A microphotonic astrocomb

Size: px
Start display at page:

Download "A microphotonic astrocomb"

Transcription

1 SUPPLEMENTARY INFORMATION Letters In the format provided by the authors and unedited. A microphotonic astrocomb Ewelina Obrzud 1,2, Monica Rainer 3,8, Avet Harutyunyan 4, Miles H. Anderson 5, Junqiu Liu 5, Michael Geiselmann 5,6, Bruno Chazelas 2, Stefan Kundermann 1, Steve Lecomte 1, Massimo Cecconi 4, Adriano Ghedina 4, Emilio Molinari 4,7, Francesco Pepe 2, François Wildi 2, François Bouchy 2, Tobias J. Kippenberg 5 and Tobias Herr 1 * 1 Swiss Centre for Electronics and Microtechnology (CSEM), Time and Frequency Sector, Neuchâtel, Switzerland. 2 University of Geneva, Department of Astronomy & Geneva Observatory/PlanetS, Versoix, Switzerland. 3 National Institute of Astrophysics (INAF), Astronomical Observatory of Brera, Milano, Italy. 4 National Institute of Astrophysics (INAF), Fundación Galileo Galilei, Breña Baja, Santa Cruz de Tenerife, Spain. 5 Swiss Federal Institute of Technology (EPFL), Photonics and Quantum Measurements, SB IPHYS LPQM, Lausanne, Switzerland. 6 Ligentec, EPFL Innovation Park, Bâtiment C, Lausanne, Switzerland. 7 National Institute of Astrophysics (INAF), Osservatorio Astronomico di Cagliari, Selargius, Italy. 8 Present address: National Institute of Astrophysics (INAF), Arcetri Astrophysical Observatory, Florence, Italy. * tobias.herr@csem.ch Nature Photonics

2 A microphotonic Astrocomb - Supplementary Information Ewelina Obrzud 1,2, Monica Rainer 3, Avet Harutyunyan 4, Miles H. Anderson 5, Junqui Liu 5, Michael Geiselmann 5,6, Bruno Chazelas 2, Stefan Kundermann 1, Steve Lecomte 1 Massimo Cecconi 4, Adriano Ghedina 4, Emilio Molinari 4,7, Francesco Pepe 2, François Wildi 2, François Bouchy 2, Tobias J. Kippenberg 5 & Tobias Herr 1 1 Swiss Centre for Electronics and Microtechnology (CSEM), Time and Frequency Sector, Rue de l Observatoire 58, 2002 Neuchâtel, Switzerland 2 University of Geneva, Department of Astronomy & Geneva Observatory/PlanetS, Chemin des Maillettes 51, 1290 Versoix, Switzerland 3 National Institute of Astrophysics (INAF), Astronomical Observatory of Brera, Via Brera 28, Milano, Italy 4 National Institute of Astrophysics (INAF), Fundación Galileo Galilei, Rambla José Ana Fernández Pérez 7, Breña Baja, Santa Cruz de Tenerife, Spain 5 Swiss Federal Institute of Technology (EPFL), Photonics and Quantum Measurements, SB IPHYS LPQM1, PH D3, Station 3, 1015 Lausanne, Switzerland 6 Ligentec, EPFL Innovation Park, Bâtiment C, 1015 Lausanne, Switzerland 7 National Institute of Astrophysics (INAF), Osservatorio Astronomico di Cagliari, Via della Scienza Selargius (CA), Italy 1 Stability of the microphotonic astrocomb General remarks on the stability of frequency combs. The current definition of frequency (and therefore wavelength) is based on the ground state hyper-fine transition frequency in caesium- 133 (Cs) at 9 GHz. Frequency combs permit synthesis of optical lines whose frequencies are directly referenced to the absolute Cs-standard, hence providing the unique and unprecedented opportunity for absolute spectrometer calibration. The optical frequencies ν n of the comb lines are fully described by the relation ν n = n f rep + f 0, where the pulse repetition rate (i.e. the comb line spacing) f rep and the offset frequency f 0 (n is an integer). By linking both f rep and f 0 to the Cs-based frequency standard also the optical frequencies ν n are referenced to the Cs-standard with the same relative stability and accuracy. As Cs-primary clocks are extremely complex and costly systems and limited to major national metrology laboratories, frequency combs are typically not directly referenced to the Cs-standard, but rather to a stable local radio-frequency (RF) oscillator such as a compact atomic rubidium-clock (RB-clock) as in the present work. While these local oscillators provide sufficient short-term stability (as will be detailed below), they will lose accuracy over time due to drift and ageing effects. For the Rb-clock used here the relative effect of ageing is approximately per year equating to a radial velocity error of 15 cm/s per year. This growing inaccuracy could impede the detection of small, Earth-like planets and would pose a severe limitation to cosmological observations. In order to nevertheless provide long term accuracy 1

3 the local RF oscillators can be disciplined to the absolute Cs-standard on medium time scales (minutes to hours) limiting their inaccuracy. In the present case the Rb-clock is disciplined to the Cs-standard via the global-position system (GPS), resulting in an absolute accuracy of on any long time scale corresponding to sub-mm/s radial velocities. On short-time scales frequency combs will be fundamentally limited by the stability of the local oscillator frequency standard. In addition, laser frequency noise in f rep and f 0 will further reduce the stability on short time scales. In the following, the long- and short-term stability of the present astrocomb system is discussed. Here, we loosely define long- and short-term as time scales that are significantly longer or comparable to the exposure time required for achieving a single spectrometer calibration (10 s in the present case), respectively. Long-term stability of the microphotonic astrocomb. In the present case of the microphotonic astrocomb the comb s line spacing frep astro is given by the soliton pulse repetition rate. Owing to the sub-harmonic pulsed driving scheme, the soliton s repetition rate is directly determined by the exact double of the microwave frequency driving the electro-optic modulators. As the microwave source is directly referenced to the GPS-disciplined Rb-clock, frep astro acquires the long term accuracy and stability of the Cs-based frequency standard. The remaining parameter is the astrocomb s offset frequency f 0 which is conveniently controlled by the frequency of the CW laser (cf. Fig. 1 in the main text), which already constitutes one of the astrocomb s lines. As measuring f 0 for a highrepetition rate astrocomb is challenging, we take a different approach and lock the offset frequency f0 astro of the astrocomb, by offset-locking the CW laser to the nearest comb line of a conventional self-referenced low-repetition rate (100 MHz) mode-locked laser (MLL). By referencing f 0 and f rep of the MLL as well as the offset-lock frequency to the GPS-disciplined Rb-clock, the astrocomb s offset f0 astro acquires the long term accuracy and stability of the Cs-based frequency standard. In summary, on long time scales, the microphotonic astrocomb inherits the per definition absolute accuracy and long-term stability of the Cs-based time and frequency standard. Short-term stability of the microphotonic astrocomb. A number of technical components limit the frequency stability of the microphotonic astrocomb on short time scales. The impact of these individual technical components is illustrated in Figure 1a in terms of their effect on the actual frequency stability of the astrocomb s lines. In order to derive the data in Figure 1a, the Allan deviation of the relevant frequencies has been measured and multiplied with the respective relevant carrier frequency (more detail will be provided below). Importantly, Figure 1 shows that the microphotonic astrocomb provides sufficient short-term stability to support spectrometer calibration on the level of 1 cm/s for exposure times of 1 s and longer (in the present work we used exposure times of 10 s). In the following the components limiting the short-term stability and the method of determining these limits will be discussed: Rb-clock: On short time scales the stability and hence the calibration precision cannot be better than the RF standard to which the comb is referenced. This implies that the Rb- 2

4 clock poses a fundamental limitation to the stability on short time scales. Its impact on the astrocomb s short-term stability can be found by multiplying its relative stability with the optical frequency of the astrocomb ( 193 THz). The result is shown in Figure 1a (white line Rb clock ). Microwave-synthesizer: The astrocomb s line spacing, i.e. the soliton s repetition rate is defined by and tightly locked to the microwave synthesizer (within a feedback bandwidth corresponding to the microresonator s resonance width). This is illustrated in Figure 1b, which shows the matching phase noises of the microwave synthesizer and of the soliton s repetition rate (measured in the wing of the soliton spectrum at 1515 nm in a 1 nm wide span). In particular, no excess noise resulting from the erbium-doped fibre amplifier (EDFA) is apparent at the relevant frequencies. While the microwave synthesizer defining the astrocomb s line spacing frep astro is directly referenced to the Rb-clock, it will add a certain amount of excess noise when generating the microwave frequency driving the modulators. Any additional instability in the synthesizer will lead to an additional breathing of the comb lines around the frequency defined by the CW laser. In order to determine the impact of this effect, the relative excess noise is measured (at 24 MHz) and multiplied with the spectral distance between CW laser and far-out wing (15 THz). The corresponding result in Figure 1a (blue line MW synthesizer ) shows that the stability of the microwave synthesizer is not limiting the astrocomb s short-term performance and will indeed be compatible with much broader spectra in the future. Locking of the CW laser to the MLL: Even for a perfectly stable MLL comb (which is not the case as will be discussed below) the instability in locking the CW laser to the MLL will directly translate to instability in the astrocomb s offset f0 astro. The lock is implemented as an offset lock, locking the CW laser at a 10 MHz offset to one of the MLL s lines. In order to quantify the resulting noise on f0 astro the relative stability of the offset lock is measured (out-of-loop) and multiplied with the offset frequency. The resulting contribution to the instability of f0 astro is shown in Figure 1a (blue line CW laser lock ). RF-to-optical link via the MLL: The stability of the the astrocomb s offset frequency f0 astro is indeed limited by the instability of the MLL s f rep. The measured (out-of-loop) relative instability of f rep is multiplied with the optical frequency of the astrocomb ( 193 THz) in order to calculate the resulting instability of the MLL line to which the CW laser is locked. Due to the large multiplication factor, the resulting instability in the astrocomb s offset f0 astro is significant as shown in Figure 1a (black line MLL f rep lock ). Exposure times of 1 s or longer are required if a precision of 1 cm/s is to be reached. Note that the instability related to the MLL s f 0 lock is negligible but also shown for completeness in Figure 1a (black line MLL f 0 lock ). In summary, all contributions limiting the astrocomb s stability are smaller than what is required to support a calibration precision of < 1 cm/s already after 1 s of averaging (i.e. exposure 3

5 time). 2 The Giano-B spectromter GIANO-B is a near-infrared high resolution spectrometer mounted at the Telescopio Nazionale Galileo (TNG). GIANO-B provides cross-dispersed echelle slit spectroscopy at a resolution of almost in the near-infrared spectral range ( nm) in a single exposure. The GIANO-B spectrometer bench with optical elements and the detector array are enclosed inside a vacuum chamber, which is cooled down to cryogenic temperatures using liquid nitrogen. The chamber s pressure and temperature are continuously monitored and controlled through a number of sensors and a programmable logic controller. The spectrometer chamber is located near the Telescope Nasmyth focal station. For a higher mechanical stability, the chamber is installed on a metal structure and is attached to the fork of the Telescope mount. A warm pre-slit optical system located outside the cryogenically cooled spectrometer feeds the telescope light onto the cold slit through the entrance window on the chamber. The cold slit has on-sky dimensions of 6 x 0.5. The pre-slit also delivers the light from the calibration unit to the spectrometer. The GIANO-B spectrometer detector is a HgCdTe HAWAII x 2048 pixel array. The pixel size is 18 µm with an on-sky scale of approximately 0.25 throughout the array, and the spectrometer slit width on the detector is roughly 2 pixels. The detector read-out noise is 5 electrons/pixel, the gain is 2.2 electrons/analogue-to-digital-unit, while the dark current is 0.05 electrons/second/pixel. Even if the dark current were not subtracted the combined technical detector noise is small in comparison to the statistical photon noise that scales proportionally to the square-root of the accumulated flux. 3 Impact of photon noise on spectrometer calibration Statistical photon noise represents a fundamental limit to any spectrometer calibration. In our case photon noise largely dominates over technical detector noise such as dark current or read-out noise. For the presently obtained calibration spectra we estimate that photon noise fundamentally limits the best attainable precision to 20 cm/s, which agrees well with the found precision of 25 cm/s. The method used for this estimate, follows the derivation by Bouchy et al. (cf. Ref. 48) and takes into account the quality factor Q spec of the spectrum and the fundamental photon noise A i, where A i is the detected intensity at pixel i. The quality factor Q spec is independent of the spectral flux and is a measure of the spectral richness of the spectrum. Spectra with a high number of spectral features with steep slopes will have a higher Q spec in comparison with spectra composed of fewer or less steep spectral features. The expected radial velocity precision δv rms may then be written as δv rms c = 1 Q spec F (1) where c is the speed of light and F = i A i is the total flux. For a given spectrum with a certain quality factor, δv rms is proportional to F 1, which is the expected behaviour. The quality factor 4

6 a MLL f rep lock Frequency stability of astrocomb (MHz) 10 cm/s 1 cm/s MLL f 0 lock CW laser lock MW synthesizer Rb clock 10 s exposure b Exposure time (s) Phase noise (dbc/hz) Soliton MW synthesizer Frequency (Hz) Figure 1: Short-term stability of the astrocomb. (a) Effective impact of individual technical components on the astrocomb s stability. The horizontal dashed lines indicate the stability level required for spectrometer calibration on the level of 10 cm/s and 1 cm/s, respectively. For exposure times of 1 s or longer a calibration precision of below 1 cm/s can in principle be reached with the present system. The exposure time of 10 second (marked by a vertical line and red dot), which was used in the present work is largely sufficient to support beyond-state-of-the-art calibration. All data has been measured except for the performance of the commercially available Rb clock, which is specified by the manufacturer and corresponds to what is routinely achieved in Rb clocks. (b) Phase noise of the microwave synthesizer in comparison to the soliton s repetition rate phase noise (both at 24 GHz). The soliton s repetition rate was detected in a 1 nm wide span in the wing of the spectrum at 1515 nm. 5

7 Q spec is defined as Q spec = i λ 2 i ( A i/ λ i ) 2 A i F (2) It can intuitively be seen from Equation 2 that a higher number of spectral features with a strong wavelength λ dependence will result in a higher value of Q spec. Based on the experimentally recorded comb spectra providing A i and λ i (the wavelength at pixel i) the radial velocity precision is estimated according to Equations 1 and 2. While the flux F can not be increased, as otherwise the detector would saturate, a higher Q spec can be obtained using broader calibration spectra. 6

High-precision CTE measurement of aluminum-alloys for cryogenic astronomical instrumentation

High-precision CTE measurement of aluminum-alloys for cryogenic astronomical instrumentation DOI 10.1007/s10686-009-9172-7 SHORT COMMUNICATION High-precision CTE measurement of aluminum-alloys for cryogenic astronomical instrumentation I. Mochi S. Gennari E. Oliva C. Baffa V. Biliotti G. Falcini

More information

Detecting Earth-Sized Planets with Laser Frequency Combs

Detecting Earth-Sized Planets with Laser Frequency Combs Detecting Earth-Sized Planets with Laser Frequency Combs Hayley Finley Department of Physics, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104 Abstract Detection of Earth-mass

More information

Cyclic variations in the periods of RR Lyr stars arxiv: v1 [astro-ph.sr] 29 Jan 2018

Cyclic variations in the periods of RR Lyr stars arxiv: v1 [astro-ph.sr] 29 Jan 2018 Cyclic variations in the periods of RR Lyr stars arxiv:1801.09702v1 [astro-ph.sr] 29 Jan 2018 Ennio Poretti 1 2 3, Jean-Francois Le Borgne 4 5 3, Alain Klotz 4 5 3, Monica Rainer 1 6 and Mercedes Correa

More information

Astronomical frequency comb for calibration of low and medium resolution spectrographs

Astronomical frequency comb for calibration of low and medium resolution spectrographs Astronomical frequency comb for calibration of low and medium resolution spectrographs innofspec at AIP has several years expertise in astronomical instrumentation. innofspec succesfully developed a new

More information

CCDs for the instrumentation of the Telescopio Nazionale Galileo.

CCDs for the instrumentation of the Telescopio Nazionale Galileo. CCDs for the instrumentation of the Telescopio Nazionale Galileo. R. Cosentino, G. Bonanno, P. Bruno, S. Scuderi Osservatorio Astrofisico di Catania Viale Andrea Doria, 6 I-95125 Catania (Italy) C. Bonoli,

More information

Timing Applications and User Equipment R. Michael Garvey. Time and Frequency Services with Galileo Workshop. 5-6 December 2005

Timing Applications and User Equipment R. Michael Garvey. Time and Frequency Services with Galileo Workshop. 5-6 December 2005 Timing Applications and User Equipment R. Michael Garvey Time and Frequency Services with Galileo Workshop 5-6 December 2005 Outline Atomic Clock Technologies Atomic Clock Vendors Rubidium Gas Cell Cesium

More information

Optoelectronic Applications. Injection Locked Oscillators. Injection Locked Oscillators. Q 2, ω 2. Q 1, ω 1

Optoelectronic Applications. Injection Locked Oscillators. Injection Locked Oscillators. Q 2, ω 2. Q 1, ω 1 Injection Locked Oscillators Injection Locked Oscillators Optoelectronic Applications Q, ω Q, ω E. Shumakher, J. Lasri,, B. Sheinman, G. Eisenstein, D. Ritter Electrical Engineering Dept. TECHNION Haifa

More information

Development of a compact Yb optical lattice clock

Development of a compact Yb optical lattice clock Development of a compact Yb optical lattice clock A. A. Görlitz, C. Abou-Jaoudeh, C. Bruni, B. I. Ernsting, A. Nevsky, S. Schiller C. ESA Workshop on Optical Atomic Clocks D. Frascati, 14 th 16 th of October

More information

Spitzer Space Telescope

Spitzer Space Telescope Spitzer Space Telescope (A.K.A. The Space Infrared Telescope Facility) The Infrared Imaging Chain 1/38 The infrared imaging chain Generally similar to the optical imaging chain... 1) Source (different

More information

The GIANO spectrometer: towards its first light at the TNG

The GIANO spectrometer: towards its first light at the TNG The GIANO spectrometer: towards its first light at the TNG E. Oliva a, L. Origlia b, R. Maiolino c, C. Baffa a, V. Biliotti a, P. Bruno e, G. Falcini a, V. Gavriousev a, F. Ghinassi d, E. Giani a, M. Gonzalez

More information

arxiv: v2 [astro-ph.im] 10 Nov 2017

arxiv: v2 [astro-ph.im] 10 Nov 2017 Astro-comb calibrator and spectrograph characterization using a turn-key laser frequency comb arxiv:175.719v [astro-ph.im] 1 Nov 17 Aakash Ravi a,*, David F. Phillips b, Matthias Beck c, Leopoldo L. Martin

More information

An astro-comb calibrated solar telescope to search for the radial velocity signature of Venus

An astro-comb calibrated solar telescope to search for the radial velocity signature of Venus An astro-comb calibrated solar telescope to search for the radial velocity signature of Venus David F. Phillips a, Alex G. Glenday b, Xavier Dumusque c, Nicolas Buchschacher c, Andrew Collier Cameron d,

More information

Nonlinear Optics (WiSe 2016/17) Lecture 9: December 16, 2016 Continue 9 Optical Parametric Amplifiers and Oscillators

Nonlinear Optics (WiSe 2016/17) Lecture 9: December 16, 2016 Continue 9 Optical Parametric Amplifiers and Oscillators Nonlinear Optics (WiSe 2016/17) Lecture 9: December 16, 2016 Continue 9 Optical Parametric Amplifiers and Oscillators 9.10 Passive CEP-stabilization in parametric amplifiers 9.10.1 Active versus passive

More information

SPITZER SPACE TELESCOPE

SPITZER SPACE TELESCOPE SPITZER SPACE TELESCOPE The Rationale for Infrared Astronomy reveal cool states of matter explore the hidden Universe provide access to many spectral features probe the early life of the cosmos WANT TO

More information

NICS, the Near Infrared Camera-Spectrometer of the TNG

NICS, the Near Infrared Camera-Spectrometer of the TNG Mem. S.A.It. Vol. 74, 118 c SAIt 2003 Memorie della NICS, the Near Infrared Camera-Spectrometer of the TNG E. Oliva 1,2 1 INAF Osservatorio Astrofisico di Arcetri, largo E. Fermi 5, I-50125 Firenze, Italy

More information

Observation of spectral enhancement in a soliton fiber laser with fiber Bragg grating

Observation of spectral enhancement in a soliton fiber laser with fiber Bragg grating Observation of spectral enhancement in a soliton fiber laser with fiber Bragg grating L. M. Zhao 1*, C. Lu 1, H. Y. Tam 2, D. Y. Tang 3, L. Xia 3, and P. Shum 3 1 Department of Electronic and Information

More information

Spectroscopic Measurements of Optical Elements For Submillimeter Receivers

Spectroscopic Measurements of Optical Elements For Submillimeter Receivers 5- Abstract Spectroscopic Measurements of Optical Elements For Submillimeter Receivers J. Kawamura, S. Paine, and D. C. Papa Harvard-Smithsonian Center for Astrophysics 60 Garden Street Cambridge, Massachusetts

More information

Practical 1P4 Energy Levels and Band Gaps

Practical 1P4 Energy Levels and Band Gaps Practical 1P4 Energy Levels and Band Gaps What you should learn from this practical Science This practical illustrates some of the points from the lecture course on Elementary Quantum Mechanics and Bonding

More information

Supplementary Figure 1 Comparison of single quantum emitters on two type of substrates:

Supplementary Figure 1 Comparison of single quantum emitters on two type of substrates: Supplementary Figure 1 Comparison of single quantum emitters on two type of substrates: a, Photoluminescence (PL) spectrum of localized excitons in a WSe 2 monolayer, exfoliated onto a SiO 2 /Si substrate

More information

Observation of neutral hydrogen using FFT spectrometer Argos on a 5m telescope

Observation of neutral hydrogen using FFT spectrometer Argos on a 5m telescope Research Collection Report Observation of neutral hydrogen using FFT spectrometer Argos on a 5m telescope Author(s): Monstein, Christian; Meyer, Hansueli Publication Date: 2006 Permanent Link: https://doi.org/10.3929/ethz-a-005228693

More information

TNG, two years harvesting data: Performances and results

TNG, two years harvesting data: Performances and results HARPS-N @ TNG, two years harvesting data: Performances and results Rosario Cosentino 1, Christophe Lovis 2, Francesco Pepe 2, Andrew Collier Cameron 3, David W. Latham 4, Emilio Molinari 1, Stephane Udry

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure S1. The effect of window size. The phonon MFP spectrum of intrinsic c-si (T=300 K) is shown for 7-point, 13-point, and 19-point windows. Increasing the window

More information

Practical 1P4 Energy Levels and Band Gaps

Practical 1P4 Energy Levels and Band Gaps Practical 1P4 Energy Levels and Band Gaps What you should learn from this practical Science This practical illustrates some of the points from the lecture course on Elementary Quantum Mechanics and Bonding

More information

File name: Supplementary Information Description: Supplementary Figures, Supplementary Notes and Supplementary References

File name: Supplementary Information Description: Supplementary Figures, Supplementary Notes and Supplementary References File name: Supplementary Information Description: Supplementary Figures, Supplementary Notes and Supplementary References File name: Peer Review File Description: Optical frequency (THz) 05. 0 05. 5 05.7

More information

1 Lecture, 2 September 1999

1 Lecture, 2 September 1999 1 Lecture, 2 September 1999 1.1 Observational astronomy Virtually all of our knowledge of astronomical objects was gained by observation of their light. We know how to make many kinds of detailed measurements

More information

Herschel and Planck: ESA s New Astronomy Missions an introduction. Martin Kessler Schloss Braunshardt 19/03/2009

Herschel and Planck: ESA s New Astronomy Missions an introduction. Martin Kessler Schloss Braunshardt 19/03/2009 Herschel and Planck: ESA s New Astronomy Missions an introduction Martin Kessler Schloss Braunshardt 19/03/2009 Missions in Operations Rosetta Hubble Integral Newton Mars Express SOHO Ulysses Cluster Venus

More information

Signal to Noise Comparison of IS-Instruments Ltd High Throughput OEM Spectrometer and a Czerny Turner Instrument. July 2013

Signal to Noise Comparison of IS-Instruments Ltd High Throughput OEM Spectrometer and a Czerny Turner Instrument. July 2013 Signal to Noise Comparison of IS-Instruments Ltd High Throughput OEM Spectrometer and a Czerny Turner Instrument July 2013 EXECUTIVE SUMMARY IS-Instrument s new range of High Étendue Spectrometers (HES)

More information

DOME C AS A SETTING FOR THE PERMANENT ALL SKY SURVEY (PASS)

DOME C AS A SETTING FOR THE PERMANENT ALL SKY SURVEY (PASS) Title : will be set by the publisher Editors : will be set by the publisher EAS Publications Series, Vol.?, 2005 DOME C AS A SETTING FOR THE PERMANENT ALL SKY SURVEY (PASS) H.J. Deeg, J.A. Belmonte, R.

More information

Astronomy. Optics and Telescopes

Astronomy. Optics and Telescopes Astronomy A. Dayle Hancock adhancock@wm.edu Small 239 Office hours: MTWR 10-11am Optics and Telescopes - Refraction, lenses and refracting telescopes - Mirrors and reflecting telescopes - Diffraction limit,

More information

Gain dependence of measured spectra in coherent Brillouin optical time-domain analysis sensors

Gain dependence of measured spectra in coherent Brillouin optical time-domain analysis sensors Gain dependence of measured spectra in coherent Brillouin optical time-domain analysis sensors Jon Mariñelarena, Javier Urricelqui, Alayn Loayssa Universidad Pública de Navarra, Campus Arrosadía s/n, 316,

More information

System optimization of a long-range Brillouin-loss-based distributed fiber sensor

System optimization of a long-range Brillouin-loss-based distributed fiber sensor System optimization of a long-range Brillouin-loss-based distributed fiber sensor Yongkang Dong, 1,2 Liang Chen, 1 and Xiaoyi Bao 1, * 1 Fiber Optics Group, Department of Physics, University of Ottawa,

More information

Dark Soliton Fiber Laser

Dark Soliton Fiber Laser Dark Soliton Fiber Laser H. Zhang, D. Y. Tang*, L. M. Zhao, and X. Wu School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 *: edytang@ntu.edu.sg, corresponding

More information

Laser-based precision spectroscopy and the optical frequency comb technique 1

Laser-based precision spectroscopy and the optical frequency comb technique 1 Laser-based precision spectroscopy and optical frequency comb technique 1 1 Alternatively: Why did Hänsch win Noble prize? Dr. Björn Hessmo Physikalisches Institut, Universität Heidelberg The Nobel prize

More information

SPICA/SAFARI (SPace Infrared telescope for Cosmology and Astrophysics)

SPICA/SAFARI (SPace Infrared telescope for Cosmology and Astrophysics) SPICA/SAFARI (SPace Infrared telescope for Cosmology and Astrophysics) 1 SPICA/SAFARI (SPace Infrared telescope for Cosmology and Astrophysics) Summary SAFARI (SPICA far-infrared instrument) is an imaging

More information

The distribution of electron energy is given by the Fermi-Dirac distribution.

The distribution of electron energy is given by the Fermi-Dirac distribution. Notes: Semiconductors are materials with electrical resistivities that are in between conductors and insulators. Type Resistivity, Ohm m Resistance, Ohm (1mm length) Conductor 10-8 10-5 Semiconductor 10-2

More information

An Introduction to ASKAP Bringing Radio Interferometers Into the Multi-pixel Era

An Introduction to ASKAP Bringing Radio Interferometers Into the Multi-pixel Era An Introduction to ASKAP Bringing Radio Interferometers Into the Multi-pixel Era Aidan Hotan and Lisa Harvey-Smith 3 rd October 2014 CSIRO ASTRONOMY AND SPACE SCIENCE Introducing ASKAP The Australian SKA

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Information Speckle-free laser imaging using random laser illumination Brandon Redding 1*, Michael A. Choma 2,3*, Hui Cao 1,4* 1 Department of Applied Physics, Yale University, New Haven,

More information

Compact Hydrogen Peroxide Sensor for Sterilization Cycle Monitoring

Compact Hydrogen Peroxide Sensor for Sterilization Cycle Monitoring Physical Sciences Inc. VG15-012 Compact Hydrogen Peroxide Sensor for Sterilization Cycle Monitoring January 26, 2015 Krishnan R. Parameswaran, Clinton J. Smith, Kristin L. Galbally-Kinney, William J. Kessler

More information

New spectrographs for the VLT and E-ELT suited for the measurement of fundamental constants variability

New spectrographs for the VLT and E-ELT suited for the measurement of fundamental constants variability Mem. S.A.It. Vol. 80, 912 c SAIt 2009 Memorie della New spectrographs for the VLT and E-ELT suited for the measurement of fundamental constants variability Paolo Molaro Istituto Nazionale di Astrofisica

More information

Applications of SLMs for advanced optical instrumentation in space Frederic Zamkotsian

Applications of SLMs for advanced optical instrumentation in space Frederic Zamkotsian Applications of SLMs for advanced optical instrumentation in space Frederic Zamkotsian Laboratoire d Astrophysique de Marseille, France The Universe Future needs MOEMS devices designed/operating at cryo

More information

PoS(ICRC2015)641. Cloud Monitoring using Nitrogen Laser for LHAASO Experiment. Z.D. Sun 1,Y. Zhang 2,F.R. Zhu 1 for the LHAASO Collaboration

PoS(ICRC2015)641. Cloud Monitoring using Nitrogen Laser for LHAASO Experiment. Z.D. Sun 1,Y. Zhang 2,F.R. Zhu 1 for the LHAASO Collaboration Cloud Monitoring using Nitrogen Laser for LHAASO Experiment Z.D. Sun 1,Y. Zhang 2,F.R. Zhu 1 for the LHAASO Collaboration [1]School of Physical Science and Technology, Southwest Jiaotong University, Chengdu

More information

Optical Lattice Clock with Spin-1/2 Ytterbium Atoms. Nathan D. Lemke

Optical Lattice Clock with Spin-1/2 Ytterbium Atoms. Nathan D. Lemke Optical Lattice Clock with Spin-1/2 Ytterbium Atoms Nathan D. Lemke number of seconds to gain/lose one second Clocks, past & present 10 18 10 15 one second per billion years one second per million years

More information

Chem Homework Set Answers

Chem Homework Set Answers Chem 310 th 4 Homework Set Answers 1. Cyclohexanone has a strong infrared absorption peak at a wavelength of 5.86 µm. (a) Convert the wavelength to wavenumber.!6!1 8* = 1/8 = (1/5.86 µm)(1 µm/10 m)(1 m/100

More information

Citation for published version (APA): Mollema, A. K. (2008). Laser cooling, trapping and spectroscopy of calcium isotopes s.n.

Citation for published version (APA): Mollema, A. K. (2008). Laser cooling, trapping and spectroscopy of calcium isotopes s.n. University of Groningen Laser cooling, trapping and spectroscopy of calcium isotopes Mollema, Albert Kornelis IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you

More information

Supplementary Information. Temporal tweezing of light through the trapping and manipulation of temporal cavity solitons.

Supplementary Information. Temporal tweezing of light through the trapping and manipulation of temporal cavity solitons. Supplementary Information Temporal tweezing of light through the trapping and manipulation of temporal cavity solitons Jae K. Jang, Miro Erkintalo, Stéphane Coen, and Stuart G. Murdoch The Dodd-Walls Centre

More information

FIRST carrier spacecraft

FIRST carrier spacecraft FIRST carrier spacecraft Height 9 m Width 4.5 m Launch mass 3300 kg Power 1 kw Launch vehicle Ariane 5 Orbit Lissajous around L2 Science data rate 100 kbps Telescope diametre 3.5 m Telescope WFE 10 µm

More information

Supplementary Information for Mid-Infrared Optical Frequency Combs at 2.5 µm based on Crystalline Microresonators

Supplementary Information for Mid-Infrared Optical Frequency Combs at 2.5 µm based on Crystalline Microresonators 1 Supplementary Information for Mid-Infrared Optical Frequency Combs at 2.5 µm based on Crystalline Microresonators C. Y. Wang 1,2,3,, T. Herr 1,2,, P. Del Haye 1,3,7, A. Schliesser 1,2, J. Hofer 1,6,

More information

Laser Spectroscopy of HeH + 施宙聰 2011 AMO TALK 2011/9/26

Laser Spectroscopy of HeH + 施宙聰 2011 AMO TALK 2011/9/26 Laser Spectroscopy of HeH + 施宙聰 2011 AMO TALK 2011/9/26 Outline Introduction Previous experimental results Saturation spectroscopy Conclusions and future works Diatomic Molecules Total energy=electronic

More information

First observations of the second solar spectrum with spatial resolution at the Lunette Jean Rösch

First observations of the second solar spectrum with spatial resolution at the Lunette Jean Rösch First observations of the second solar spectrum with spatial resolution at the Lunette Jean Rösch Malherbe, J.-M., Moity, J., Arnaud, J., Roudier, Th., July 2006 The experiment setup in spectroscopic mode

More information

New spectrographs for precise RV at ESO

New spectrographs for precise RV at ESO EPJ Web of Conferences 47, 05009 (2013) DOI: 10.1051/epjconf/20134705009 C Owned by the authors, published by EDP Sciences, 2013 New spectrographs for precise RV at ESO Luca Pasquini a ESO, Karl Schwarzschild

More information

Graphene photodetectors with ultra-broadband and high responsivity at room temperature

Graphene photodetectors with ultra-broadband and high responsivity at room temperature SUPPLEMENTARY INFORMATION DOI: 10.1038/NNANO.2014.31 Graphene photodetectors with ultra-broadband and high responsivity at room temperature Chang-Hua Liu 1, You-Chia Chang 2, Ted Norris 1.2* and Zhaohui

More information

The GIANO-TNG spectrometer

The GIANO-TNG spectrometer The GIANO-TNG spectrometer E. Oliva, a,b L. Origlia, c C. Baffa, a C. Biliotti, a P. Bruno, d F. D Amato, e C. Del Vecchio, a G. Falcini, a S. Gennari, a F. Ghinassi, b E. Giani, a M. Gonzalez, b F. Leone,

More information

Mid-Infrared Astronomy with IRAIT at Dome C: performances and simulations

Mid-Infrared Astronomy with IRAIT at Dome C: performances and simulations Mem. S.A.It. Suppl. Vol. 2, 125 c SAIt 2003 Memorie della Supplementi Mid-Infrared Astronomy with IRAIT at Dome C: performances and simulations M. Fiorucci 1,3, P. Persi 2, M. Busso 1, S. Ciprini 1,3,

More information

Introduction of near-infrared (NIR) spectroscopy. Ken-ichi Tadaki (NAOJ)

Introduction of near-infrared (NIR) spectroscopy. Ken-ichi Tadaki (NAOJ) Introduction of near-infrared (NIR) spectroscopy Ken-ichi Tadaki (NAOJ) Near-infrared in astronomy absorption by terrestrial atmosphere - wavelength range of 1-5 um - observable windows are limited (J,

More information

Fiber Gratings p. 1 Basic Concepts p. 1 Bragg Diffraction p. 2 Photosensitivity p. 3 Fabrication Techniques p. 4 Single-Beam Internal Technique p.

Fiber Gratings p. 1 Basic Concepts p. 1 Bragg Diffraction p. 2 Photosensitivity p. 3 Fabrication Techniques p. 4 Single-Beam Internal Technique p. Preface p. xiii Fiber Gratings p. 1 Basic Concepts p. 1 Bragg Diffraction p. 2 Photosensitivity p. 3 Fabrication Techniques p. 4 Single-Beam Internal Technique p. 4 Dual-Beam Holographic Technique p. 5

More information

High Accuracy Strontium Ion Optical Clock

High Accuracy Strontium Ion Optical Clock High Accuracy Strontium Ion Optical Clock Helen Margolis, Geoff Barwood, Hugh Klein, Guilong Huang, Stephen Lea, Krzysztof Szymaniec and Patrick Gill T&F Club 15 th April 2005 Outline Optical frequency

More information

Expected Performance From WIYN Tip-Tilt Imaging

Expected Performance From WIYN Tip-Tilt Imaging Expected Performance From WIYN Tip-Tilt Imaging C. F. Claver 3 September 1997 Overview Image motion studies done at WIYN show that a significant improvement to delivered image quality can be obtained from

More information

NMR Spectroscopy Laboratory Experiment Introduction. 2. Theory

NMR Spectroscopy Laboratory Experiment Introduction. 2. Theory 1. Introduction 64-311 Laboratory Experiment 11 NMR Spectroscopy Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful and theoretically complex analytical tool. This experiment will introduce to

More information

B 2 P 2, which implies that g B should be

B 2 P 2, which implies that g B should be Enhanced Summary of G.P. Agrawal Nonlinear Fiber Optics (3rd ed) Chapter 9 on SBS Stimulated Brillouin scattering is a nonlinear three-wave interaction between a forward-going laser pump beam P, a forward-going

More information

Mitigation of H2RG persistence with image illumination Brian A. McLeod* a, Roger Smith b

Mitigation of H2RG persistence with image illumination Brian A. McLeod* a, Roger Smith b Mitigation of H2RG persistence with image illumination Brian A McLeod* a, Roger Smith b a Harvard-Smithsonian Center for Astrophysics, 60 Garden St, Cambridge, MA 02138; b Caltech Optical Observatories,

More information

GEMINI 8-M Telescopes Project

GEMINI 8-M Telescopes Project GEMINI 8-M Telescopes Project RPT-I-G0057 Principles Behind the Gemini Instrumentation Program M. Mountain, F. Gillett, D. Robertson, D. Simons GEMINI PROJECT OFFICE 950 N. Cherry Ave. Tucson, Arizona

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Announcements HW #5 due today April 11 th class will be at 2PM instead of

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supplementary Information for Mid-infrared HgTe colloidal quantum dot photodetectors Sean Keuleyan, Emmanuel Lhuillier, Vuk Brajuskovic and Philippe Guyot-Sionnest* Optical absorption

More information

The Principles of Astronomical Telescope Design

The Principles of Astronomical Telescope Design The Principles of Astronomical Telescope Design Jingquan Cheng National Radio Astronomy Observatory Charlottesville, Virginia,.USA " 4y Springer Fundamentals of Optical Telescopes 1 1.1 A Brief History

More information

Ivan Valtchanov Herschel Science Centre European Space Astronomy Centre (ESAC) ESA. ESAC,20-21 Sep 2007 Ivan Valtchanov, Herschel Science Centre

Ivan Valtchanov Herschel Science Centre European Space Astronomy Centre (ESAC) ESA. ESAC,20-21 Sep 2007 Ivan Valtchanov, Herschel Science Centre SPIRE Observing Strategies Ivan Valtchanov Herschel Science Centre European Space Astronomy Centre (ESAC) ESA Outline SPIRE quick overview Observing with SPIRE Astronomical Observation Templates (AOT)

More information

Sensing Rotation with Light: From Fiber Optic Gyroscope to Exceptional Points

Sensing Rotation with Light: From Fiber Optic Gyroscope to Exceptional Points Sensing Rotation with Light: From Fiber Optic Gyroscope to Exceptional Points Michel Digonnet Applied Physics Department Stanford University Stanford University 1 The Sagnac Effect in Vacuum! The fiber

More information

Primary Frequency Standards at NIST. S.R. Jefferts NIST Time and Frequency Division

Primary Frequency Standards at NIST. S.R. Jefferts NIST Time and Frequency Division Primary Frequency Standards at NIST S.R. Jefferts NIST Time and Frequency Division Outline Atomic Clocks - general Primary Frequency Standard Beam Standards Laser-Cooled Primary Standards Systematic Frequency

More information

arxiv: v1 [astro-ph] 5 Mar 2008

arxiv: v1 [astro-ph] 5 Mar 2008 X-shooter: a medium-resolution, wide-band spectrograph for the VLT arxiv:0803.0609v1 [astro-ph] 5 Mar 2008 L. Kaper 1, S. D Odorico 2, F. Hammer 3, R. Pallavicini 4, P. Kjaergaard Rasmussen 5, H. Dekker

More information

Submillimetre astronomy

Submillimetre astronomy Sep. 20 2012 Spectral line submillimetre observations Observations in the submillimetre wavelengths are in principle not different from those made at millimetre wavelengths. There are however, three significant

More information

Reduction procedure of long-slit optical spectra. Astrophysical observatory of Asiago

Reduction procedure of long-slit optical spectra. Astrophysical observatory of Asiago Reduction procedure of long-slit optical spectra Astrophysical observatory of Asiago Spectrograph: slit + dispersion grating + detector (CCD) It produces two-dimension data: Spatial direction (x) along

More information

A TES Bolometer for THz FT-Spectroscopy

A TES Bolometer for THz FT-Spectroscopy A TES Bolometer for THz FT-Spectroscopy M. Kehrt, J. Beyer, C. Monte, J. Hollandt Physikalisch-Technische Bundesanstalt Abbestraße 2-12, Berlin, Germany E-Mail: Mathias.Kehrt@PTB.de Abstract - We recently

More information

GIANO: pre-slit optics & telescope interface

GIANO: pre-slit optics & telescope interface GIANO: pre-slit optics & telescope interface 10 Ago 2010 Page 1 of 15 GIANO: pre-slit optics & telescope interface Version 3.0, 31 August 2010 Authors: Name Affiliation Signature Livia Origlia INAF - Bologna

More information

In-situ determination of astro-comb calibrator lines to better than 10 cm s 1

In-situ determination of astro-comb calibrator lines to better than 10 cm s 1 In-situ determination of astro-comb calibrator lines to better than 1 cm s 1 Chih-Hao Li, 1,2 Alex Glenday, 1,2 Andrew Benedick, 3 Guoqing Noah Chang, 3 Li-Jin Chen, 3 Claire Cramer, 1 Peter Fendel, 3,4

More information

Laser-Based Measurements for Time and Frequency

Laser-Based Measurements for Time and Frequency Laser-Based Measurements for Time and Frequency Domain Applications A Handbook Pasquale Maddaloni Marco Bellini Paolo De Natale CRC Press Taylor Si Francis Croup Boca Raton London New York CRC Press is

More information

NA LASER GUIDE STAR AO WITH DYNAMICAL REFOCUS

NA LASER GUIDE STAR AO WITH DYNAMICAL REFOCUS Florence, Italy. Adaptive May 2013 Optics for Extremely Large Telescopes III ISBN: 978-88-908876-0-4 DOI: 10.12839/AO4ELT3.13893 NA LASER GUIDE STAR AO WITH DYNAMICAL REFOCUS Sebastian Rabien 1,a, Fernando

More information

Hanle Echelle Spectrograph (HESP)

Hanle Echelle Spectrograph (HESP) Hanle Echelle Spectrograph (HESP) Bench mounted High resolution echelle spectrograph fed by Optical Fiber Second generation instrument for HCT The project is a technical collaboration between Indian Institute

More information

Microwave and optical spectroscopy in r.f. traps Application to atomic clocks

Microwave and optical spectroscopy in r.f. traps Application to atomic clocks Microwave and optical spectroscopy in r.f. traps Application to atomic clocks Microwave spectroscopy for hyperfine structure t measurements Energy of a hyperfine state Hyperfine coupling constants: A:

More information

Construction of an absolute gravimeter using atom interferometry with cold 87. Rb atoms

Construction of an absolute gravimeter using atom interferometry with cold 87. Rb atoms Construction of an absolute gravimeter using atom interferometry with cold 87 Rb atoms Patrick Cheinet Julien Le Gouët Kasper Therkildsen Franck Pereira Dos Santos Arnaud Landragin David Holleville André

More information

Foundations of Astronomy 13e Seeds. Chapter 6. Light and Telescopes

Foundations of Astronomy 13e Seeds. Chapter 6. Light and Telescopes Foundations of Astronomy 13e Seeds Chapter 6 Light and Telescopes Guidepost In this chapter, you will consider the techniques astronomers use to study the Universe What is light? How do telescopes work?

More information

Atomic clocks. Clocks

Atomic clocks. Clocks Atomic clocks Clocks 1 Ingredients for a clock 1. Need a system with periodic behavior: it cycles occur at constant frequency 2. Count the cycles to produce time interval 3. Agree on the origin of time

More information

Selection of stars to calibrate Gaia

Selection of stars to calibrate Gaia Highlights of Spanish Astrophysics VIII, Proceedings of the XI Scientific Meeting of the Spanish Astronomical Society held on September 8 12, 2014, in Teruel, Spain. A. J. Cenarro, F. Figueras, C. Hernández-

More information

PAPER No. 12: ORGANIC SPECTROSCOPY MODULE No. 7: Instrumentation for IR spectroscopy

PAPER No. 12: ORGANIC SPECTROSCOPY MODULE No. 7: Instrumentation for IR spectroscopy KNOW MORE Web links https://en.wikipedia.org/wiki/infrared_ http://hiq.lindegas.com/en/analytical_methods/infrared_/non_dispersive_infrared.html http://blamp.sites.truman.edu/files/2012/11/322-ir-and-ftir.pdf

More information

Detectors for IR astronomy

Detectors for IR astronomy Detectors for IR astronomy Where does infrared begin? Wavelength sensi?vity of the human eye vs. wavelength Note: the eye has some (limited) sensi?vity to IR light at ~1000nm (=0.5x energy of photons the

More information

Workshop on optical gas sensing

Workshop on optical gas sensing Workshop on optical gas sensing 15.01.2015 1 Intensity (a.u.) The QCL frequency comb A laser emitting many wavelengths at the same time. Covering a broad spectral range of tens to a few 100 wavenumbers.

More information

Overview of Frequency Metrology at NMIJ

Overview of Frequency Metrology at NMIJ Overview of Frequency Metrology at NMIJ Tomonari SUZUYAMA (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST) APMP TCTF 2015 Beijing, CHINA 2 nd - 3 rd November 2015 Outline

More information

Absolute Radiance Re-Calibration of FIRST

Absolute Radiance Re-Calibration of FIRST Utah State University DigitalCommons@USU Space Dynamics Lab Publications Space Dynamics Lab 1-1-2012 Absolute Radiance Re-Calibration of FIRST Harri Latvakoski Utah State University Marty Mylncak Utah

More information

Dr. Jean Lautier-Gaud October, 14 th 2016

Dr. Jean Lautier-Gaud October, 14 th 2016 New generation of operational atomic clock: what perspectives for radio-astronomy & VLBI? Dr. Jean Lautier-Gaud October, 14 th 2016 Courtesy of Noel Dimarcq, SYRTE Content 1. Why is Muquans here? 2. What

More information

Quantum Electronics Laser Physics. Chapter 5. The Laser Amplifier

Quantum Electronics Laser Physics. Chapter 5. The Laser Amplifier Quantum Electronics Laser Physics Chapter 5. The Laser Amplifier 1 The laser amplifier 5.1 Amplifier Gain 5.2 Amplifier Bandwidth 5.3 Amplifier Phase-Shift 5.4 Amplifier Power source and rate equations

More information

FIVE FUNDED* RESEARCH POSITIONS

FIVE FUNDED* RESEARCH POSITIONS OBSERVATION Sub-GROUP: 1. Masters (MSc, 1 year): Exploring extreme star-forming galaxies for SALT in the Sloan Digital Sky Survey 2. Masters (MSc,1 year): HI masses of extreme star-forming galaxies in

More information

Multicolor mm/submm TES Bolometer Camera development for ASTE. Tai Oshima (NRO/NAOJ)

Multicolor mm/submm TES Bolometer Camera development for ASTE. Tai Oshima (NRO/NAOJ) Multicolor mm/submm TES Bolometer Camera development for ASTE Tai Oshima (NRO/NAOJ) Science with the Multicolor camera AzTEC mm camera on ASTE(2007-2008) lots of successful observation projects What comes

More information

Alexander Gaeta Department of Applied Physics and Applied Mathematics Michal Lipson Department of Electrical Engineering

Alexander Gaeta Department of Applied Physics and Applied Mathematics Michal Lipson Department of Electrical Engineering Chip-Based Optical Frequency Combs Alexander Gaeta Department of Applied Physics and Applied Mathematics Michal Lipson Department of Electrical Engineering KISS Frequency Comb Workshop Cal Tech, Nov. 2-5,

More information

arxiv: v1 [astro-ph.im] 24 Mar 2009

arxiv: v1 [astro-ph.im] 24 Mar 2009 Astron. Nachr./AN xxx (xxxx) x, xxx xxx CTK - A new CCD Camera at the University Observatory Jena arxiv:0903.4116v1 [astro-ph.im] 24 Mar 2009 1. Introduction MARKUS MUGRAUER Astrophysikalisches Institut

More information

Supplementary Information for. Vibrational Spectroscopy at Electrolyte Electrode Interfaces with Graphene Gratings

Supplementary Information for. Vibrational Spectroscopy at Electrolyte Electrode Interfaces with Graphene Gratings Supplementary Information for Vibrational Spectroscopy at Electrolyte Electrode Interfaces with Graphene Gratings Supplementary Figure 1. Simulated from pristine graphene gratings at different Fermi energy

More information

McMath-Pierce Adaptive Optics Overview. Christoph Keller National Solar Observatory, Tucson

McMath-Pierce Adaptive Optics Overview. Christoph Keller National Solar Observatory, Tucson McMath-Pierce Adaptive Optics Overview Christoph Keller National Solar Observatory, Tucson Small-Scale Structures on the Sun 1 arcsec Important astrophysical scales (pressure scale height in photosphere,

More information

Laser Physics OXFORD UNIVERSITY PRESS SIMON HOOKER COLIN WEBB. and. Department of Physics, University of Oxford

Laser Physics OXFORD UNIVERSITY PRESS SIMON HOOKER COLIN WEBB. and. Department of Physics, University of Oxford Laser Physics SIMON HOOKER and COLIN WEBB Department of Physics, University of Oxford OXFORD UNIVERSITY PRESS Contents 1 Introduction 1.1 The laser 1.2 Electromagnetic radiation in a closed cavity 1.2.1

More information

Fiber-Optics Group Highlights of Micronova Department of Electrical and Communications Engineering Helsinki University of Technology

Fiber-Optics Group Highlights of Micronova Department of Electrical and Communications Engineering Helsinki University of Technology Highlights of 2004 Micronova Department of Electrical and Communications Engineering Micronova Seminar 3 December 2004 Group Leader: Hanne Ludvigsen Postdoctoral researcher: Goëry Genty Postgraduate students:

More information

Mandatory Assignment 2013 INF-GEO4310

Mandatory Assignment 2013 INF-GEO4310 Mandatory Assignment 2013 INF-GEO4310 Deadline for submission: 12-Nov-2013 e-mail the answers in one pdf file to vikashp@ifi.uio.no Part I: Multiple choice questions Multiple choice geometrical optics

More information

1. Introduction. 2. New approaches

1. Introduction. 2. New approaches New Approaches To An Indium Ion Optical Frequency Standard Kazuhiro HAYASAKA National Institute of Information and Communications Technology(NICT) e-mail:hayasaka@nict.go.jp ECTI200 . Introduction Outline

More information

Optical Frequency Comb Fourier Transform Spectroscopy with Resolution beyond the Path Difference Limit

Optical Frequency Comb Fourier Transform Spectroscopy with Resolution beyond the Path Difference Limit Optical Frequency Comb Fourier Transform Spectroscopy with Resolution beyond the Path Difference Limit Aleksandra Foltynowicz, Alexandra C. Johansson, Amir Khodabakhsh, Lucile Rutkowski Department of Physics,

More information

Technology demonstration and prototype LPI test

Technology demonstration and prototype LPI test Frequency Comb on a Souding Rocket Technology demonstration and prototype LPI test Ronald Holzwarth Menlo Systems GmbH Martinsried And Max-Planck-Institut für Quantenoptik Garching 2013 STE-QUEST Workshop

More information