Rayleigh scattering. As light moves through the atmosphere, most of the longer wavelengths pass straight through. However, the gas molecules absorb much of the shorter wavelength light. The absorbed blue light is then radiated in different directions. It gets scattered all around the sky. Whichever direction you look, some of this scattered blue light reaches you. Since you see the blue light from everywhere overhead, the sky looks blue. Why does the image of the Sun sometimes appear reddish at sunrise and sunset? As the sun begins to set, the light must travel farther through the atmosphere before it gets to you. More of the light is reflected and scattered. As less reaches you directly, the sun appears less bright. The color of the sun itself appears to change, first to orange and then to red. This is because even more of the short wavelength blues and greens are now scattered. Only the longer wavelengths are left in the direct beam that reaches your eyes. 4. Why does the ground and atmosphere get warm during the day? Electromagnetic energy from the sun (mostly in the form of visible light and infrared radiation) is absorbed into the ground and re-radiated into the atmosphere. 5. How do you hear a distant sound? How is it different from how you hear a sound nearby? Sound transmits through the molecules of the atmosphere. As it travels, the molecules absorb some of the energy; therefore sounds that are distant are much softer than sounds generated nearby.

Unit 4 Parent Guide: Waves. What is a wave?

Unit 4 Parent Guide: Waves. What is a wave? Unit 4 Parent Guide: Waves What is a wave? A wave is a disturbance or vibration that carries energy from one location to another. Some waves require a medium to transmit the energy whereas others can travel

More information

Sound Waves. Sound waves are caused by vibrations and carry energy through a medium

Sound Waves. Sound waves are caused by vibrations and carry energy through a medium Chapter 16 Sound Waves Sound waves are caused by vibrations and carry energy through a medium An example of a compressional wave Waves can spread out in all directions Their speed depends on its medium

More information

Light. Mike Maloney Physics, SHS

Light. Mike Maloney Physics, SHS Light Mike Maloney Physics, SHS 1 Light What is LIGHT? WHERE DOES IT COME FROM? 2003 Mike Maloney 2 What is Light? Light is a wave, or rather acts like a wave. How do we know since we cannot see it? We

More information

10.1 Properties of Light

10.1 Properties of Light 10.1 Properties of Light Every time you see, you are using light. You can t see anything in complete darkness! Whether you are looking at a light bulb, or a car, or this book, light brings information

More information

Name Date Class _. Please turn to the section titled The Nature of Light.

Name Date Class _. Please turn to the section titled The Nature of Light. Please turn to the section titled The Nature of Light. In this section, you will learn that light has both wave and particle characteristics. You will also see that visible light is just part of a wide

More information

School. Team Number. Optics

School. Team Number. Optics School Team Number Optics Physical Optics (30%) Proceed to the laser shoot (40%) when your team number is called. 1. What are the four colors used in the CMYK color model? (2 points) 2. Muscae Volitantes

More information

Lecture 28 March

Lecture 28 March Lecture 28 March 30. 2016. Standing waves Musical instruments, guitars, pianos, organs Doppler Effect Resonance 3/30/2016 Physics 214 Spring 2016 1 Waves on a string If we shake the end of a rope we can

More information

Wave Motion and Sound

Wave Motion and Sound Wave Motion and Sound 1. A back and forth motion that repeats itself is a a. Spring b. Vibration c. Wave d. Pulse 2. The number of vibrations that occur in 1 second is called a. A Period b. Frequency c.

More information

Name Class Date. What two models do scientists use to describe light? What is the electromagnetic spectrum? How can electromagnetic waves be used?

Name Class Date. What two models do scientists use to describe light? What is the electromagnetic spectrum? How can electromagnetic waves be used? CHAPTER 16 12 SECTION Sound and Light The Nature of Light KEY IDEAS As you read this section, keep these questions in mind: What two models do scientists use to describe light? What is the electromagnetic

More information

Properties of Waves. Before You Read. What are the features of a wave?

Properties of Waves. Before You Read. What are the features of a wave? Properties of Waves Textbook pages 134 143 Before You Read Section 4.1 Summary In this section, you will find out about waves, such as water waves, sound waves, and radio waves. On the lines below, list

More information

Physics 11 Exam 3 Spring 2016

Physics 11 Exam 3 Spring 2016 Physics 11 Exam 3 Spring 2016 Name: Circle the BEST Answer 1 Electromagnetic waves consist of A) compressions and rarefactions of electromagnetic pulses. B) oscillating electric and magnetic fields. C)

More information

Light is an electromagnetic wave (EM)

Light is an electromagnetic wave (EM) What is light? Light is a form of energy. Light travels in a straight line Light speed is 3.0 x 10 8 m/s Light is carried by photons Light can travel through a vacuum Light is a transverse wave Light is

More information

the ability to do work or cause change (work is force exerted on an object causing it to move a distance)

the ability to do work or cause change (work is force exerted on an object causing it to move a distance) Vocabulary Terms - Energy energy the ability to do work or cause change (work is force exerted on an object causing it to move a distance) heat Heat is a form of energy that flows between two substances

More information

Chapter 17, Electromagnetic Waves Physical Science, McDougal-Littell, 2008

Chapter 17, Electromagnetic Waves Physical Science, McDougal-Littell, 2008 SECTION 1 (PP. 553-558): ELECTROMAGNETIC WAVES HAVE UNIQUE TRAITS. Georgia Standards: S8P4a Identify the characteristics of electromagnetic and mechanical waves; S8P4d Describe how the behavior of waves

More information

IDS 102: Electromagnetic Radiation and the Nature of Light

IDS 102: Electromagnetic Radiation and the Nature of Light IDS 102: Electromagnetic Radiation and the Nature of Light Major concepts we will cover in this module are: electromagnetic spectrum; wave intensity vs. wavelength, and the difference between light reflection,

More information

Sound and Light. Light

Sound and Light. Light Sound and Light Light What do you think? Read the two statements below and decide whether you agree or disagree with them. Place an A in the Before column if you agree with the statement or a D if you

More information

Energy is the ability to do work. Q: What is energy? Work is done when a force causes an object to move. Q: What is work? Q: Potential Energy

Energy is the ability to do work. Q: What is energy? Work is done when a force causes an object to move. Q: What is work? Q: Potential Energy Q: What is energy? Energy is the ability to do work. Q: What is work? Work is done when a force causes an object to move. Q: Potential Energy The energy of an object due to its position, shape, or condition

More information

Unit 3: Optics Chapter 4. Properties of Light

Unit 3: Optics Chapter 4. Properties of Light Unit 3: Optics Chapter 4 Properties of Light There are many types of light sources... Fluorescence Incandescence Electric Bioluminescence Chemiluminescence Combustion The Nature of Light Pythagoras A Greek

More information

Name Date Class. Electromagnetic Spectrum. Colors

Name Date Class. Electromagnetic Spectrum. Colors b e n c h m a r k t e s t : p h y s i c a l s c i e n c e Multiple Choice Directions: Use the diagram below to answer question 1. Electromagnetic Spectrum Radio waves A B C D Gamma rays Long Wavelength

More information

Chapter 16 Assignment Solutions

Chapter 16 Assignment Solutions Chapter 16 Assignment Solutions Table of Contents Page 452 #25-30, 40, 53-55... 1 Page 452 #24, 32-39, 49-52, 59-62... 2 Page 454 #65-69, 75-78... 4 Page 452 #25-30, 40, 53-55 25) Sound does not travel

More information

Sound Waves SOUND VIBRATIONS THAT TRAVEL THROUGH THE AIR OR OTHER MEDIA WHEN THESE VIBRATIONS REACH THE AIR NEAR YOUR EARS YOU HEAR THE SOUND.

Sound Waves SOUND VIBRATIONS THAT TRAVEL THROUGH THE AIR OR OTHER MEDIA WHEN THESE VIBRATIONS REACH THE AIR NEAR YOUR EARS YOU HEAR THE SOUND. SOUND WAVES Objectives: 1. WHAT IS SOUND? 2. HOW DO SOUND WAVES TRAVEL? 3. HOW DO PHYSICAL PROPERTIES OF A MEDIUM AFFECT THE SPEED OF SOUND WAVES? 4. WHAT PROPERTIES OF WAVES AFFECT WHAT WE HEAR? 5. WHAT

More information

Waves. Electromagnetic. No medium required. Can travel in a vacuum (empty space).

Waves. Electromagnetic. No medium required. Can travel in a vacuum (empty space). Electromagnetic Waves Made up of vibrating electric and magnetic fields. Carry energy. Move in the form of both a wave and a particle. No medium required. Can travel in a vacuum (empty space). Demonstrate

More information

CHAPTERS: 9.1, 10.1 AND 10.2 LIGHT WAVES PROPERTIES

CHAPTERS: 9.1, 10.1 AND 10.2 LIGHT WAVES PROPERTIES Name Period CHAPTERS: 9.1, 10.1 AND 10.2 LIGHT WAVES PROPERTIES ACTIVITY LESSON DESCRIPTION SCORE/POINTS 1. NT WAVES FOLDABLE (blue, green & yellow completely filled in.) /30 /30 2. WS READING GUIDE FOR

More information

Energy - the ability to do work or cause change. 1 point

Energy - the ability to do work or cause change. 1 point Energy and Waves Energy - the ability to do work or cause change Work - the transfer of energy Work = Force X Distance Power - the rate at which work is done Power = Work Time Kinetic Energy - the energy

More information

Fluorescence. Incandescence. Electric. Bioluminescence Chemiluminescence. Combustion

Fluorescence. Incandescence. Electric. Bioluminescence Chemiluminescence. Combustion Fluorescence Incandescence Electric Bioluminescence Chemiluminescence Combustion Pythagoras A Greek philosopher Believed light was beams of tiny particles The eyes could detect these particles and see

More information

SECTION A Waves and Sound

SECTION A Waves and Sound AP Physics Multiple Choice Practice Waves and Optics SECTION A Waves and Sound 1. Which of the following statements about the speed of waves on a string are true? I. The speed depends on the tension in

More information

Optics in a Fish Tank Demonstrations for the Classroom

Optics in a Fish Tank Demonstrations for the Classroom Optics in a Fish Tank Demonstrations for the Classroom Introduction: This series of demonstrations will illustrate a number of optical phenomena. Using different light sources and a tank of water, you

More information

Quest Chapter 29. turned back think bounce. Reread the definition of the law of reflection on page 444.

Quest Chapter 29. turned back think bounce. Reread the definition of the law of reflection on page 444. 1 A wave is turned back when it meets the boundary of the medium in which it is traveling. The wave is said to have undergone 1. interference. 2. diffraction. 3. reflection. 4. refraction. 2 What is the

More information

Physics Worksheet Sound and Light Section: Name:

Physics Worksheet Sound and Light Section: Name: Do Now: What is common between sound and light? What are the differences between sound and light? Sound Waves 1. Define Sound Waves from three different perspectives 6. Speed of sound =. Formula: v =.

More information

This Week. Waves transfer of energy and information. sound (needs an elastic medium)

This Week. Waves transfer of energy and information. sound (needs an elastic medium) This Week Waves transfer of energy and information sound (needs an elastic medium) Standing waves Musical instruments, guitars, pianos, organs Interference of two waves tuning a piano, color of oil films

More information

SECTION 3 & 4 LIGHT WAVES & INFORMATION TRANSFER

SECTION 3 & 4 LIGHT WAVES & INFORMATION TRANSFER SECTION 3 & 4 LIGHT WAVES & INFORMATION TRANSFER Light Waves Light is a type of energy that travels as waves. Light is different than other waves because it does not need matter to travel. Light waves

More information

L 31 Light and Optics [1] Galileo s result. Galileo and the speed of light. The speed of light inside matter. Measurement of the speed of light

L 31 Light and Optics [1] Galileo s result. Galileo and the speed of light. The speed of light inside matter. Measurement of the speed of light L 31 Light and Optics [1] Measurements of the speed of light: 186,000 miles per second (1 foot per nanosecond) light propagating through matter transparent vs. opaque materials colors, why is an orange

More information

The Electromagnetic Spectrum

The Electromagnetic Spectrum Physics 25 Chapter 24 Dr. Alward Electromagnetic Waves Electromagnetic (EM) waves consist of traveling electric and magnetic disturbances. One source of electromagnetic waves are electric charges oscillating

More information

3/9/2011. Outline Chapter 7 Waves Water Waves Water Waves. Water waves are really circular. They are an example of Mechanical waves.

3/9/2011. Outline Chapter 7 Waves Water Waves Water Waves. Water waves are really circular. They are an example of Mechanical waves. Outline Chapter 7 Waves 7-1. Water Waves 7-2. Transverse and Longitudinal Waves 7-3. Describing Waves 7-4. Standing Waves 7-5. Sound 7-6. Doppler Effect 7-7. Musical Sounds 7-8. Electromagnetic Waves 7-9.

More information

Light demonstrates the characteristics of A. particles, only B. waves, only C. both particles and waves D. neither particles nor waves

Light demonstrates the characteristics of A. particles, only B. waves, only C. both particles and waves D. neither particles nor waves Which pair of terms best describes light waves traveling from the Sun to Earth? A. electromagnetic and transverse B. electromagnetic and longitudinal C. mechanical and transverse D. mechanical and longitudinal

More information

Being a Chemist. Summary Sheets. Gleniffer High School

Being a Chemist. Summary Sheets. Gleniffer High School Being a Chemist Summary Sheets Gleniffer High School 0 State that the light year is a measure of astronomical distance State the speed at which light travels Give examples of the relative distance between

More information

Study Guide: Semester Two ( )

Study Guide: Semester Two ( ) Name Hour Study Guide: Semester Two (2017-2018) Unit 5 Chapter 9 Momentum and its Conservation Chapter 10 Energy, Work and Simple Machines Chapter 11 Energy and its Conservation Vocabulary (define the

More information

Sixth Grade Science BLOCK 3 ASSESSMENT Heat, Light, and Sound

Sixth Grade Science BLOCK 3 ASSESSMENT Heat, Light, and Sound Sixth Grade Science BLOCK 3 ASSESSMENT Heat, Light, and Sound 2008-09 Directions: Choose the best answer for each question. Then mark your choice on your answer sheet. 1. Which is the best activity to

More information

Electromagnetic spectra

Electromagnetic spectra Properties of Light Waves, particles and EM spectrum Interaction with matter Absorption Reflection, refraction and scattering Polarization and diffraction Reading foci: pp 175-185, 191-199 not responsible

More information

Chapter 26: Properties of Light

Chapter 26: Properties of Light Lecture Outline Chapter 26: Properties of Light This lecture will help you understand: Electromagnetic Waves The Electromagnetic Spectrum Transparent Materials Opaque Materials Seeing Light The Eye Electromagnetic

More information

Electromagnetic Waves

Electromagnetic Waves 4/15/12 Chapter 26: Properties of Light Field Induction Ok, so a changing magnetic field causes a current (Faraday s law) Why do we have currents in the first place? electric fields of the charges Changing

More information

What does the speed of a wave depend on?

What does the speed of a wave depend on? Today s experiment Goal answer the question What does the speed of a wave depend on? Materials: Wave on a String PHeT Simulation (link in schedule) and Wave Machine Write a CER in pairs. Think about the

More information

Being a Physicist Unit 5. Summary Sheets. Gleniffer High School

Being a Physicist Unit 5. Summary Sheets. Gleniffer High School Being a Physicist Unit 5 Summary Sheets Gleniffer High School 0 Experiences & Outcomes I can explain how sound vibrations are carried by waves through air, water and other materials SCN 2-11a By exploring

More information

Build and Use a Simple Spectroscope

Build and Use a Simple Spectroscope Build and Use a Simple Spectroscope Subject Area: Physical Sciences Grade Level: 9 12 Overview In this activity students will build a spectroscope to analyze the composition of light. Our scope is inexpensive,

More information

Wave Motions and Sound

Wave Motions and Sound EA Notes (Scen 101), Tillery Chapter 5 Wave Motions and Sound Introduction Microscopic molecular vibrations determine temperature (last Chapt.). Macroscopic vibrations of objects set up what we call Sound

More information

Waves Junior Science. Easy to read Version

Waves Junior Science. Easy to read Version Waves Junior Science Easy to read Version 1a Waves transfer energy Waves are a means of transferring energy from one place to another without also transferring matter. Some waves need a medium (matter)

More information

0.4 s 0.8 s 1.5 s. 2.5 s. 2. A beam of light from a ray box spreads out as shown in the diagram and strikes a plane mirror.

0.4 s 0.8 s 1.5 s. 2.5 s. 2. A beam of light from a ray box spreads out as shown in the diagram and strikes a plane mirror. 1. ship is fitted with echo-sounding equipment. pulse of sound is sent downwards from the ship at a speed of 1500 m/s. The seabed is 600m below the ship. How long will it take the pulse of sound to return

More information

Work. Work and Energy Examples. Energy. To move an object we must do work Work is calculated as the force applied to the object through a distance or:

Work. Work and Energy Examples. Energy. To move an object we must do work Work is calculated as the force applied to the object through a distance or: Work To move an object we must do work Work is calculated as the force applied to the object through a distance or: W F( d) Work has the units Newton meters (N m) or Joules 1 Joule = 1 N m Energy Work

More information

Solution 3: A glass prism deviates the violet light most and the red light least.

Solution 3: A glass prism deviates the violet light most and the red light least. EXERCISE- 6 (A) Question 1: Name three factors on which the deviation produces by a prism depends and state how does it depend on the factors stated by you. Solution 1: The deviation produced by the prism

More information

Sunlight. Sunlight 2. Sunlight 4. Sunlight 3. Sunlight 5. Sunlight 6

Sunlight. Sunlight 2. Sunlight 4. Sunlight 3. Sunlight 5. Sunlight 6 Sunlight 1 Sunlight 2 Introductory Question Sunlight When you look up at the sky during the day, is the light from distant stars reaching your eyes? A. Yes B. No Sunlight 3 Observations about Sunlight

More information

National 3 Waves and Radiation

National 3 Waves and Radiation What is a wave? National 3 Waves and Radiation 1. Wave Properties The basic definition Waves are a way of transporting energy from one place to another. They do this through some form of vibration. We

More information

-Electromagnetic. Waves - disturbance that propagates through space & time - usually with transfer of energy -Mechanical.

-Electromagnetic. Waves - disturbance that propagates through space & time - usually with transfer of energy -Mechanical. Waves Waves - disturbance that propagates through space & time - usually with transfer of energy -Mechanical requires a medium -Electromagnetic no medium required Mechanical waves: sound, water, seismic.

More information

Physics Test Pack WALCH PUBLISHING

Physics Test Pack WALCH PUBLISHING Physics Test Pack WALCH PUBLISHING Table of Contents To the Teacher........................................................... v Testing Students Who Do Not Test Well.....................................

More information

Pre-Lab Reading Questions GS106 Lab 3 Answer Key - How We Use Light in Astronomy Life Cycle of a Wave: 1) initialized as oscillating vibrations ("disturbances"), 2) wave travel from origin to destination,

More information

The Nature of Light I: Electromagnetic Waves Spectra Kirchoff s Laws Temperature Blackbody radiation

The Nature of Light I: Electromagnetic Waves Spectra Kirchoff s Laws Temperature Blackbody radiation The Nature of Light I: Electromagnetic Waves Spectra Kirchoff s Laws Temperature Blackbody radiation Electromagnetic Radiation (How we get most of our information about the cosmos) Examples of electromagnetic

More information

10. A Kelvin thermometer and a Fahrenheit thermometer both give the same reading for a certain sample. The corresponding Celsius temperature is: A)

10. A Kelvin thermometer and a Fahrenheit thermometer both give the same reading for a certain sample. The corresponding Celsius temperature is: A) Physics 223 practice final exam, Form X!! Fall 2017 Name Write your answers (one per question) on a Scantron form (882E) using a pencil. Write your name above. Return this exam with your scantron upon

More information

Waves ~ Learning Guide

Waves ~ Learning Guide Waves ~ Learning Guide Name: Instructions: Using a pencil, answer the following questions. The Pre-Reading is marked, based on effort, completeness, and neatness (not accuracy). The rest of the assignment

More information

Physics 30: Chapter 5 Exam Wave Nature of Light

Physics 30: Chapter 5 Exam Wave Nature of Light Physics 30: Chapter 5 Exam Wave Nature of Light Name: Date: Mark: /33 Numeric Response. Place your answers to the numeric response questions, with units, in the blanks at the side of the page. (1 mark

More information

Chapter 5 Light and Matter: Reading Messages from the Cosmos. 5.1 Light in Everyday Life. How do we experience light?

Chapter 5 Light and Matter: Reading Messages from the Cosmos. 5.1 Light in Everyday Life. How do we experience light? Chapter 5 Light and Matter: Reading Messages from the Cosmos 5.1 Light in Everyday Life Our goals for learning: How do we experience light? How do light and matter interact? How do we experience light?

More information

Physics Common Assessment Unit 5-8 3rd Nine Weeks

Physics Common Assessment Unit 5-8 3rd Nine Weeks 1) What is the direction of the force(s) that maintain(s) circular motion? A) one force pulls the object inward toward the radial center while another force pushes the object at a right angle to the first

More information

Section 1: The Science of Energy¹

Section 1: The Science of Energy¹ SECTION1: THE SCIENCE OF ENERGY Section 1: The Science of Energy¹ What Is Energy? Energy is the ability to do work or the ability to make a change. Everything that happens in the world involves the exchange

More information

Nicholas J. Giordano. Chapter 13 Sound

Nicholas J. Giordano.  Chapter 13 Sound Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 13 Sound Sound Sounds waves are an important example of wave motion Sound is central to hearing, speech, music and many other daily activities

More information

Exercises The Origin of Sound (page 515) 26.2 Sound in Air (pages ) 26.3 Media That Transmit Sound (page 517)

Exercises The Origin of Sound (page 515) 26.2 Sound in Air (pages ) 26.3 Media That Transmit Sound (page 517) Exercises 26.1 The Origin of (page 515) Match each sound source with the part that vibrates. Source Vibrating Part 1. violin a. strings 2. your voice b. reed 3. saxophone c. column of air at the mouthpiece

More information

Wave - Particle Duality of Light

Wave - Particle Duality of Light Properties of Light Objectives Explain wave-particle duality State the speed of light Describe electromagnetic waves and the electromagnetic spectrum Explain how light interacts with transparent and opaque

More information

Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information

Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information Concepts: Properties of Electromagnetic Radiation Chapter 5 Electromagnetic waves Types of spectra Temperature Blackbody radiation Dual nature of radiation Atomic structure Interaction of light and matter

More information

3rd six weeks replacement grade packet DUE BY THURSDAY DEC. 15, 2011 BY 4:15 PM

3rd six weeks replacement grade packet DUE BY THURSDAY DEC. 15, 2011 BY 4:15 PM Class: Date: 3rd six weeks replacement grade packet DUE BY THURSDAY DEC. 15, 2011 BY 4:15 PM Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

More information

Course Guide. Introduction... 2

Course Guide. Introduction... 2 Introduction... 2 Unit 1: Matter, States, & Interactions Lesson 1: Properties of Matter... 2 Lesson 2: States of Matter... 2 Lesson 3: Matter Particles... 3 Lesson 4: Organization of Matter... 3 Lesson

More information

Light is an important form of energy for all of us

Light is an important form of energy for all of us What is Light? Light is an important form of energy for all of us it allows us to see plants rely on light for photosynthesis many chemical reactions produce light life on Earth would not exist without

More information

Waves ~ Learning Guide

Waves ~ Learning Guide Waves ~ Learning Guide Name: Instructions: Using a pencil, answer the following questions. The Pre-Reading is marked, based on effort, completeness, and neatness (not accuracy). The rest of the assignment

More information

Quest Chapter 28. Remember: We see by color addition. How do we get white with color addition? So, is it a color?

Quest Chapter 28. Remember: We see by color addition. How do we get white with color addition? So, is it a color? 1 Why do we not list black and white as colors? 1. People usually think black and white should only reflect dark and light in a image. They cannot represent the colorful world. 2. Black should not be regarded

More information

Chapter 5: Light and Matter: Reading Messages from the Cosmos

Chapter 5: Light and Matter: Reading Messages from the Cosmos Chapter 5 Lecture Chapter 5: Light and Matter: Reading Messages from the Cosmos Light and Matter: Reading Messages from the Cosmos 5.1 Light in Everyday Life Our goals for learning: How do we experience

More information

EA Notes (Scen 101), Tillery Chapter 7. Light

EA Notes (Scen 101), Tillery Chapter 7. Light EA Notes (Scen 101), Tillery Chapter 7 Light Introduction Light is hard to study because you can't see it, you only see it's effects. Newton tried to explain the energy in a light beam as the KE of a particle

More information

Physics Study Notes Lesson 20 Sound and Light 1 The Origin of Sound vibrations longitudinal waves infrasonic ultrasonic 2 Sound in Air Compression

Physics Study Notes Lesson 20 Sound and Light 1 The Origin of Sound vibrations longitudinal waves infrasonic ultrasonic 2 Sound in Air Compression 1 The Origin of Sound a. All sounds are produced by the vibrations of material objects. b. The original vibration stimulates the vibration of something larger or more massive, and then this vibrating material

More information

Chapter 17 Practice Questions KEY

Chapter 17 Practice Questions KEY Chapter 17 Practice Questions KEY 1. Long wavelength Medium wavelength Short wavelength 1. Long wavelength Radio, Microwave Medium wavelength Infrared, Visible, Ultraviolet Short wavelength X ray, gamma

More information

Introduction to Properties of Waves

Introduction to Properties of Waves Introduction to Properties of Waves Waves travel through materials as vibrations and transmit energy. Though nearly all waves travel through matter, they never transmit matter. Waves are created when a

More information

Topic 5 Practice Test

Topic 5 Practice Test Base your answers to questions 1 and 2 on the diagram below, which represents the greenhouse effect in which heat energy is trapped in Earth's atmosphere 1. The Earth surface that best absorbs short-wave

More information

P1 REVISION CHAPTER 1a Energy Tfr by Heating

P1 REVISION CHAPTER 1a Energy Tfr by Heating P1 REVISION CHAPTER 1a Energy Tfr by Heating Infrared Radiation What gives off infrared radiation? What is a vacuum? Surfaces & Radiation What surfaces are good absorbers of infrared radiation? What surfaces

More information

SIMPLE HARMONIC MOTION AND WAVES

SIMPLE HARMONIC MOTION AND WAVES Simple Harmonic Motion (SHM) SIMPLE HARMONIC MOTION AND WAVES - Periodic motion any type of motion that repeats itself in a regular cycle. Ex: a pendulum swinging, a mass bobbing up and down on a spring.

More information

Core Concept. PowerPoint Lectures to accompany Physical Science, 8e. Chapter 7 Light. New Symbols for this Chapter 3/29/2011

Core Concept. PowerPoint Lectures to accompany Physical Science, 8e. Chapter 7 Light. New Symbols for this Chapter 3/29/2011 PowerPoint Lectures to accompany Physical Science, 8e Chapter 7 Light Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Core Concept Light is electromagnetic radiation

More information

FCAT REVIEW Physical Science: Force and Energy

FCAT REVIEW Physical Science: Force and Energy FCAT REVIEW Physical Science: Force and Energy Force and Motion A force is a push or pull that starts, stops, or changes the direction of an object. Some examples of contact forces are gravity and friction.

More information

Energy - Heat, Light, and Sound

Energy - Heat, Light, and Sound Energy - Heat, Light, and Sound Source: Utah State Office of Education A two-year-old has plenty of it, and the sun has a bunch of it. Do you know what it is? If not, let me give you a definition: A source

More information

Grade 5. Practice Test. What is Light? How Light Behaves. Photo Credits (in order of appearance): Alexandr Mitiuc/Dreamstime.com

Grade 5. Practice Test. What is Light? How Light Behaves. Photo Credits (in order of appearance): Alexandr Mitiuc/Dreamstime.com Name Date Grade 5 What is Light? How Light Behaves Photo Credits (in order of appearance): Alexandr Mitiuc/Dreamstime.com Today you will read two passages. Read these sources carefully to gather information

More information

Cp physics - Spring Final Review (second semester topics)

Cp physics - Spring Final Review (second semester topics) Name: Class: _ Date: _ Cp physics - Spring Final Review (second semester topics) Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following

More information

This Week. Waves transfer of energy and information. sound (needs an elastic medium)

This Week. Waves transfer of energy and information. sound (needs an elastic medium) This Week Waves transfer of energy and information sound (needs an elastic medium) Standing waves Musical instruments, guitars, pianos, organs Interference of two waves tuning a piano, color of oil films

More information

Waves Review Checklist Pulses 5.1.1A Explain the relationship between the period of a pendulum and the factors involved in building one

Waves Review Checklist Pulses 5.1.1A Explain the relationship between the period of a pendulum and the factors involved in building one 5.1.1 Oscillating Systems Waves Review Checklist 5.1.2 Pulses 5.1.1A Explain the relationship between the period of a pendulum and the factors involved in building one Four pendulums are built as shown

More information

This Week. Waves transfer of energy and information. sound (needs an elastic medium)

This Week. Waves transfer of energy and information. sound (needs an elastic medium) This Week Waves transfer of energy and information sound (needs an elastic medium) Standing waves Musical instruments, guitars, pianos, organs Interference of two waves tuning a piano, color of oil films

More information

P5 Revision Questions

P5 Revision Questions P5 Revision Questions Part 2 Question 1 How can microwaves be used to communicate? Answer 1 Sent from transmitter, received and amplified by satellite in space, re-transmitted back to earth and picked

More information

Newton s Laws of Motion

Newton s Laws of Motion Newton s Laws of Motion #1: A body continues at rest or in uniform motion in a straight line unless acted upon by a force. Why doesn t the soccer ball move on its own? What causes a soccer ball to roll

More information

Preview from Notesale.co.uk Page 1 of 38

Preview from Notesale.co.uk Page 1 of 38 F UNDAMENTALS OF PHOTONICS Module 1.1 Nature and Properties of Light Linda J. Vandergriff Director of Photonics System Engineering Science Applications International Corporation McLean, Virginia Light

More information

Revision checklist. Step Learning outcome Had a look Nearly there Nailed it! Step Learning outcome Had a look Nearly there Nailed it!

Revision checklist. Step Learning outcome Had a look Nearly there Nailed it! Step Learning outcome Had a look Nearly there Nailed it! SP4 Waves SP4a Describing waves Step Learning outcome Had a look Nearly there Nailed it Recall that waves transfer energy and information but do not transfer matter. Describe waves using the terms frequency,

More information

Chapter 33 Nature and Propagation of Light. From vision to digital camera to rainbows to pictures of the early universe light is all around us

Chapter 33 Nature and Propagation of Light. From vision to digital camera to rainbows to pictures of the early universe light is all around us Chapter 33 Nature and Propagation of Light From vision to digital camera to rainbows to pictures of the early universe light is all around us Introduction A coating of oil on water or a delicate glass

More information

Focusing on Light What is light? Is it a particle or a wave? An age-old debate that has persisted among scientists is related to the question, "Is

Focusing on Light What is light? Is it a particle or a wave? An age-old debate that has persisted among scientists is related to the question, Is Focusing on Light What is light? Is it a particle or a wave? An age-old debate that has persisted among scientists is related to the question, "Is light a wave or a stream of particles?" Very noteworthy

More information

SPECTRUM. Dispersion. This phenomenon can be observed in a lab environment using a

SPECTRUM. Dispersion. This phenomenon can be observed in a lab environment using a SPECTRUM Dispersion The phenomenon due to which a polychromatic light, like sunlight, splits into its component colours, when passed through a transparent medium like a glass prism, is called dispersion

More information

Revision checklist SP4 5. SP4 Waves. SP4a Describing waves. SP4b Wave speeds. SP4c Refraction

Revision checklist SP4 5. SP4 Waves. SP4a Describing waves. SP4b Wave speeds. SP4c Refraction SP4 Waves SP4a Describing waves Recall that waves transfer energy and information but do not transfer matter. Describe waves using the terms frequency, wavelength, amplitude, period and velocity. Describe

More information

Physics General Physics. Lecture 25 Waves. Fall 2016 Semester Prof. Matthew Jones

Physics General Physics. Lecture 25 Waves. Fall 2016 Semester Prof. Matthew Jones Physics 22000 General Physics Lecture 25 Waves Fall 2016 Semester Prof. Matthew Jones 1 Final Exam 2 3 Mechanical Waves Waves and wave fronts: 4 Wave Motion 5 Two Kinds of Waves 6 Reflection of Waves When

More information

AP Waves/Optics ~ Learning Guide

AP Waves/Optics ~ Learning Guide AP Waves/Optics ~ Learning Guide Name: Instructions: Using a pencil, answer the following questions. The guide is marked based on effort, completeness, thoughtfulness, and neatness (not accuracy). Do your

More information

Grade 7 Physical Pretest

Grade 7 Physical Pretest Grade 7 Physical Pretest Select the best answer to each question. 1. Energy from the sun arrives as electromagnetic radiation with a wide range of wavelengths and frequencies. Of the four wave types listed,

More information

Physical Science DCI Progression Chart

Physical Science DCI Progression Chart DCI Progression Chart PS1: Matter and Its Interactions Grade Bands PS1.A Structure & Properties of Matter Grades K-2 Grades 3-5 Grades 6-8 Grades 9-12 Second Grade * Different kinds of matter exist and

More information

Chapter 5 Light and Matter: Reading Messages from the Cosmos. How do we experience light? Colors of Light. How do light and matter interact?

Chapter 5 Light and Matter: Reading Messages from the Cosmos. How do we experience light? Colors of Light. How do light and matter interact? Chapter 5 Light and Matter: Reading Messages from the Cosmos How do we experience light? The warmth of sunlight tells us that light is a form of energy We can measure the amount of energy emitted by a

More information

Note on Posted Slides

Note on Posted Slides Note on Posted Slides These are the slides that I intended to show in class on Tue. Apr. 1, 2014. Since it is April 1 st, there is an April Fools Day joke in here one of the slides is complete nonsense

More information