et al. 1996; Hansen 2005; Kalirai et al ML is a free parameter with a huge astrophysical impact

Size: px
Start display at page:

Download "et al. 1996; Hansen 2005; Kalirai et al ML is a free parameter with a huge astrophysical impact"

Transcription

1

2 Rood 1973; Fusi Pecci & Renzini 1975,1976; Renzini 1977; Castellani & Tornambe 1981; Peterson 1982; Castellani & Castellani 1993; Fusi Pecci et al. 1993; D Cruz et al. 1996; Hansen 2005; Kalirai et al ML is a free parameter with a huge astrophysical impact stellar evolution modeling UV excess in elliptical galaxies interaction between the cool intracluster medium & hot halo gas little theoretical or observational guidance on how to incorporate ML into models Reimers 1975: dm/dt = η4x10-13 L/gR [M o /yr] η = 0.3 for RGB ML

3 Judge & Stencel 1991, ApJ 371, 357

4 fundamental issues... best observational targets Galactic GCs best diagnostics rates duty cycles total mass lost - dependence on metallicity - impact on HB morphology - driving mechanism(s)

5 ML diagnostics in RGB stars T~4000 K, L ~10 2 L o, R ~20 R o v exp ~10 km/s CS dusty envelopes outflow in the chromosphere o K 10 2 R 10 6 a few R yr

6 profile asymmetry & coreshifts lines: Ha, NaI D, CaII K, Mg II λ2800 h,k, HeI λ can trace an active chromosphere and/or mass outflow Gratton 83; Cacciari & Freeman 83; Gratton etal 84; Dupree etal 84; Dupree etal 92, 94; Lyons etal 96; Smith etal 04; Cacciari etal 04; Mauas etal 06 effective to trace the region of wind formation & acceleration difficult to convert wind line diagnostics into ML rates (both modeling & sampled region issues) very high s/n & spectral resolution the current generation of 4-8m telescopes can measure only the brightest GCs giants

7 ML diagnostics in RGB stars IR dust emission linear polarization microwave CO emission radio OH maser emission CS dusty envelopes CS envelopes of Pop II giants have intrinsically low surface brightness far IR & radio receivers have not enough spatial res & sensitivity to study Pop II CSE in dense stellar fields polarization (<<1%) hardly measurable 3-20 micron spectro spectro-photometryphotometry most effective to detect Pop II CSE o K 10 2 R yr

8 piooneering works: Frogel & Elias 1988: K,L,M,N photometry of red variables in GGCs Gillet et al. 1988: IRAS obs of 47 Tuc ISO era Hopwood et al. 1999; Evans et al. 2003: far IR ISOPHOT obs of GGCs only upper limits! Randani & Jorissen 2001: ISOCAM obs of bright AGB stars in 47 Tuc dust excess in 2 objects! Origlia et al. 2002: ISOCAM obs of RGB stars in 6 massive GCCs

9 Spitzer era: Boyer etal 2006, AJ 132, 1415: IRAC+MIPS+IRS obs of M M o intra-cluster dust accumulated within 1 Myr 20 dusty AGB & post-agb stars 5-15 µm m spectrum of the PNK648: [Ne[ Ne/H]= /H]=-0.7; [S/H]=-2.7 Lebzelter etal 2006, ApJ 653, 145: IRS spectra of 47Tuc giants amorphous silicates & oxides Boyer etal 2008, AJ 135, 1395: IRAC+MIPS obs of ω Cen <10-4 M o intra-cluster dust accumulated over the last Myr 140 dusty AGB & Tip RGB post-agb van Loon etal 2008, ApJ 680, 52: IRAC obs of NGC6791 lack of enhanced ML

10 our contrubution: survey GO#20298, PI: R.T.Rood, CoIs: Origlia, Ferraro, Fusi Pecci, Rich Exploring the Unknown Physics of Mass Loss in First Ascent Pop II Red giants 26hr - deep imaging (down to the ~HB) of 17 GGCs spanning the entire range of Z & HB morphologies

11 HB morphology metallicity: 1 st parameter [Fe/H]=-1.6 [Fe/H]=-0.7

12 HB morphology same metallicity,, different lenght 2 nd nd parameter(s) NGC 6388 NGC 6441

13 HB morphology a magnifier of mass loss in RGB mass loss

14 techniques: mid IR photometry in the 3.6,4.5,5.8,8 µm IRAC bands: dust emission & physical parameters, ML rate & duty cycle near IR ground based photometry: stellar counterparts, photospheric parameters data reduction: photometric reduction: : PSF fitting in crowded fields (ROMAFOT+DAOPHOT) astrometry: : 2MASS tools: CMDs, LFs,, color excess, star counts

15 47 Tuc Origlia et al ISOCAM 40! detected almost 800 stars!

16 - stars with dust excess >3 - blends removed >3σ from the from the ridge line NGC6388 NGC 2808 M15

17 fundamental issues... best observational targets Galactic GCs most effective diagnostics mid IR phot of CSE rates duty cycles total mass lost dependence on metallicity impact on HB morphology driving mechanism(s)

18 assumptions: ad hoc version of the DUSTY code (Ivezic to include diagnostics in the IRAC bands Ivezic, Nenkova &Elitzur 1999) radiative transport equation in an expanding dusty envelope under the general assumption of v exp = constant density 1/r 2 constant, density dust driven wind assumption does not work (see also Wilson 2000): low mass giants are neither luminous nor metal rich enough for this t mechanism to be efficient measured quantities: T eff, color excess, flux output from DUSTY: τ (IRAC), F (IRAC), r env

19 rates: dm/dt = 4 π r ρ env2 dust δ v exp ρ dust ρ grain τ F obs /F mod D 2 δ=ρ gas /ρ dust 1/Z in GCs means that ~50% of α-elements can condense in dust v exp δ -0.5 if dust & gas coupled (e.g Morris et al. 96) in 47 Tuc: δ=200 vexp =10 km/s

20 dm/dt ~ Z - 0.3

21 Reimers

22 fundamental issues... best observational targets Galactic GCs most effective diagnostics mid IR phot of CSE rates ~Z -1/3 duty cycles total mass lost - dependence on metallicity - impact on HB morphology - driving mechanism(s)

23 CSEs dusty CSEs detected in a fraction of RGBs, only! f=(n d /N) after correction for - incompleteness - field contamination - AGB stars - blending M15 NGC2808 NGC6388

24 f ~ Z +0.4 frequency

25 dusty CSEs detected in a fraction of RGBs, only! intrinsic to the stochastic dust formation process? - ad hoc (low?) efficiencies with varying L * & [M/H]... - not dusty driven winds... episodic mass loss process? very likely, although modulation mechanism still unknown oscillation, magnetic activity, rotation, deep mixing... one more important constraint!

26 M RGB M RGB too high! = Σ i (dm/dt) i x dt i evolutionary timescale episodic mass loss... M RGB = Σ i (dm/dt) i x dt i x f i duty cycle

27 fundamental issues... best observational targets Galactic GCs most effective diagnostics mid IR phot of CSE rates ~Z -0.3 duty cycles ~Z +0.4 total mass lost - dependence on metallicity - impact on HB morphology - driving mechanism(s)

28 M RGB = Σ i (dm/dt) i x dt i x f i

29 M M ~ Z

30 M15 NGC6388

31 conclusions... best observational targets Galactic GCs most effective diagnostics mid IR phot of CSE rates ~Z -0.3 duty cycles total mass lost - dependence on metallicity mild - impact on HB morphology yes! - driving mechanism(s)? radiation pressure no!

The Ṁass- loss of Red Supergiants

The Ṁass- loss of Red Supergiants The Ṁass- loss of Red Supergiants Dr. Donald F. Figer Director, Center for Detectors Speaker: Yuanhao (Harry) Zhang RIT 9/12/13 1 9/12/13 2 Outline IntroducJon MoJvaJon Objects Method Need for SOFIA/FORCAST

More information

A spectroscopic study of RGB stars in the globular cluster NGC 2808 with FLAMES

A spectroscopic study of RGB stars in the globular cluster NGC 2808 with FLAMES Mem. S.A.It. Suppl. Vol. 5, 59 c SAIt 2004 Memorie della Supplementi A spectroscopic study of RGB stars in the globular cluster NGC 2808 with FLAMES C. Cacciari, A. Bragaglia and E. Carretta INAF Osservatorio

More information

arxiv: v1 [astro-ph.sr] 18 Jun 2009

arxiv: v1 [astro-ph.sr] 18 Jun 2009 MASS OUTFLOW FROM RED GIANT STARS IN M13, M, AND M92 Sz. Mészáros 1,3, E. H. Avrett 2,4, and A. K. Dupree 2, arxiv:96.342v1 [astro-ph.sr] 18 Jun 29 ABSTRACT Chromospheric model calculations of the Hα line

More information

MASS OUTFLOW FROM RED GIANT STARS IN M13, M15, AND M92

MASS OUTFLOW FROM RED GIANT STARS IN M13, M15, AND M92 The Astronomical Journal, 138:61 624, 29 August Copyright is not claimed for this article. All rights reserved. Printed in the U.S.A. doi:1.188/4-626/138/2/61 MASS OUTFLOW FROM RED GIANT STARS IN, M1,

More information

ASI Workshop- Roma, March 25, 2009

ASI Workshop- Roma, March 25, 2009 ASI Workshop- Roma, March 25, 2009 Probing the nature of Stellar Populations in Globular Clusters 1. Results from the Project granted by ASI in the 2007 Call Supporto Analisi dati - Cosmologia delle strutture

More information

arxiv:astro-ph/ v1 25 Sep 2003

arxiv:astro-ph/ v1 25 Sep 2003 Astronomy & Astrophysics manuscript no. H4617 February 2, 2008 (DOI: will be inserted by hand later) Mass motions and chromospheres of RGB stars in the globular cluster NGC 2808 C. Cacciari 1, A. Bragaglia

More information

Globular Clusters: hot stellar populations and internal dynamics

Globular Clusters: hot stellar populations and internal dynamics Globular Clusters: hot stellar populations and internal dynamics Giornate dell Osservatorio, Bologna 18-19 February 2016 Emanuele Dalessandro Globular clusters: I. hot stellar populations OABO people involved:

More information

Stellar Evolution & issues related to the post Turn-Off evolution

Stellar Evolution & issues related to the post Turn-Off evolution Stellar Evolution & issues related to the post Turn-Off evolution Santi Cassisi INAF - Astronomical Observatory of Teramo, Italy The point of view of Population Synthesis users What do they want? Magnitudes

More information

Formation and Evolution of Planetary Systems

Formation and Evolution of Planetary Systems Formation and Evolution of Planetary Systems Meyer, Hillenbrand et al., Formation and Evolution of Planetary Systems (FEPS): First Results from a Spitzer Legacy Science Program ApJ S 154: 422 427 (2004).

More information

Stars + Galaxies: Back of the Envelope Properties. David Spergel

Stars + Galaxies: Back of the Envelope Properties. David Spergel Stars + Galaxies: Back of the Envelope Properties David Spergel Free-fall time (1) r = GM r 2 (2) r t = GM 2 r 2 (3) t free fall r3 GM 1 Gρ Free-fall time for neutron star is milliseconds (characteristic

More information

University of Naples Federico II, Academic Year Istituzioni di Astrofisica, read by prof. Massimo Capaccioli. Lecture 16

University of Naples Federico II, Academic Year Istituzioni di Astrofisica, read by prof. Massimo Capaccioli. Lecture 16 University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica, read by prof. Massimo Capaccioli Lecture 16 Stellar populations Walter Baade (1893-1960) Learning outcomes The student

More information

Radio Nebulae around Luminous Blue Variable Stars

Radio Nebulae around Luminous Blue Variable Stars Radio Nebulae around Luminous Blue Variable Stars Claudia Agliozzo 1 G. Umana 2 C. Trigilio 2 C. Buemi 2 P. Leto 2 A. Ingallinera 1 A. Noriega-Crespo 3 J. Hora 4 1 University of Catania, Italy 2 INAF-Astrophysical

More information

arxiv:astro-ph/ v1 20 Apr 2004

arxiv:astro-ph/ v1 20 Apr 2004 Mon. Not. R. Astron. Soc. 000, 1 7 (2004) Printed 13 November 2017 (MN LATEX style file v2.2) The Red Giant Branch in Near-Infrared Colour-Magnitude Diagrams. II: The luminosity of the Bump and the Tip

More information

Spectroscopy of giants and supergiants! Maria Bergemann MPIA Heidelberg"

Spectroscopy of giants and supergiants! Maria Bergemann MPIA Heidelberg Spectroscopy of giants and supergiants! Maria Bergemann MPIA Heidelberg" Spectroscopy of (cool) giants and supergiants! Maria Bergemann MPIA Heidelberg" Outline! Motivation why do spectroscopy of giant

More information

Astr 5465 Feb. 6, 2018 Characteristics of Color-Magnitude Diagrams

Astr 5465 Feb. 6, 2018 Characteristics of Color-Magnitude Diagrams Astr 5465 Feb. 6, 2018 Characteristics of Color-Magnitude Diagrams Preliminaries: Shape of an Isochrone (Distribution at a Given Age) Depends on the Bandpasses Used to Construct the CMD The Turn-off Absolute

More information

IRS Spectroscopy of z~2 Galaxies

IRS Spectroscopy of z~2 Galaxies IRS Spectroscopy of z~2 Galaxies Houck et al., ApJ, 2005 Weedman et al., ApJ, 2005 Lutz et al., ApJ, 2005 Astronomy 671 Jason Marshall Opening the IR Wavelength Regime for Discovery One of the primary

More information

Observing the Formation of Dense Stellar Nuclei at Low and High Redshift (?) Roderik Overzier Max-Planck-Institute for Astrophysics

Observing the Formation of Dense Stellar Nuclei at Low and High Redshift (?) Roderik Overzier Max-Planck-Institute for Astrophysics Observing the Formation of Dense Stellar Nuclei at Low and High Redshift (?) Roderik Overzier Max-Planck-Institute for Astrophysics with: Tim Heckman (JHU) GALEX Science Team (PI: Chris Martin), Lee Armus,

More information

1. The AGB dust budget in nearby galaxies

1. The AGB dust budget in nearby galaxies **Volume Title** ASP Conference Series, Vol. **Volume Number** **Author** c **Copyright Year** Astronomical Society of the Pacific Identifying the chemistry of the dust around AGB stars in nearby galaxies

More information

E-ELT METIS * AND MATISSE: PROSPECTS FOR AGB-STARS

E-ELT METIS * AND MATISSE: PROSPECTS FOR AGB-STARS E-ELT METIS * AND MATISSE: PROSPECTS FOR AGB-STARS J. Hron 1, J. Blommaert 2, L. Decin 2, T. Lebzelter 1, C. Paladini 3,1, H. Van Winckel 2 and the METIS and MATISSE teams (1) Universitätssternwarte Wien,

More information

A mid and far-ir view of the star formation activity in galaxy systems and their surroundings

A mid and far-ir view of the star formation activity in galaxy systems and their surroundings A mid and far-ir view of the star formation activity in galaxy systems and their surroundings Andrea Biviano Andrea Biviano INAF/Osservatorio Astronomico di Trieste Outline: mid-ir & multiwavelength observations

More information

Evolution, Mass Loss and Variability of Low and Intermediate-Mass Stars

Evolution, Mass Loss and Variability of Low and Intermediate-Mass Stars Evolution, Mass Loss and Variability of Low and Intermediate-Mass Stars Mass Loss from Low and Intermediate Mass Stars Significant mass loss occurs in two phases 1. In red giants before large amplitude

More information

Galactic Globular Clusters: the stellar laboratory

Galactic Globular Clusters: the stellar laboratory Mem. S.A.It. Suppl. Vol. 3, 80 c SAIt 2003 Memorie della Supplementi Galactic Globular Clusters: the stellar laboratory Francesco R. Ferraro Dipartimento di Astronomia, Università di Bologna, via Ranzani

More information

Dust. The four letter word in astrophysics. Interstellar Emission

Dust. The four letter word in astrophysics. Interstellar Emission Dust The four letter word in astrophysics Interstellar Emission Why Dust Dust attenuates and scatters UV/optical/NIR Amount of attenuation and spectral shape depends on dust properties (grain size/type)

More information

The Milky Way Formation Timescale

The Milky Way Formation Timescale Mem. S.A.It. Vol. 75, 13 c SAIt 2004 Memorie della The Milky Way Formation Timescale A. Aparicio 1,2, A. Rosenberg 2, G. Piotto 3, I. Saviane 4 and A. Recio-Blanco 3 1 Departamento de Astrofisica, Universidad

More information

Dark Matter. ASTR 333/433 Spring Today Stars & Gas. essentials about stuff we can see. First Homework on-line Due Feb. 4

Dark Matter. ASTR 333/433 Spring Today Stars & Gas. essentials about stuff we can see. First Homework on-line Due Feb. 4 Dark Matter ASTR 333/433 Spring 2016 Today Stars & Gas essentials about stuff we can see First Homework on-line Due Feb. 4 Galaxies are made of stars - D. Silva (1990) private communication Stars Majority

More information

Star Formation. Spitzer Key Contributions to Date

Star Formation. Spitzer Key Contributions to Date Star Formation Answering Fundamental Questions During the Spitzer Warm Mission Phase Lori Allen CfA John Carpenter, Caltech Lee Hartmann, University of Michigan Michael Liu, University of Hawaii Tom Megeath,

More information

Components of Galaxies Stars What Properties of Stars are Important for Understanding Galaxies?

Components of Galaxies Stars What Properties of Stars are Important for Understanding Galaxies? Components of Galaxies Stars What Properties of Stars are Important for Understanding Galaxies? Temperature Determines the λ range over which the radiation is emitted Chemical Composition metallicities

More information

Raven Eyes Elliptical Galaxies and Star Clusters. T. J. Davidge November 24, 2015

Raven Eyes Elliptical Galaxies and Star Clusters. T. J. Davidge November 24, 2015 Raven Eyes Elliptical Galaxies and Star Clusters T. J. Davidge November 24, 2015 Why Maffei1 and the Glimpse Clusters? Targets were selected at low Galactic latitudes to maximize chances of finding a suitable

More information

arxiv:astro-ph/ v1 23 Mar 2004

arxiv:astro-ph/ v1 23 Mar 2004 Mon. Not. R. Astron. Soc., 1 13 (23) Printed 22 August 217 (MN LATEX style file v2.2) The Red Giant Branch in Near-Infrared Colour-Magnitude Diagrams. I: The calibration of photometric indices arxiv:astro-ph/43563v1

More information

arxiv:astro-ph/ v1 5 May 2005

arxiv:astro-ph/ v1 5 May 2005 Mon. Not. R. Astron. Soc. 000, 1 12 (2004) Printed 2 February 2008 (MN LATEX style file v2.2) Near-Infrared photometry of four metal-rich Bulge globular clusters: NGC 6304, NGC 6569, NGC 6637, NGC 6638

More information

arxiv: v1 [astro-ph] 8 Oct 2007

arxiv: v1 [astro-ph] 8 Oct 2007 Astronomy & Astrophysics manuscript no. 8514 c ESO 2008 February 2, 2008 Dust, pulsation, chromospheres and their rôle in driving mass loss from red giants in Galactic globular clusters I. McDonald 1 and

More information

Star Formation. Answering Fundamental Questions During the Spitzer Warm Mission Phase

Star Formation. Answering Fundamental Questions During the Spitzer Warm Mission Phase Star Formation Answering Fundamental Questions During the Spitzer Warm Mission Phase Lori Allen CfA John Carpenter, Caltech Lee Hartmann, University of Michigan Michael Liu, University of Hawaii Tom Megeath,

More information

Interstellar Dust and Extinction

Interstellar Dust and Extinction University of Oxford, Astrophysics November 12, 2007 Outline Extinction Spectral Features Emission Scattering Polarization Grain Models & Evolution Conclusions What and Why? Dust covers a range of compound

More information

Lecture Three: Stellar Populations. Stellar Properties: Stellar Populations = Stars in Galaxies. What defines luminous properties of galaxies

Lecture Three: Stellar Populations. Stellar Properties: Stellar Populations = Stars in Galaxies. What defines luminous properties of galaxies Lecture Three: ~2% of galaxy mass in stellar light Stellar Populations What defines luminous properties of galaxies face-on edge-on https://www.astro.rug.nl/~etolstoy/pog16/ 18 th April 2016 Sparke & Gallagher,

More information

I. Introduction. First suspicion of existence of continuous stellar winds: Optical spectrum of Wolf-Rayet stars: widths of lines

I. Introduction. First suspicion of existence of continuous stellar winds: Optical spectrum of Wolf-Rayet stars: widths of lines 8. Stellar Winds History of Stellar Winds Spectroscopic Signatures of Stellar Winds Stellar Winds in Astronomy: Extragalactic supergiants, Mass loss, Galaxy evolution 1 I. Introduction First suspicion

More information

Mid-IR and Far-IR Spectroscopic Measurements & Variability. Kate Su (University of Arizona)

Mid-IR and Far-IR Spectroscopic Measurements & Variability. Kate Su (University of Arizona) Mid-IR and Far-IR Spectroscopic Measurements & Variability Kate Su (University of Arizona) Five Zones of Debris Dust edge-on view of the Fomalhaut planetary system distance, r 1500 K very hot dust 500

More information

arxiv: v1 [astro-ph.sr] 8 Feb 2010

arxiv: v1 [astro-ph.sr] 8 Feb 2010 Draft version February 8, 2010 Preprint typeset using L A TEX style emulateapj v. 04/20/08 IS DUST FORMING ON THE RED GIANT BRANCH IN 47TUC? Martha L. Boyer 1, Jacco Th. van Loon 2, Iain McDonald 3, Karl

More information

Chapter 7: From theory to observations

Chapter 7: From theory to observations Chapter 7: From theory to observations Given the stellar mass and chemical composition of a ZAMS, the stellar modeling can, in principle, predict the evolution of the stellar bolometric luminosity, effective

More information

Dynamical Atmospheres & Winds of AGB Stars A Theorist's View

Dynamical Atmospheres & Winds of AGB Stars A Theorist's View Dynamical Atmospheres & Winds of AGB Stars A Theorist's View Susanne Höfner Department of Physics & Astronomy Uppsala University Dynamics of atmosphere & wind stellar pulsation & convection induce strong

More information

Dusty star-forming galaxies at high redshift (part 5)

Dusty star-forming galaxies at high redshift (part 5) Dusty star-forming galaxies at high redshift (part 5) Flow of story 4.1 4.2 4.3 Acquiring Spectroscopic or Photometric Redshifts Infrared SED Fitting for DSFGs Estimating L IR, T dust and M dust from an

More information

CN Variations in Globular Clusters

CN Variations in Globular Clusters CN Variations in Globular Clusters Jason Smolinski originally presented 08/11/2010 encore presentation 08/25/2010 Outline I. What Are We Talking About? a) Cluster Environment b) Expectations from Theory

More information

Debris Disks from Spitzer to Herschel and Beyond. G. H. Rieke, K. Y. L. Su, et al. Steward Observatory The University of Arizona

Debris Disks from Spitzer to Herschel and Beyond. G. H. Rieke, K. Y. L. Su, et al. Steward Observatory The University of Arizona Debris Disks from Spitzer to Herschel and Beyond G. H. Rieke, K. Y. L. Su, et al. Steward Observatory The University of Arizona Our neighborhood debris disk There was a huge amount of collisional activity

More information

STRUCTURE AND DYNAMICS OF GALAXIES

STRUCTURE AND DYNAMICS OF GALAXIES STRUCTURE AND DYNAMICS OF GALAXIES 23. Piet van der Kruit Kapteyn Astronomical Institute University of Groningen, the Netherlands www.astro.rug.nl/ vdkruit Beijing, September 2011 Outline The local Mass

More information

CNO and F abundances in the globular cluster M22 (2012, A&A, 540, 3)

CNO and F abundances in the globular cluster M22 (2012, A&A, 540, 3) CNO and F abundances in the globular cluster M22 (2012, A&A, 540, 3) Alan Alves-Brito ARC Super Science Fellow Gemini Science Meeting 2012: San Francisco, USA, July 16-20 1 Collaborators q David Yong (RSAA,

More information

Age Dating A SSP. Quick quiz: please write down a 3 sentence explanation of why these plots look like they do.

Age Dating A SSP. Quick quiz: please write down a 3 sentence explanation of why these plots look like they do. Color is only a weak function of age after ~3Gyrs (for a given metallicity) (See MBW pg 473) But there is a strong change in M/L V and weak change in M/L K Age Dating A SSP Quick quiz: please write down

More information

The Universe of Galaxies: from large to small. Physics of Galaxies 2012 part 1 introduction

The Universe of Galaxies: from large to small. Physics of Galaxies 2012 part 1 introduction The Universe of Galaxies: from large to small Physics of Galaxies 2012 part 1 introduction 1 Galaxies lie at the crossroads of astronomy The study of galaxies brings together nearly all astronomical disciplines:

More information

Mass Loss from Red Giants

Mass Loss from Red Giants Mass Loss from Red Giants D. Reimers, R. Baade, H.-J. Hagen Hamburger Sternwarte, Universität Hamburg D. Reimers, May 30, 2007 Mass Loss from Red Giants 1/33 Halo stars - Pop II Only indirect evidence:

More information

Spectral Energy Distributions as probes of star formation in the distant Universe

Spectral Energy Distributions as probes of star formation in the distant Universe MODULO meeting 2-3 December 2010 Spectral Energy Distributions as probes of star formation in the distant Universe Simona Bovinelli ISSI International Space Science Institute IRAS (1983), ISO (1995) and

More information

Lifecycle of Dust in Galaxies

Lifecycle of Dust in Galaxies Lifecycle of Dust in Galaxies Karl Gordon Space Telescope Science Institute 3700 San Martin Drive Baltimore, MD 21218 Email: kgordon@stsci.edu Phone: 410-338-5031 co-authors: Margaret Meixner (Space Telescope

More information

Young stellar objects and their environment

Young stellar objects and their environment Recent Advances in Star Formation: Observations and Theory ASI Conference Series, 2012, Vol. 4, pp 107 111 Edited by Annapurni Subramaniam & Sumedh Anathpindika Young stellar objects and their environment

More information

The Color-Magnitude Diagram for local stars from Hipparcos. Red Giant Branch (RGB) Red clump. Absolute Magnitude Main Sequence. White dwarfs.

The Color-Magnitude Diagram for local stars from Hipparcos. Red Giant Branch (RGB) Red clump. Absolute Magnitude Main Sequence. White dwarfs. The Color-Magnitude Diagram for local stars from Hipparcos Absolute Magnitude Main Sequence Red clump Red Giant Branch (RGB) White dwarfs Kovalevsky 1998 Color Lebreton 2001 The Hipparcos H-R Diagram of

More information

Geometrically Thick Dust Layer in Edge-on Galaxies

Geometrically Thick Dust Layer in Edge-on Galaxies Geometrically Thick Dust Layer in Edge-on Galaxies A Case Study of NGC 891! Kwang-Il Seon 1, Adolf N. Witt 2, Jong-Ho Shinn 1, & Il-Joong Kim 1!! 1 Korea Astronomy and Space Science Institute! 2 University

More information

Stellar Systems with HST

Stellar Systems with HST Stellar Systems with HST (With European Impact) Topics: Surprizing Globular Clusters in the Milky Way The MW Bulge and its Globulars The Bulge, Halo, Stream and Disk of Andromeda Bulges at high redshifts

More information

BUILDING GALAXIES. Question 1: When and where did the stars form?

BUILDING GALAXIES. Question 1: When and where did the stars form? BUILDING GALAXIES The unprecedented accuracy of recent observations of the power spectrum of the cosmic microwave background leaves little doubt that the universe formed in a hot big bang, later cooling

More information

Structure and Evolution of Stars Lecture 19: White Dwarfs

Structure and Evolution of Stars Lecture 19: White Dwarfs Structure and Evolution of Stars Lecture 19: White Dwarfs Physical Properties of White Dwarfs - density-mass relationship - mass-radius relationship - Chandrasekhar limiting mass - Cooling of White Dwarfs

More information

The Giant Branches. Stellar evolution of RGB and AGB stars. Importance, features, uncertainties

The Giant Branches. Stellar evolution of RGB and AGB stars. Importance, features, uncertainties The Giant Branches Stellar evolution of RGB and AGB stars Importance, features, uncertainties Achim Weiss (Max-Planck-Institut für Astrophysik, Garching) M5 (Rosenberg et al. 2000) Giant Branches MACHO

More information

Exercise: A Toy Model for Dust-driven Winds

Exercise: A Toy Model for Dust-driven Winds Astrofysikalisk dynamik, VT 00 Exercise: A Toy Model for Dust-driven Winds Susanne Höfner Department of Physics and Astronomy, Uppsala University Cool luminous giants stars, in particular pulsating AGB

More information

The Physics of the Interstellar Medium

The Physics of the Interstellar Medium The Physics of the Interstellar Medium Ulrike Heiter Contact: 471 5970 ulrike@astro.uu.se www.astro.uu.se Matter between stars Average distance between stars in solar neighbourhood: 1 pc = 3 x 1013 km,

More information

Multi-wavelength Surveys for AGN & AGN Variability. Vicki Sarajedini University of Florida

Multi-wavelength Surveys for AGN & AGN Variability. Vicki Sarajedini University of Florida Multi-wavelength Surveys for AGN & AGN Variability Vicki Sarajedini University of Florida What are Active Galactic Nuclei (AGN)? Galaxies with a source of non-stellar emission arising in the nucleus (excessive

More information

INDEX OF SUBJECTS 6, 14, 23, 50, 95, 191 4, 191, 234

INDEX OF SUBJECTS 6, 14, 23, 50, 95, 191 4, 191, 234 INDEX OF SUBJECTS Abundances, elemental Abundances, ionic AGB stars (see Stars, AGB) Age, nebulae Asymptotic Giant Branch (AGB) Be stars (see Stars, Be) Bipolar structure, nebulae Carbon stars Carbon stars,

More information

This document is provided by JAXA.

This document is provided by JAXA. The Institute of Space and Astronautical Science Report SP No.14, December 2000 Far-Infrared Emission of Intracluster Dust (ICD) By Nobuo Arimoto Λ, Toshinobu Takagi y, and Hitoshi Hanami z (November 1,

More information

A Unified Model for AGN. Ryan Yamada Astro 671 March 27, 2006

A Unified Model for AGN. Ryan Yamada Astro 671 March 27, 2006 A Unified Model for AGN Ryan Yamada Astro 671 March 27, 2006 Overview Introduction to AGN Evidence for unified model Structure Radiative transfer models for dusty torus Active Galactic Nuclei Emission-line

More information

Dust formation in Asymptotic Giant Branch stars Ambra Nanni SISSA, Trieste (IT)

Dust formation in Asymptotic Giant Branch stars Ambra Nanni SISSA, Trieste (IT) Dust formation in Asymptotic Giant Branch stars Ambra Nanni SISSA, Trieste (IT) In collaboration with A. Bressan (SISSA), P. Marigo (UNIPD) & L. Danese (SISSA) 1 Introduction AGB Stars considered to account

More information

The Impact of the Galactic Center Arches Cluster: Radio & X-ray Observations

The Impact of the Galactic Center Arches Cluster: Radio & X-ray Observations The Impact of the Galactic Center Arches Cluster: Radio & X-ray Observations Cornelia C. Lang University of Iowa GC region (Sagittarius) is obscured by ~30 visual magnitudes of extinction no optical, UV;

More information

The Great Debate: The Size of the Universe (1920)

The Great Debate: The Size of the Universe (1920) The Great Debate: The Size of the Universe (1920) Heber Curtis Our Galaxy is rather small, with Sun near the center. 30,000 LY diameter. Universe composed of many separate galaxies Spiral nebulae = island

More information

Chapter 8: Simple Stellar Populations

Chapter 8: Simple Stellar Populations Chapter 8: Simple Stellar Populations Simple Stellar Population consists of stars born at the same time and having the same initial element composition. Stars of different masses follow different evolutionary

More information

Scale height and Luminosity

Scale height and Luminosity The Milky Way I suggest to consult the excellent lectures held at Saas-Fee by Gilmore, King and van der Kruit in the Book The Milky Way as a Galaxy edited by Buser & King and published by the University

More information

High Redshift Universe

High Redshift Universe High Redshift Universe Finding high z galaxies Lyman break galaxies (LBGs) Photometric redshifts Deep fields Starburst galaxies Extremely red objects (EROs) Sub-mm galaxies Lyman α systems Finding high

More information

7. Dust Grains & Interstellar Extinction. James R. Graham University of California, Berkeley

7. Dust Grains & Interstellar Extinction. James R. Graham University of California, Berkeley 7. Dust Grains & Interstellar Extinction James R. Graham University of California, Berkeley Visual Extinction Presence of interstellar gas or nebulae has a long history Existence of absorbing interstellar

More information

MERGERS OF GLOBULAR CLUSTERS

MERGERS OF GLOBULAR CLUSTERS MERGERS OF GLOBULAR CLUSTERS SIDNEY VAN DEN BERGH Dominion Astrophysical Observatory 5071 West Saanich Road Victoria, British Columbia V8X 4M6, Canada vandenbergh@dao.nrc.ca Received: 1996 July 1 ; accepted:

More information

Mid-infrared images of compact and ultracompact HII regions: W51 and W75N.

Mid-infrared images of compact and ultracompact HII regions: W51 and W75N. Mem. S.A.It. Vol. 74, 146 c SAIt 2003 Memorie della Mid-infrared images of compact and ultracompact HII regions: W51 and W75N. Paolo Persi 1, Anna Rosa Marenzi 1, Maurcio Tapia 2 and Joaquín Bohigas 2,

More information

Lecture 23 Internal Structure of Molecular Clouds

Lecture 23 Internal Structure of Molecular Clouds Lecture 23 Internal Structure of Molecular Clouds 1. Location of the Molecular Gas 2. The Atomic Hydrogen Content 3. Formation of Clouds 4. Clouds, Clumps and Cores 5. Observing Molecular Cloud Cores References

More information

VY Canis Majoris: The Astrophysical Basis of Its Luminosity

VY Canis Majoris: The Astrophysical Basis of Its Luminosity VY Canis Majoris: The Astrophysical Basis of Its Luminosity Roberta M. Humphreys School of Physics and Astronomy, University of Minnesota, 55455 ABSTRACT arxiv:astro-ph/0610433v1 13 Oct 2006 The luminosity

More information

Clocks and Scales to understand the physics of BSS

Clocks and Scales to understand the physics of BSS Kobe, Japan, Dec 7-11, 2015 Clocks and Scales to understand the physics of BSS FRANCESCO R. FERRARO Physics & Astronomy Department University of Bologna (Italy) Kobe, Japan, December 8, 2015 ª 5-year project

More information

Carbon stars and dust production as a function of metallicity

Carbon stars and dust production as a function of metallicity Carbon stars and dust production as a function of metallicity G.C. Sloan and many others SOFIA Tele-Talk 2-26-2014 NGC 1978 in the LMC observed by the HST 1 Conclusions The amount of dust produced by carbon

More information

Pulsation of AGB stars in the Small Magellanic Cloud cluster NGC 419

Pulsation of AGB stars in the Small Magellanic Cloud cluster NGC 419 Mem. S.A.It. Vol. 81, 1078 c SAIt 2010 Memorie della Pulsation of AGB stars in the Small Magellanic Cloud cluster NGC 419 D. Kamath 1, P. R. Wood 1, I. Soszyński 2, and T. Lebzelter 3 1 Research School

More information

arxiv: v1 [astro-ph.sr] 5 Jan 2011

arxiv: v1 [astro-ph.sr] 5 Jan 2011 Draft version November 9, 208 Preprint typeset using L A TEX style emulateapj v. /0/09 FUNDAMENTAL PARAMETERS, INTEGRATED RGB MASS LOSS AND DUST PRODUCTION IN THE GALACTIC GLOBULAR CLUSTER 47 TUCANAE I.

More information

The Giant Branches of Open and Globular Clusters in the Infrared as Metallicity Indicators: A Comparison with Theory

The Giant Branches of Open and Globular Clusters in the Infrared as Metallicity Indicators: A Comparison with Theory Accepted for publicaton in The Astronomical Journal The Giant Branches of Open and Globular Clusters in the Infrared as Metallicity Indicators: A Comparison with Theory GlennP.Tiede,PaulMartini,&JayA.Frogel

More information

Simple Stellar Populations

Simple Stellar Populations Stellar Objects: Simple Stellar Populations 1 Simple Stellar Populations 1 Theoretical isochrones Update date: December 14, 2010 Simple Stellar Population consists of stars born at the same time and having

More information

Gas Accretion & Outflows from Redshift z~1 Galaxies

Gas Accretion & Outflows from Redshift z~1 Galaxies Gas Accretion & Outflows from Redshift z~1 Galaxies David C. Koo Kate Rubin, Ben Weiner, Drew Phillips, Jason Prochaska, DEEP2, TKRS, & AEGIS Teams UCO/Lick Observatory, University of California, Santa

More information

Aeree Chung Yonsei University

Aeree Chung Yonsei University Evolutionary Paths in Galaxy Morphology, 2013 Sep 23-26, Sydney Australia Environmentally Galaxy Evolution: From a Gas Perspective Aeree Chung Yonsei University S + Irr dominant in the field Morphology-density

More information

Part two of a year-long introduction to astrophysics:

Part two of a year-long introduction to astrophysics: ASTR 3830 Astrophysics 2 - Galactic and Extragalactic Phil Armitage office: JILA tower A909 email: pja@jilau1.colorado.edu Spitzer Space telescope image of M81 Part two of a year-long introduction to astrophysics:

More information

A100 Exploring the Universe: The Milky Way as a Galaxy. Martin D. Weinberg UMass Astronomy

A100 Exploring the Universe: The Milky Way as a Galaxy. Martin D. Weinberg UMass Astronomy A100 Exploring the Universe: The Milky Way as a Galaxy Martin D. Weinberg UMass Astronomy astron100-mdw@courses.umass.edu November 12, 2014 Read: Chap 19 11/12/14 slide 1 Exam #2 Returned and posted tomorrow

More information

Payne-Scott workshop on Hyper Compact HII regions Sydney, September 8, 2010

Payne-Scott workshop on Hyper Compact HII regions Sydney, September 8, 2010 Payne-Scott workshop on Hyper Compact HII regions Sydney, September 8, 2010 Aim Review the characteristics of regions of ionized gas within young massive star forming regions. Will focus the discussion

More information

X-raying galactic feedback in nearby disk galaxies. Q. Daniel Wang University of Massachusetts

X-raying galactic feedback in nearby disk galaxies. Q. Daniel Wang University of Massachusetts X-raying galactic feedback in nearby disk galaxies Q. Daniel Wang University of Massachusetts Chandra survey of diffuse X-ray emission from 53 edge-on galaxies i > 60 o, D < 30 Mpc (Li, J.-T. & Wang, Q.D.

More information

The Infrared Universe as Seen by Spitzer and Beyond. February 20, 2007

The Infrared Universe as Seen by Spitzer and Beyond. February 20, 2007 The Infrared Universe as Seen by Spitzer and Beyond The Holly Berry Cluster [NOT the Halle Berry cluster] in Serpens February 20, 2007 Presented to the Herschel Open Time Key Project Workshop Michael Werner,

More information

The Age of the Oldest Stars from the Faint End Slope of the White Dwarf LF in Globular Clusters

The Age of the Oldest Stars from the Faint End Slope of the White Dwarf LF in Globular Clusters Next Generation Space Telescope Ad-Hoc Science Working Group Design Reference Mission Proposal The Age of the Oldest Stars from the Faint End Slope of the White Dwarf LF in Globular Program contacts: R.

More information

THE SECOND PARAMETER : A MEMORY FROM THE GLOBULAR CLUSTER FORMATION EPOCH

THE SECOND PARAMETER : A MEMORY FROM THE GLOBULAR CLUSTER FORMATION EPOCH THE SECOND PARAMETER : A MEMORY FROM THE GLOBULAR CLUSTER FORMATION EPOCH Noam Soker and Ron Hadar 1 Department of Physics, University of Haifa at Oranim Oranim, Tivon 36006, ISRAEL soker@physics.technion.ac.il

More information

Dust [12.1] Star clusters. Absorb and scatter light Effect strongest in blue, less in red, zero in radio.

Dust [12.1] Star clusters. Absorb and scatter light Effect strongest in blue, less in red, zero in radio. More abs. Dust [1.1] kev V Wavelength Optical Infra-red More abs. Wilms et al. 000, ApJ, 54, 914 No grains Grains from http://www.astro.princeton.edu/~draine/dust/dustmix.html See DraineH 003a, column

More information

SED models of AGN. R. Siebenmorgen and A. Efstathiou

SED models of AGN. R. Siebenmorgen and A. Efstathiou SED models of AGN R. Siebenmorgen and A. Efstathiou ESO, Karl-Schwardzschildstr.2, D85748 Garching b.m., Germany homepage School of Computer Science & Engineering, Cyprus College, 6 Diogenes Street, Engomi,

More information

Gas and dust pollution. from AGB stars.

Gas and dust pollution. from AGB stars. Osservatorio Astronomico di Roma Gas and dust pollution from AGB stars. Marcella Di Criscienzo INAF-Osservatorio Astronomico di Roma Collaborators: P. Ventura, F. Dell Agli, F. D Antona, A. Karakas, A.

More information

Probing the Molecular Outflows of the Coldest Known Object in the Universe The Boomerang Nebula. R.Sahai (JPL) W. Vlemmings, L-A Nyman & P.

Probing the Molecular Outflows of the Coldest Known Object in the Universe The Boomerang Nebula. R.Sahai (JPL) W. Vlemmings, L-A Nyman & P. Probing the Molecular Outflows of the Coldest Known Object in the Universe The Boomerang Nebula R.Sahai (JPL) W. Vlemmings, L-A Nyman & P. Huggins The Extraordinary Deaths of Ordinary Stars Planetary nebulae

More information

The Physics and Dynamics of Planetary Nebulae

The Physics and Dynamics of Planetary Nebulae Grigor A. Gurzadyan The Physics and Dynamics of Planetary Nebulae With 125 Figures, 14 Plates and 93 Tables Springer Contents 1. Global Concepts 1 1.1 The Shapes of Planetary Nebulae 1 1.2 The Structure

More information

Warm Molecular Hydrogen at high redshift with JWST

Warm Molecular Hydrogen at high redshift with JWST Warm Molecular Hydrogen at high redshift with JWST Pierre Guillard Institut d Astrophysique de Paris Université Pierre et Marie Curie he Warm H 2 with JWST Outline and take-home messages 1. Observations

More information

Globular Cluster Ages and Strömgren CCD Photometry

Globular Cluster Ages and Strömgren CCD Photometry Globular Cluster Ages and Strömgren CCD Photometry Frank Grundahl 1 University of Victoria, Department of Physics and Astronomy PO Box 3055, Victoria, BC, V8W 3P6, Canada Abstract. Strömgren uvby CCD photometry

More information

The Crab Nebula in the infrared: a review

The Crab Nebula in the infrared: a review Mem. S.A.It. Vol. 83, 92 c SAIt 2012 Memorie della The Crab Nebula in the infrared: a review P. Persi IASF-ROMA/INAF, Via Fosso del Cavaliere 100, 00133 Roma, Italy e-mail: paolo.persi@iasf-roma.inaf.it

More information

Spectral Energy Distribution of galaxies

Spectral Energy Distribution of galaxies Spectral Energy Distribution of galaxies Paola Santini PhD in Astronomy, Astrophysics and Space Science A.A. 2013 2014 Key points lecture 1 Multiwavalength astronomy: 1. Gives a complete view of the galaxy

More information

Resolving the hot atmospheres of evolved stars with ALMA LBs. Wouter Vlemmings, Chalmers Univ. of Technology w. Theo Khouri, Eamon O Gorman et al.

Resolving the hot atmospheres of evolved stars with ALMA LBs. Wouter Vlemmings, Chalmers Univ. of Technology w. Theo Khouri, Eamon O Gorman et al. Resolving the hot atmospheres of evolved stars with ALMA LBs Wouter Vlemmings, Chalmers Univ. of Technology w. Theo Khouri, Eamon O Gorman et al. AGB mass loss (before) dust formation Ballistic motions

More information

AG Draconis. A high density plasma laboratory. Dr Peter Young Collaborators A.K. Dupree S.J. Kenyon B. Espey T.B.

AG Draconis. A high density plasma laboratory. Dr Peter Young Collaborators A.K. Dupree S.J. Kenyon B. Espey T.B. AG Draconis A high density plasma laboratory Collaborators A.K. Dupree S.J. Kenyon B. Espey T.B. Ake p.r.young@rl.ac.uk Overview CHIANTI database Symbiotic Stars AG Draconis FUSE FUSE observations of AG

More information

Two Main Techniques. I: Star-forming Galaxies

Two Main Techniques. I: Star-forming Galaxies p.1/24 The high redshift universe has been opened up to direct observation in the last few years, but most emphasis has been placed on finding the progenitors of today s massive ellipticals. p.2/24 Two

More information