Betelgeuse and Rigel are two super giants in the constellation of Orion. Constellation: Stellar cluster:...

Size: px
Start display at page:

Download "Betelgeuse and Rigel are two super giants in the constellation of Orion. Constellation: Stellar cluster:..."

Transcription

1 IB Physics Astrophysics Option Summer Assignment Name Due 2 nd Rotation Fall This question is about stars. Betelgeuse and Rigel are two super giants in the constellation of Orion. Distinguish between a constellation and a stellar cluster. Constellation: Stellar cluster: The star Betelgeuse has a parallax of arc second. Deduce that its distance from Earth is approximately 130 pc. (c) State why the Hipparcos satellite which orbits Earth is able to measure stellar parallaxes for stars at considerably greater distances than 130 pc. (d) The table below gives some information about the types and magnitudes of Betelgeuse and Rigel. Star Type Apparent magnitude Colour Apparent brightness Betelgeuse M W m 2 Rigel B W m 2 (i) (ii) Complete the above table for the colours of the stars. State why Betelgeuse has a lower apparent magnitude than Rigel. 1

2 (iii) Given that the distance of Betelgeuse from Earth is 130 pc, calculate the luminosity of Betelgeuse. (4) (iv) The luminosity of Rigel is W. Without any further calculation, explain whether Rigel is closer or further than Betelgeuse from Earth. (Total 14 marks) 2. This question is about Olbers paradox. Newton assumed that the universe is static and that the stars are uniformly distributed. State one further assumption of the Newtonian universe. Explain how Newton s assumptions led to Olbers paradox. (5) (Total 6 marks) 2

3 3. This question is about stars. Describe the final nuclear reaction in the core, and the final evolutionary state, of a low-mass star (of the order of 1 solar mass); nuclear reaction: evolutionary state: a high-mass star (of approximately 15 solar masses). nuclear reaction: evolutionary state: (Total 4 marks) 4. This question is about extragalactic astrophysics. In an observation of a distant galaxy, spectral lines are recorded. Spectral lines at these wavelengths cannot be produced in the laboratory. Explain this phenomenon. Describe how Hubble s law is used to determine the distance from the Earth to distant galaxies. 3

4 (c) Explain why Hubble s law is not used to measure distances to nearby stars or nearby galaxies (such as Andromeda). (Total 6 marks) 5. This question is about comets and stars. State one difference (other than size) between the orbit of a typical comet and the orbit of the Earth around the Sun..... The average distance between the stars in a galaxy is about 2 pc. A typical galaxy has a volume of pc 3. Estimate the number of stars in the galaxy (Total 3 marks) 6. This question is about magnitude and apparent brightness. Define apparent brightness and apparent magnitude. Apparent brightness: Apparent magnitude:

5 The table gives information on the peak absolute magnitude and the peak apparent brightness of two Cepheid stars. star (peak) absolute magnitude (peak) apparent brightness Delta Cephei Wm 2 Zera Geminorum Wm 2 State and explain whether Delta Cephei or Zeta Geminorum (i) appears brighter from Earth (ii) is closer to Earth (c) The luminosity of a Cepheid star is variable. Outline the reason for this variation

6 The graph shows the variation with period of the peak luminosity of Cepheid stars Luminosity Period/days 100 The luminosity is given in terms of the solar luminosity of W. (d) (i) Outline how data from the graph may be used to determine the distance of a galaxy from Earth (ii) The peak apparent brightness of Zeta Geminorum is Wm 2 and the period of variation of luminosity is approximately 10 days. Use data from the graph on previous page to deduce that the distance to Zeta Geminorum from Earth is about m (Total 12 marks) 6

7 7. This question is about cosmic microwave background radiation. State what is meant by cosmic microwave background radiation Describe how the cosmic microwave background radiation provides evidence for the expanding universe (Total 5 marks) 8. This question is about stellar evolution. A partially completed Hertsprung-Russel (H-R) diagram is shown below. I Luminosity S F Temperature The line indicates the evolutionary path of the Sun from its present position, S, to its final position, F. An intermediate stage in the Sun s evolution is labelled by I. 7

8 State the condition for the Sun to move from position S..... State and explain the change in the luminosity of the Sun that occurs between positions S and I..... (c) Explain, by reference to the Chandrasekhar limit, why the final stage of the evolutionary path of the Sun is at F (d) On the diagram on the previous page, draw the evolutionary path of a main sequence star that has a mass of 30 solar masses. (Total 6 marks) 9. This question is about Hubble s law. State Hubble s law..... Deduce an expression for the age T of the Universe in terms of the Hubble constant H (Total 4 marks) 10. This question is about luminosity. Define luminosity. 8

9 The sketch-graph below shows the intensity spectrum for a black-body at a temperature of 6000 K. intensity 0 0 wavelength On the axes above, draw a sketch-graph showing the intensity spectrum for a black-body at 8000 K. (c) A sketch of a Hertzsprung-Russell diagram is shown below. luminosity temperature On the diagram above, identify the (i) (ii) (iii) main sequence (label this M); red giant region (label this R); white dwarf region (label this W). 9

10 (d) In a Hertzsprung-Russell diagram, luminosity is plotted against temperature. Explain why the diagram alone does not enable the luminosity of a particular star to be determined from its temperature. (Total 8 marks) 11. This question is about stellar magnitudes and stellar distances. Define (i) apparent magnitude; (ii) absolute magnitude. Star A has an apparent magnitude of 5.0 and is 100 pc from Earth. The luminosity of star A is 4.0 times the luminosity of star B. The apparent brightness of star A is 100 times greater than the apparent brightness of star B. Deduce that (i) star B is 500 pc from Earth; 10

11 (ii) the absolute magnitude of star A is 0. (Total 7 marks) 12. This question is about cosmology. State one piece of evidence that indicates that the Universe is expanding. The rate at which the Universe is expanding depends on the density of the Universe. (i) Define critical density. (ii) Explain the importance of comparing the density of the Universe to the critical density in predicting the future of the Universe. (Total 5 marks) 13. This question is about stellar evolution. Outline the late stages in the evolution of a high-mass star that leads it to end its life as a neutron star. 11

12 Outline the mechanism that enables a neutron star to be detected from Earth. (Total 6 marks) 14. This question is about galactic motion. The K-line of light from singly ionized calcium has a wavelength of nm when measured in a laboratory. The same line in the spectrum of galaxy NGC 4889 has a wavelength of nm. The value of the Hubble constant may be assumed to be 70 km s 1 Mpc 1. Deduce a value for the distance of NGC 4889 from Earth (Total 4 marks) 12

OPTION E, ASTROPHYSICS TEST REVIEW

OPTION E, ASTROPHYSICS TEST REVIEW IB PHYSICS Name: DEVIL PHYSICS Period: Date: BADDEST CLASS ON CAMPUS OPTION E, ASTROPHYSICS TEST REVIEW S1. This question is about the nature of certain stars on the Hertzsprung-Russell diagram and determining

More information

OPTION E, ASTROPHYSICS TEST REVIEW

OPTION E, ASTROPHYSICS TEST REVIEW IB PHYSICS Name: DEVIL PHYSICS Period: Date: # Marks: XX Raw Score: IB Curve: BADDEST CLASS ON CAMPUS OPTION E, ASTROPHYSICS TEST REVIEW S1. This question is about the nature of certain stars on the Hertzsprung-Russell

More information

1. This question is about Hubble s law. The light received from many distant galaxies is red-shifted. (a) State the cause of this red-shift (1)

1. This question is about Hubble s law. The light received from many distant galaxies is red-shifted. (a) State the cause of this red-shift (1) ROUND 2 - QUESTIONS 1. This question is about Hubble s law. The light received from many distant galaxies is red-shifted. (a) State the cause of this red-shift (1) expanding universe (b) State Hubble s

More information

Earth-based parallax measurements have led to the conclusion that the Pleiades star cluster is about 435 light-years from Earth.

Earth-based parallax measurements have led to the conclusion that the Pleiades star cluster is about 435 light-years from Earth. 1 The Pleiades star cluster is a prominent sight in the night sky. All the stars in the cluster were formed from the same gas cloud. Hence the stars have nearly identical ages and compositions, but vary

More information

E1. This question is about stars. (a) Distinguish between apparent magnitude and absolute magnitude. [2]

E1. This question is about stars. (a) Distinguish between apparent magnitude and absolute magnitude. [2] 1 Option E Astrophysics M09/4/PHYSI/SP3/ENG/TZ1/XX+ E1. This question is about stars. (a) Distinguish between apparent magnitude and absolute magnitude. [2] apparent magnitude is a measure of how bright

More information

... The figure below shows the axes of a Hertzsprung-Russell diagram. Mark suitable scales on the absolute magnitude and temperature axes.

... The figure below shows the axes of a Hertzsprung-Russell diagram. Mark suitable scales on the absolute magnitude and temperature axes. Q1.(a) Define the term absolute magnitude..... (b) The figure below shows the axes of a Hertzsprung-Russell diagram. Mark suitable scales on the absolute magnitude and temperature axes. temperature / K

More information

Relativity and Astrophysics Lecture 15 Terry Herter. RR Lyrae Variables Cepheids Variables Period-Luminosity Relation. A Stellar Properties 2

Relativity and Astrophysics Lecture 15 Terry Herter. RR Lyrae Variables Cepheids Variables Period-Luminosity Relation. A Stellar Properties 2 Stellar Properties Relativity and Astrophysics Lecture 15 Terry Herter Outline Spectroscopic Parallax Masses of Stars Periodic Variable Stars RR Lyrae Variables Cepheids Variables Period-Luminosity Relation

More information

Questions on Universe

Questions on Universe Questions on Universe 1. The Doppler shift may be used in the study of distant galaxies. Explain what is meant by a Doppler shift and how it is used to deduce the motion of distant galaxies. You may be

More information

IB Physics - Astronomy

IB Physics - Astronomy Solar System Our Solar System has eight planets. The picture below shows their relative sizes, but NOT their relative distances. A planet orbits the sun, and has gravitationally cleared its orbital area

More information

Characteristics of Stars

Characteristics of Stars Characteristics of Stars This section explains how astronomers measure distances to stars. It also describes how stars are classified. Use Target Reading Skills As you read about stars, stop and write

More information

Stars: basic observations

Stars: basic observations Stars: basic observations Basic properties of stars we would like to know in order to compare theory against observations: Stellar mass M Stellar radius R Surface temperature - effective temperature T

More information

Questions. theonlinephysicstutor.com. facebook.com/theonlinephysicstutor. Name: Edexce Black Body. Date: Time: Total marks available:

Questions. theonlinephysicstutor.com. facebook.com/theonlinephysicstutor. Name: Edexce Black Body. Date: Time: Total marks available: Name: Edexce Black Body Date: Time: Total marks available: Total marks achieved: Questions Q1. A lamp consists of a filament in a vacuum. Under normal working conditions the filament has a temperature

More information

V. Astronomy Section

V. Astronomy Section EAS 100 Planet Earth Lecture Topics Brief Outlines V. Astronomy Section 1. Introduction, Astronomical Distances, Solar System Learning objectives: Develop an understanding of Earth s position in the solar

More information

5. A particular star has an angle of parallax of 0.2 arcsecond. What is the distance to this star? A) 50 pc B) 2 pc C) 5 pc D) 0.

5. A particular star has an angle of parallax of 0.2 arcsecond. What is the distance to this star? A) 50 pc B) 2 pc C) 5 pc D) 0. Name: Date: 1. How far away is the nearest star beyond the Sun, in parsecs? A) between 1 and 2 pc B) about 12 pc C) about 4 pc D) between 1/2 and 1 pc 2. Parallax of a nearby star is used to estimate its

More information

Stars, Galaxies & the Universe Announcements. Stars, Galaxies & the Universe Observing Highlights. Stars, Galaxies & the Universe Lecture Outline

Stars, Galaxies & the Universe Announcements. Stars, Galaxies & the Universe Observing Highlights. Stars, Galaxies & the Universe Lecture Outline Stars, Galaxies & the Universe Announcements HW#3 due Tuesday (Tomorrow) at 3 pm Lab Observing Trip Tues (9/28) & Thurs (9/30) First Exam next Wed. (9/22) in class - will post review sheet, practice exam

More information

INSIDE LAB 8: Plotting Stars on the Hertzsprung- Russell Diagram

INSIDE LAB 8: Plotting Stars on the Hertzsprung- Russell Diagram INSIDE LAB 8: Plotting Stars on the Hertzsprung- Russell Diagram OBJECTIVE: To become familiar with the Hertzsprung-Russell diagram and the method of spectroscopic parallax. DISCUSSION: The Hertzsprung-Russell

More information

The Extragalactic Distance Scale

The Extragalactic Distance Scale One of the important relations in Astronomy. It lets us Measure the distance to distance objects. Each rung on the ladder is calibrated using lower-rung calibrations. Distance Objects Technique 1-100 AU

More information

Galaxies & Introduction to Cosmology

Galaxies & Introduction to Cosmology Galaxies & Introduction to Cosmology Other Galaxies: How many are there? Hubble Deep Field Project 100 hour exposures over 10 days Covered an area of the sky about 1/100 the size of the full moon Probably

More information

Chapter 8: The Family of Stars

Chapter 8: The Family of Stars Chapter 8: The Family of Stars Motivation We already know how to determine a star s surface temperature chemical composition surface density In this chapter, we will learn how we can determine its distance

More information

Lecture 25: The Cosmic Distance Scale Sections 25-1, 26-4 and Box 26-1

Lecture 25: The Cosmic Distance Scale Sections 25-1, 26-4 and Box 26-1 Lecture 25: The Cosmic Distance Scale Sections 25-1, 26-4 and Box 26-1 Key Ideas The Distance Problem Geometric Distances Trigonometric Parallaxes Luminosity Distances Standard Candles Spectroscopic Parallaxes

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com PhysicsAndMathsTutor.com 1 1. State the Cosmological Principle. [Total 2 marks] 2. Describe the important properties of the cosmic microwave background radiation and how the standard model of the Universe

More information

The Extragalactic Distance Scale

The Extragalactic Distance Scale One of the important relations in Astronomy. It lets us Measure the distance to distance objects. Each rung on the ladder is calibrated using lower-rung calibrations. Distance Objects Technique 1-100 AU

More information

Clusters and constellations

Clusters and constellations Astrophysics Clusters and constellations Star clusters are groups of stars that are connected by a significant gravitational force ands move around tougher as the galaxy rotates. The motion of the Sun

More information

Measuring stellar distances.

Measuring stellar distances. Measuring stellar distances This method can be used to measure distances up to 100pc Some new technology allows measuring distances up to 200pc using this method p= 1/d Stellar Parallax.htm This method

More information

ASTRONOMY QUIZ NUMBER 11

ASTRONOMY QUIZ NUMBER 11 ASTRONOMY QUIZ NUMBER. Suppose you measure the parallax of a star and find 0. arsecond. The distance to this star is A) 0 light-years B) 0 parsecs C) 0. light-year D) 0. parsec 2. A star is moving toward

More information

Sample Assessment Material Time: 2 hours

Sample Assessment Material Time: 2 hours Paper Reference(s) 5AS01 Edexcel GCSE Astronomy Paper 1 Sample Assessment Material Time: 2 hours Materials required for examination Calculator Items included with question papers Nil Instructions to Candidates

More information

Chapter 10 Measuring the Stars

Chapter 10 Measuring the Stars Chapter 10 Measuring the Stars Some of the topics included in this chapter Stellar parallax Distance to the stars Stellar motion Luminosity and apparent brightness of stars The magnitude scale Stellar

More information

1 (a) Explain what is meant by a white dwarf when describing the evolution of a star [1]

1 (a) Explain what is meant by a white dwarf when describing the evolution of a star [1] 1 (a) Explain what is meant by a white dwarf when describing the evolution of a star.... [1] (b) Antares is a red giant and one of the brightest stars in the night sky. The parallax angle for this star

More information

Outline. Go over AGN problem, again, should be rotating BH Go over problem 6.6 Olber's paradox Distances Parallax Distance ladder Direct checks

Outline. Go over AGN problem, again, should be rotating BH Go over problem 6.6 Olber's paradox Distances Parallax Distance ladder Direct checks Outline Go over AGN problem, again, should be rotating BH Go over problem 6.6 Olber's paradox Distances Parallax Distance ladder Direct checks Why is the night sky dark? (Olber s Paradox 1826) Or what

More information

Modern Astronomy Review #1

Modern Astronomy Review #1 Modern Astronomy Review #1 1. The red-shift of light from distant galaxies provides evidence that the universe is (1) shrinking, only (3) shrinking and expanding in a cyclic pattern (2) expanding, only

More information

2019 Astronomy Team Selection Test

2019 Astronomy Team Selection Test 2019 Astronomy Team Selection Test Acton-Boxborough Regional High School Written by Antonio Frigo Do not flip over this page until instructed. Instructions You will have 45 minutes to complete this exam.

More information

The Distance Modulus. Absolute Magnitude. Chapter 9. Family of the Stars

The Distance Modulus. Absolute Magnitude. Chapter 9. Family of the Stars Foundations of Astronomy 13e Seeds Phys1403 Introductory Astronomy Instructor: Dr. Goderya Chapter 9 Family of the Stars Cengage Learning 016 Topics for Today s Class 1. Recap: Intrinsic Brightness a)

More information

Astronomy 113. Dr. Joseph E. Pesce, Ph.D. Dr. Joseph E. Pesce, Ph.D.

Astronomy 113. Dr. Joseph E. Pesce, Ph.D. Dr. Joseph E. Pesce, Ph.D. Astronomy 113 Dr. Joseph E. Pesce, Ph.D. The Nature of Stars 8-2 Parallax For nearby stars - measure distances with parallax July 1 AU d p A A A January ³ d = 1/p (arcsec) [pc] ³ 1pc when p=1arcsec; 1pc=206,265AU=3

More information

Chapter 15 Reading Quiz Clickers. The Cosmic Perspective Seventh Edition. Surveying the Stars Pearson Education, Inc.

Chapter 15 Reading Quiz Clickers. The Cosmic Perspective Seventh Edition. Surveying the Stars Pearson Education, Inc. Reading Quiz Clickers The Cosmic Perspective Seventh Edition Surveying the Stars 15.1 Properties of Stars How do we measure stellar luminosities? How do we measure stellar temperatures? How do we measure

More information

COSMOLOGY The Universe what is its age and origin?

COSMOLOGY The Universe what is its age and origin? COSMOLOGY The Universe what is its age and origin? REVIEW (SUMMARY) Oppenheimer Volkhoff limit: upper limit to mass of neutron star remnant more than 1.4 M à neutron degeneracy Supernova à extremely dense

More information

Ch. 25 In-Class Notes: Beyond Our Solar System

Ch. 25 In-Class Notes: Beyond Our Solar System Ch. 25 In-Class Notes: Beyond Our Solar System ES2a. The solar system is located in an outer edge of the disc-shaped Milky Way galaxy, which spans 100,000 light years. ES2b. Galaxies are made of billions

More information

Cosmic Microwave Background Radiation

Cosmic Microwave Background Radiation Base your answers to questions 1 and 2 on the passage below and on your knowledge of Earth Science. Cosmic Microwave Background Radiation In the 1920s, Edwin Hubble's discovery of a pattern in the red

More information

Guiding Questions. Measuring Stars

Guiding Questions. Measuring Stars Measuring Stars Guiding Questions 1. How far away are the stars? 2. What is meant by a first-magnitude or second magnitude star? 3. Why are some stars red and others blue? 4. What are the stars made of?

More information

ASTR-1020: Astronomy II Course Lecture Notes Section III

ASTR-1020: Astronomy II Course Lecture Notes Section III ASTR-1020: Astronomy II Course Lecture Notes Section III Dr. Donald G. Luttermoser East Tennessee State University Edition 4.0 Abstract These class notes are designed for use of the instructor and students

More information

The Hertzprung-Russell (HR) Diagram

The Hertzprung-Russell (HR) Diagram Name: Partner(s): 1102 or 3311: Desk # Date: The Hertzprung-Russell (HR) Diagram Purpose Reproduce Hertzsprung s and Russell s simultaneous discovery Investigate the relationships between luminosity, mass,

More information

Exam 4 Review EXAM COVERS LECTURES 22-29

Exam 4 Review EXAM COVERS LECTURES 22-29 Exam 4 Review EXAM COVERS LECTURES 22-29 Theoretically is there a center of the universe? Is there an edge? Do we know where Earth is on this? There is no center to the Universe, What kind of light we

More information

29:50 Stars, Galaxies, and the Universe Final Exam December 13, 2010 Form A

29:50 Stars, Galaxies, and the Universe Final Exam December 13, 2010 Form A 29:50 Stars, Galaxies, and the Universe Final Exam December 13, 2010 Form A There are 40 questions. Read each question and all of the choices before choosing. Budget your time. No whining. Walk with Ursus!

More information

6. Star Colors and the Hertzsprung-Russell Diagram

6. Star Colors and the Hertzsprung-Russell Diagram In addition to its brightness, light in general is characterized by its color. 6. Star Colors and the Hertzsprung-Russell Diagram http://apod.nasa.gov/apod/ Depending on the temperature of the matter at

More information

λ = 650 nm = c = m s 1 f =? c = fλ f = c λ = ( m s 1 ) ( m) = = Hz T = 1 f 4.

λ = 650 nm = c = m s 1 f =? c = fλ f = c λ = ( m s 1 ) ( m) = = Hz T = 1 f 4. Chapter 13 Stars Section 13.1 Astronomical measurements Worked example: Try yourself 13.1.1 CALCULATING THE FREQUENCY AND PERIOD OF LIGHT The speed of light in a vacuum is approximately 3.0 10 8 m s 1.

More information

Evolution of Stars Population III: Population II: Population I:

Evolution of Stars Population III: Population II: Population I: Evolution of Stars 1. Formed from gas/dust cloud collapse from gravity 2. Fuse H to He on the Main Sequence. Then evolve off Main-sequence as they burn He and successive elements. 3. When nuclear fusion

More information

Astronomy C UT Regional, Spring 2018 Contact: Dhruva Karkada,

Astronomy C UT Regional, Spring 2018 Contact: Dhruva Karkada, Astronomy C UT Regional, Spring 2018 Contact: Dhruva Karkada, dkarkada@gmail.com Competitors: School Name: Team Number: This test contains 5 sections, cumulatively worth 150 points. As always, you ll have

More information

Family of stars. Fred Sarazin Physics Department, Colorado School of Mines. PHGN324: Family of stars

Family of stars. Fred Sarazin Physics Department, Colorado School of Mines. PHGN324: Family of stars Family of stars Reminder: the stellar magnitude scale In the 1900 s, the magnitude scale was defined as follows: a difference of 5 in magnitude corresponds to a change of a factor 100 in brightness. Dm

More information

Lecture Outlines. Chapter 17. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 17. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 17 Astronomy Today 8th Edition Chaisson/McMillan Chapter 17 Measuring the Stars Units of Chapter 17 17.1 The Solar Neighborhood 17.2 Luminosity and Apparent Brightness 17.3 Stellar

More information

Organizing the Family of Stars:

Organizing the Family of Stars: Organizing the Family of Stars: We know: Stars have different temperatures, different luminosities, and different sizes. To bring some order into that zoo of different types of stars: organize them in

More information

How to Understand Stars Chapter 17 How do stars differ? Is the Sun typical? Location in space. Gaia. How parallax relates to distance

How to Understand Stars Chapter 17 How do stars differ? Is the Sun typical? Location in space. Gaia. How parallax relates to distance How to Understand Stars Chapter 7 How do stars differ? Is the Sun typical? Image of Orion illustrates: The huge number of stars Colors Interstellar gas Location in space Two dimensions are easy measure

More information

The Milky Way. Finding the Center. Milky Way Composite Photo. Finding the Center. Milky Way : A band of and a. Milky Way

The Milky Way. Finding the Center. Milky Way Composite Photo. Finding the Center. Milky Way : A band of and a. Milky Way The Milky Way Milky Way : A band of and a The band of light we see is really 100 billion stars Milky Way probably looks like Andromeda. Milky Way Composite Photo Milky Way Before the 1920 s, astronomers

More information

Lecture 10: The Hertzsprung-Russell Diagram Reading: Sections

Lecture 10: The Hertzsprung-Russell Diagram Reading: Sections Lecture 10: The Hertzsprung-Russell Diagram Reading: Sections 19.7-19.8 Key Ideas The Hertzsprung-Russell (H-R) Diagram Plot of Luminosity vs. Temperature for stars Features: Main Sequence Giant & Supergiant

More information

FXA UNIT G485 Module Structure of the Universe. Δλ = v λ c CONTENTS OF THE UNIVERSE. Candidates should be able to :

FXA UNIT G485 Module Structure of the Universe. Δλ = v λ c CONTENTS OF THE UNIVERSE. Candidates should be able to : 1 Candidates should be able to : CONTENTS OF THE UNIVERSE Describe the principal contents of the universe, including stars, galaxies and radiation. Describe the solar system in terms of the Sun, planets,

More information

The Milky Way, Hubble Law, the expansion of the Universe and Dark Matter Chapter 14 and 15 The Milky Way Galaxy and the two Magellanic Clouds.

The Milky Way, Hubble Law, the expansion of the Universe and Dark Matter Chapter 14 and 15 The Milky Way Galaxy and the two Magellanic Clouds. The Milky Way, Hubble Law, the expansion of the Universe and Dark Matter Chapter 14 and 15 The Milky Way Galaxy and the two Magellanic Clouds. Image taken from the European Southern Observatory in Chile

More information

Lecture 16 The Measuring the Stars 3/26/2018

Lecture 16 The Measuring the Stars 3/26/2018 Lecture 16 The Measuring the Stars 3/26/2018 Test 2 Results D C B A Questions that I thought were unfair: 13, 18, 25, 76, 77, 80 Curved from 85 to 79 Measuring stars How far away are they? How bright are

More information

Astronomy 102 Lab: Distances to Galaxies

Astronomy 102 Lab: Distances to Galaxies Name: Astronomy 102 Lab: Distances to Galaxies You will access your textbook for this lab. Pre-Lab Assignment: As we began to talk about stars beyond the Sun, one of the most important pieces of information

More information

Intro to Astrophysics

Intro to Astrophysics Intro to Astrophysics Dr. Bill Pezzaglia 1 III. Introduction To Astrophysics A. Distances to Stars B. Binary Stars C. HR Diagrams 2 Updated: Nov 2007 A. Stellar Distances 1. Method of Parallax 2. Absolute

More information

Chapter 15 Surveying the Stars Pearson Education, Inc.

Chapter 15 Surveying the Stars Pearson Education, Inc. Chapter 15 Surveying the Stars 15.1 Properties of Stars Our goals for learning: How do we measure stellar luminosities? How do we measure stellar temperatures? How do we measure stellar masses? 1. How

More information

How can we use an H-R diagram to know where a star is in its life cycle?

How can we use an H-R diagram to know where a star is in its life cycle? How can we use an H-R diagram to know where a star is in its life cycle? Just like humans, stars go through a life cycle. Over the course of their lives, stars change in ways that make each stage different

More information

Astr 5465 Feb. 6, 2018 Today s Topics

Astr 5465 Feb. 6, 2018 Today s Topics Astr 5465 Feb. 6, 2018 Today s Topics Stars: Binary Stars Determination of Stellar Properties via Binary Stars Classification of Binary Stars Visual Binaries Both stars visible Only one star visible Spectroscopic

More information

Mass-Luminosity and Stellar Lifetimes WS

Mass-Luminosity and Stellar Lifetimes WS Name Mass-Luminosity and Stellar Lifetimes WS The graph shows the Mass-Luminosity Relationship for main sequence stars. Use it to answer questions 1-3. 1) A star with a mass of 0.5 solar masses would be

More information

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 PhysicsAndMathsTutor.com 1 1. (a) Figure 1 shows two stars, A and B, which form a binary star system. The two stars orbit their common centre of mass with the same period of rotation. The Earth is in the

More information

Lecture 26 The Hertzsprung- Russell Diagram January 13b, 2014

Lecture 26 The Hertzsprung- Russell Diagram January 13b, 2014 1 Lecture 26 The Hertzsprung- Russell Diagram January 13b, 2014 2 Hertzsprung-Russell Diagram Hertzsprung and Russell found a correlation between luminosity and spectral type (temperature) 10000 Hot, bright

More information

Supernovae and cosmology

Supernovae and cosmology Supernovae and cosmology Gavin Lawes Wayne State University David Cinabro Wayne State University Johanna-Laina Fischer Outline Structure of the universe Dynamics of the universe Type 1a supernova Michigan

More information

Star systems like our Milky Way. Galaxies

Star systems like our Milky Way. Galaxies Galaxies Star systems like our Milky Way Galaxies Contain a few thousand to tens of billions of stars,as well as varying amounts of gas and dust Large variety of shapes and sizes Gas and Dust in

More information

AST1100 Lecture Notes

AST1100 Lecture Notes AST1100 Lecture Notes 11-12 The cosmic distance ladder How do we measure the distance to distant objects in the universe? There are several methods available, most of which suffer from large uncertainties.

More information

( ) = 5log pc NAME: OPEN CLUSTER PRELAB

( ) = 5log pc NAME: OPEN CLUSTER PRELAB NAME: OPEN CLUSTER PRELAB 1. Read over the material in the lab script that discusses the background of colormagnitude (CM) diagrams (these can also be called H-R diagrams). Explain the CM diagram: What

More information

The Cosmic Distance Ladder. Hubble s Law and the Expansion of the Universe!

The Cosmic Distance Ladder. Hubble s Law and the Expansion of the Universe! The Cosmic Distance Ladder Hubble s Law and the Expansion of the Universe! Last time: looked at Cepheid Variable stars as standard candles. Massive, off-main sequence stars: at a certain stage between

More information

Astronomy 102: Stars and Galaxies Review Exam 3

Astronomy 102: Stars and Galaxies Review Exam 3 October 31, 2004 Name: Astronomy 102: Stars and Galaxies Review Exam 3 Instructions: Write your answers in the space provided; indicate clearly if you continue on the back of a page. No books, notes, or

More information

Astronomy 1143 Final Exam Review Answers

Astronomy 1143 Final Exam Review Answers Astronomy 1143 Final Exam Review Answers Prof. Pradhan April 24, 2015 What is Science? 1. Explain the difference between astronomy and astrology. 2. What number is the metric system based around? What

More information

Chapter 11 Surveying the Stars

Chapter 11 Surveying the Stars Chapter 11 Surveying the Stars Luminosity Luminosity: Rate of energy emitted by star every second. Apparent brightness (flux): Amount of energy passing through every second per unit area. Luninosity =

More information

Characterizing Stars

Characterizing Stars Characterizing Stars The stars Every star you see in the sky is a large hot ball of gas like our star the Sun. Each one possibly making up a solar system with planets and debris orbiting around them. Stellar

More information

Exam 3 Astronomy 100, Section 3. Some Equations You Might Need

Exam 3 Astronomy 100, Section 3. Some Equations You Might Need Exam 3 Astronomy 100, Section 3 Some Equations You Might Need modified Kepler s law: M = [a(au)]3 [p(yr)] (a is radius of the orbit, p is the rotation period. You 2 should also remember that the period

More information

STUDY GUIDE FOR PHYSICAL SCIENCE EXAM

STUDY GUIDE FOR PHYSICAL SCIENCE EXAM STUDY GUIDE FOR PHYSICAL SCIENCE EXAM 1 2017 VOCABULARY: Branches of science Density Low mass star High mass star Manipulated variable Responding variable Claim Inference Precision Density Accuracy Spectroscopy

More information

29:50 Stars, Galaxies, and the Universe Second Hour Exam November 10, 2010 Form A

29:50 Stars, Galaxies, and the Universe Second Hour Exam November 10, 2010 Form A 29:50 Stars, Galaxies, and the Universe Second Hour Exam November 10, 2010 Form A There are 20 questions (Note: There will be 32 on the real thing). Read each question and all of the choices before choosing.

More information

Stars & Galaxies. Chapter 27 Modern Earth Science

Stars & Galaxies. Chapter 27 Modern Earth Science Stars & Galaxies Chapter 27 Modern Earth Science Chapter 27, Section 1 27.1 Characteristics of Stars How do astronomers determine the composition and surface temperature of a star? Composition & Temperature

More information

How do we measure properties of a star? Today. Some Clicker Questions - #1. Some Clicker Questions - #1

How do we measure properties of a star? Today. Some Clicker Questions - #1. Some Clicker Questions - #1 Today Announcements: HW#8 due Friday 4/9 at 8:00 am. The size of the Universe (It s expanding!) The Big Bang Video on the Big Bang NOTE: I will take several questions on exam 3 and the final from the videos

More information

AST-1002 Section 0459 Review for Final Exam Please do not forget about doing the evaluation!

AST-1002 Section 0459 Review for Final Exam Please do not forget about doing the evaluation! AST-1002 Section 0459 Review for Final Exam Please do not forget about doing the evaluation! Bring pencil #2 with eraser No use of calculator or any electronic device during the exam We provide the scantrons

More information

Distances to Stars. Important as determines actual brightness but hard to measure as stars are so far away

Distances to Stars. Important as determines actual brightness but hard to measure as stars are so far away SECTION II: Nature of Stars Astronomers measure properties of Stars Distance Mass Apparent Brightness Surface Temperature Radius Find that some are related Large Mass Large Absolute Brightness We will

More information

Lines of Hydrogen. Most prominent lines in many astronomical objects: Balmer lines of hydrogen

Lines of Hydrogen. Most prominent lines in many astronomical objects: Balmer lines of hydrogen The Family of Stars Lines of Hydrogen Most prominent lines in many astronomical objects: Balmer lines of hydrogen The Balmer Thermometer Balmer line strength is sensitive to temperature: Most hydrogen

More information

Astronomy, Astrophysics, and Cosmology

Astronomy, Astrophysics, and Cosmology Astronomy, Astrophysics, and Cosmology Luis A. Anchordoqui Department of Physics and Astronomy Lehman College, City University of New York Lesson I February 2, 2016 arxiv:0706.1988 L. A. Anchordoqui (CUNY)

More information

TEK 8 Test Review. 15. Galaxies are best described as -

TEK 8 Test Review. 15. Galaxies are best described as - TEK 8 Test Review 1. List the three subatomic particles and give each of their masses. 2. Describe and draw an illustration (Bohr Model) of the most common element in the Universe. 3. Describe and draw

More information

Homework. 1. Hubble. 2. Go to What is the distances for the following things in light years.

Homework. 1. Hubble. 2. Go to   What is the distances for the following things in light years. Homework 1. Hubble. (a) What did Edwin Hubble observe in 1929 and how did he observe this. Be as specific as possible and sketch a graph of his data, with clearly labeled x and y axes and units given for

More information

AST2000 Lecture Notes

AST2000 Lecture Notes AST2000 Lecture Notes Part 3A The cosmic distance ladder Questions to ponder before the lecture 1. How do we know that the distance to our closest star is 4 light years? 2. How do we know that our galaxy

More information

StarTalk. Sanjay Yengul May "To know ourselves, we must know the stars."

StarTalk. Sanjay Yengul May To know ourselves, we must know the stars. StarTalk Sanjay Yengul May 2016 "To know ourselves, we must know the stars." Twinkle Twinkle How many stars are there? How big are these stars? Picture of night sky What are they made of? Why do they shine?

More information

Due to Sun s (and rest of solar system s) motion [Fig 16-3, relative_motion.avi]

Due to Sun s (and rest of solar system s) motion [Fig 16-3, relative_motion.avi] Chapter 6: Basic Properties of Stars Star Names Ancient Arabic, Greek or Latin names By constellation, ecreasing orer of brightness α alpha, β beta, γ gamma... Stellar istances Pre-telescope Observations

More information

Name Midterm Exam October 20, 2017

Name Midterm Exam October 20, 2017 Name Midterm Exam October 20, 2017 This test consists of three parts. For the first and second parts, you may write your answers directly on the exam, if you wish. For the other parts, use separate sheets

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Earth, Atmospheric, and Planetary Sciences Department. Problem Set 6

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Earth, Atmospheric, and Planetary Sciences Department. Problem Set 6 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Earth, Atmospheric, and Planetary Sciences Department Astronomy 8.282J 12.402J March 17, 2006 Problem Set 6 Due: Friday, March 24 (in lecture) Reading:

More information

Visit for more fantastic resources. Edexcel. A Level. A Level Physics. Astrophysics 1 (Answers) Name: Total Marks: /30

Visit   for more fantastic resources. Edexcel. A Level. A Level Physics. Astrophysics 1 (Answers) Name: Total Marks: /30 Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources. Edexcel A Level A Level Physics Astrophysics 1 (Answers) Name: Total Marks: /30 Maths Made Easy Complete Tuition Ltd 2017 1. Amongst

More information

PH104 Descriptive Astronomy Learning Objectives

PH104 Descriptive Astronomy Learning Objectives PH104 Descriptive Astronomy Learning Objectives March 11, 2008 1 Introduction This list of questions are questions that will need to be answered in order for students to be successful in the course. Each

More information

The Cosmic Perspective. Surveying the Properties of Stars. Surveying the Stars. How do we measure stellar luminosities?

The Cosmic Perspective. Surveying the Properties of Stars. Surveying the Stars. How do we measure stellar luminosities? Surveying the Stars Chapter 15 Lecture The Cosmic Perspective 15.1 Properties of Stars Our goals for learning: How do we measure stellar luminosities? How do we measure stellar temperatures? How do we

More information

Deducing Temperatures and Luminosities of Stars (and other objects ) Electromagnetic Fields. Sinusoidal Fields

Deducing Temperatures and Luminosities of Stars (and other objects ) Electromagnetic Fields. Sinusoidal Fields Deducing Temperatures and Luminosities of Stars (and other objects ) Review: Electromagnetic Radiation Gamma Rays X Rays Ultraviolet (UV) Visible Light Infrared (IR) Increasing energy Microwaves Radio

More information

Stars: Stars and their Properties

Stars: Stars and their Properties Stars: Stars and their Properties Astronomy 110 Class 10 WHEN I heard the learn d astronomer; When the proofs, the figures, were ranged in columns before me; When I was shown the charts and the diagrams,

More information

Hubble sequence galaxy classification scheme, originally based on appearance, but correlates with other properties as well.

Hubble sequence galaxy classification scheme, originally based on appearance, but correlates with other properties as well. Normal Galaxies (Ch. 24) Here we will cover topics in Ch. 24 up to 24.4, but then skip 24.4, 24.5. The sections we are skipping are all about processes that occur in the centers of galaxies, so I d like

More information

HR Diagram Student Guide

HR Diagram Student Guide Name: HR Diagram Student Guide Pretest Score: Background Information Work through the background sections on Spectral Classification, Luminosity, and the Hertzsprung-Russell Diagram. Then complete the

More information

Astro Fall 2012 Lecture 8. T. Howard

Astro Fall 2012 Lecture 8. T. Howard Astro 101 003 Fall 2012 Lecture 8 T. Howard Measuring the Stars How big are stars? How far away? How luminous? How hot? How old & how much longer to live? Chemical composition? How are they moving? Are

More information

Pr P ope p rti t es s of o f St S a t rs

Pr P ope p rti t es s of o f St S a t rs Properties of Stars Distances Parallax ( Triangulation ): - observe object from two separate points - use orbit of the Earth (1 AU) - measure angular shift of object - angle depends on distance to object

More information

AN INTRODUCTIONTO MODERN ASTROPHYSICS

AN INTRODUCTIONTO MODERN ASTROPHYSICS AN INTRODUCTIONTO MODERN ASTROPHYSICS Second Edition Bradley W. Carroll Weber State University DaleA. Ostlie Weber State University PEARSON Addison Wesley San Francisco Boston New York Cape Town Hong Kong

More information

Unit 16: Astronomy and space science. Learning aim A Understand the fundamental aspects of the solar system

Unit 16: Astronomy and space science. Learning aim A Understand the fundamental aspects of the solar system Unit 16: Astronomy and space science Learning aim A Understand the fundamental aspects of the solar system Contents page Note: anywhere you see a capital D means you MUST draw a diagram. Radiative zone

More information

Question: How do we use a Hertzsprung-Russell Diagram to explain star characteristics?

Question: How do we use a Hertzsprung-Russell Diagram to explain star characteristics? The Hertzsprung-Russell Diagram Assignment Introduction: The development of the H-R Diagram began with Danish astronomer Ejnar Hertzsprung who began plotting the stars around 1911. American astronomer

More information