CEE 3310 Dimensional Analysis & Similitude, Oct. 22,

Size: px
Start display at page:

Download "CEE 3310 Dimensional Analysis & Similitude, Oct. 22,"

Transcription

1 CEE 3310 Dimensional Analysis & Similitude, Oct., Review vorticity twice the local rotation rate: ω x = w y v z, ω y = u z w x, ω z = v x u y Dimensional Analysis Buckingham Pi Theorem: k = n r where k is the number of dimensionless numbers (Π s), n is the number of dimensional variables, and r is the number of physical dimensions. Found the above relationship two ways - by inspection and by a formal Buckingham Pi analysis. 5.6 Similitude & Experiments An experimenter seeks similarity between model and prototype where prototype indicates the full scale version of the item under study. We say we have total similarity if and only if all of the dimensionless parameters have the same value (at model and prototype scale). E.g., if Π 1 = g (Π, Π 3,..., Π n ) Then we have total similarity only if Π 1m = Π 1p, Π m = Π p, Π 3m = Π 3p,..., Π nm = Π np where the subscripts m and p indicate model and prototype, respectively. It turns out this is not as easy to achieve as one would like and hence rarely works out. Thus we often speak of different types of similarity, all subsets of total similarity.

2 CEE 3310 Dimensional Analysis & Similitude, Oct., Types of Similarity Total Similarity = Geometric Similarity + Kinematic Similarity + Dynamic Similarity Geometric Similarity Two conditions are said to be geometrically similar if all of their length scale ratios are exactly the same. For example, in a 1/10 th scale model all of the model lengths must be 1/10 th of the prototype lengths. This includes the obvious lengths such as heights and widths but also lengths such as the radii of curvature and the roughness lengths (e.g., the average height of the unevenness of the surfaces). This last aspect can be challenging to ensure. Note that if the length ratios are all preserved then by default all of the angles are preserved between the model and the prototype. Kinematic Similarity Two conditions are said to be kinematically similar if all of their velocity scale ratios are exactly the same. Thus in addition to the length scale ratios being the same the time scale ratios must be the same too (since if all the length and time scale ratios are the same we are assured that the velocity scale ratios are all the same). If the flow can be considered frictionless (inviscid) then kinematic similarity can be achieved independently of dynamic similarity. However, if viscous forces are important dynamic similarity is required to achieve kinematic similarity. Dynamic Similarity Two conditions are said to be dynamically similar if all of their force scale ratios are exactly the same.

3 CEE 3310 Dimensional Analysis & Similitude, Oct., Example Free Surface Flow Consider modeling a river in the laboratory. Our picture might look like: Based on our engineering intuition we have found that in dimensional form we expect F = f(h, V, ρ, µ, g, ɛ, σ) where ɛ is a typical height of the bottom roughness of the river and σ is the surface tension. We have k = 8 and r = 3 and thus n = 5. By inspection we see immediately that one of the Π s will be the Reynolds Number, one will be a drag coefficient C D = F/( 1ρV H ) (similar to our copepod problem but the factor of 1 shows up for historical reasons), one will simply be ɛ/h, leaving us with just two more dimensionless numbers. We see that gravity has not yet shown up so let s nondimensionalize this. Gravity is always important in flows with free surfaces because it is the restoring force for any deformation of the free surface resulting in waves (known formally as gravity waves) propagating on the free surface. For long waves (where λ, the wavelength, is much greater than the depth, the speed of propagation of a gravity wave is c = gh where H is the flow depth. So we can define a new number, like the Mach number which is: Fr = V gh known as the Froude number Which, from laboratory #3 you are now familiar with! We could have found this from

4 CEE 3310 Dimensional Analysis & Similitude, Oct., our standard scaling variables too, of course. This leaves us with a final dimensionless parameter that must involve σ. Nondimensionalizing σ with our standard scaling variables (ρ, V, H) leads to the Weber number, We=ρV L/σ. Thus we have: C D = g(re, Fr, ɛ/h, We) For total similarity (and hence to insure that C Dm = C Dp ) we must require that the four dimensionless quantities in our function g all have the same values in the model and prototype. Let s start with Re and Fr. Therefore we have: and Re m = Re p = L mu m ν m Fr m = Fr p = U m glm = = L pu p ν p U p glp Therefore we can write (equating the two velocity ratios): U m = L p ν m L m ν m = = U p L m ν p L p ν p U m U p U m U p = = L p L m ν m ν p ( Lm L p L m L p Now, let s say we want to construct a 1/10 th scale model L m /L p = 1/10. Then if we are to ensure that the Reynolds number and Froude number are similar we need to work with a fluid in the model that has kinematic viscosity (0.1) 3/ ν p = 0.03ν p or in other words the kinematic viscosity of the model fluid must be just 3% of the kinematic viscosity of the prototype fluid - water in this case. If you look at appendix B in your text you will see that the only fluid with a kinematic viscosity significantly less than that of water is mercury, and the kinematic viscosity of mercury is about 10% that of water. If our model scale is 1/100 th then we need a fluid with viscosity 0.1% that of water - none exist! Thus we conclude without even looking at the remaining two nondimensional terms that total similarity can not be maintained. ) 3 In free surface flows we general hold Froude similarity and let the Reynolds number similarity be broken. In the present example if we stay with water as the model fluid and hold the Froude number scaling we find that Re m Re p = ( Lm L p ) 3

5 CEE 3310 Dimensional Analysis & Similitude, Oct., and thus for 1/10 th and 1/100 th scale models we have model Reynolds numbers that are 3% and 0.1% of the prototype scale, respectively. How do we handle this? In many cases we can proceed without complete similarity (referred to as a distorted model in your text). In particular, we can accept Reynolds number dissimilarity if both Reynolds numbers are high. This is because if the Reynolds number is large enough then viscous forces become unimportant. The question is how high is high? This must be answered with a model study. Typically a series of experiments is run to study the effect of increasing Reynolds number (usually by varying the velocity) on a dimensionless parameter of interest (C D in this case) to determine when the parameter s value becomes independent of Reynolds number. 5.9 A Second Example - Drag on a Sphere and a Cylinder As we have already found from our copepod example the drag on a submerged object is a function of Reynolds number. If we are to extend this analysis to general submerged objects we need to include the roughness (we really needed roughness for the copepod too if the appendages grow and/or present themselves with different length scale ratios with respect to the original characteristic length scale of the copepod s size), hence we have: ( C D = g Re, ɛ ) D First let s consider a sphere. As already discussed the L term is typically taken as an area. Hence for a sphere we take L = πd /4 where D is the diameter of the sphere and define C D = F 1 ρπv D /4 = 8F πρv D Where F is the drag force and the factor of 1/ is included for historical reasons (Because the dynamic pressure in the Bernoulli equation has a factor of 1 in it). Hence, if we build

6 CEE 3310 Dimensional Analysis & Similitude, Oct., a model and enforce geometric similarity (so that the roughness is scaled appropriately as well as the diameter) then we have: 8F m πρ m V md m = 8F p πρ p V p D p ( ) ( ) ρ p Vp Dp F p = F m ρ m V m D m We see that to ensure Reynolds number similarity and hence total similarity for this problem, and assuming we run the model tests in the same fluid as the prototype, we require Re m = Re p = L mu m ν = L pu p ν U m = U p L p L m Thus if the scale gets very small we will need to run the model at very high velocity - this may not be possible or may lead to compressibility effects (air flows) or cavitation (water flows). Now let s look at some data for two cases - C D = g(re) for both a cylinder and a sphere. For a cylinder we take the area to be the projected area of the cylinder which is simply a rectangle LD where L is the length of the cylinder and D is the diameter. Therefore we have C D = F ρv LD We will continue to define the Re based on the diameter (since we have two length scales we have to be explicit about which we are using). This is often written Re D. Finally, since we have more than one length scale in the problem, the ratio of these length scales is a dimensionless parameter that enters the problem hence we have ( C D = h Re D, ɛ D, L ) D Borrowing Fig 5.3 from our textbook (shown on next page) we see several interesting features. Clearly the functions g and h for spheres and cylinders are different. C D in each case drops with increasing Re and reaches a near constant value at 10 4 < Re < 10 5 shortly after which a sudden drop occurs (the flow is transitioning from laminar to turbulent here).

7 CEE 3310 Dimensional Analysis & Similitude, Oct., Clearly ɛ/d plays a role in determining C D. L/D is important but as L D the effect on C D asymptotes toward a constant value and the physics becomes independent of L/D.

8 CEE 3310 Dimensional Analysis & Similitude, Oct., Summary of Dimensionless Parameters Here are some of the most common dimensionless numbers that show up in fluid mechanics: Re forces. (Reynolds Number) ρv L µ = V L ν The ratio of intertial forces to frictional Fr (Froude Number) V gl The ratio of intertial forces to gravitational forces We (Weber Number) ρv L σ Eu (Euler Number) The ratio of intertial forces to surface tension forces. P The ratio of pressure forces to intertial forces. ρv 1 C D forces. (Drag Coefficient) F D 1 ρv A The ratio of drag forces to dynamic pressure St (Strouhal Number) fl The ratio of event frequency (often vortex shedding) V and the advective frequency (inverse of the advective, or inertial, time scale). V Ma (Mach Number) The square root of the ratio of intertial forces to c compressibility effect forces can be thought of as a Froude number for compressible flows.

Chapter 7 DIMENSIONAL ANALYSIS AND SIMILITUDE Because so few real flows can be solved exactly by analytical methods alone, the development of fluid

Chapter 7 DIMENSIONAL ANALYSIS AND SIMILITUDE Because so few real flows can be solved exactly by analytical methods alone, the development of fluid Chapter 7 DIMENSIONAL ANALYSIS AND SIMILITUDE Because so few real flows can be solved exactly by analytical methods alone, the development of fluid mechanics has depended heavily on experimental results.

More information

1.The pressure drop per unit length that develops due to friction cannot generally be solved analytically. A. True B. False

1.The pressure drop per unit length that develops due to friction cannot generally be solved analytically. A. True B. False CHAPTER 07 1.The pressure drop per unit length that develops due to friction cannot generally be solved analytically. 2.A qualitative description of physical quantities can be given in terms of. YOUR ANSWER:

More information

V. MODELING, SIMILARITY, AND DIMENSIONAL ANALYSIS To this point, we have concentrated on analytical methods of solution for fluids problems.

V. MODELING, SIMILARITY, AND DIMENSIONAL ANALYSIS To this point, we have concentrated on analytical methods of solution for fluids problems. V. MODELING, SIMILARITY, AND DIMENSIONAL ANALYSIS To this point, we have concentrated on analytical methods of solution for fluids problems. However, analytical methods are not always satisfactory due

More information

BUCKINGHAM PI THEOREM

BUCKINGHAM PI THEOREM BUCKINGHAM PI THEOREM Dimensional Analysis It is used to determine the equation is right or wrong. The calculation is depends on the unit or dimensional conditions of the equations. For example; F=ma F=MLT

More information

Dimensional and Model Analysis

Dimensional and Model Analysis Dimensional and Model Analysis 5.1 Fundamental dimensions 5.2 Rayleigh s and Buckingham s method 5.3 Dimension less numbers and their significance 5.4 Hydraulic similitude 5.5 Type of models 5.6 Distorted

More information

UNIT -5. Dimensional Analysis. Model Analysis. Fundamental Dimensions Dimensional Homogeneity Method of analysis

UNIT -5. Dimensional Analysis. Model Analysis. Fundamental Dimensions Dimensional Homogeneity Method of analysis UNIT -5 Dimensional Analysis Fundamental Dimensions Dimensional Homogeneity Method of analysis Rayleigh Method Buckingham pi theorem Method Model Analysis Dimensionless parameters Similitude and model

More information

Hydraulic Engineering

Hydraulic Engineering PDHonline Course H146 (4 PDH) Hydraulic Engineering Instructor: Mohamed Elsanabary, Ph.D., Prov. Lic. Engineering. 2013 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax:

More information

It is important to develop a meaningful and systematic way to perform an experiment.

It is important to develop a meaningful and systematic way to perform an experiment. Chapter 7: Dimensional Analysis, Modeling and Similitude. The solution to many engineering problems is achieved through the use of a combination of analysis and experimental data. One of the goals of an

More information

Interpreting Differential Equations of Transport Phenomena

Interpreting Differential Equations of Transport Phenomena Interpreting Differential Equations of Transport Phenomena There are a number of techniques generally useful in interpreting and simplifying the mathematical description of physical problems. Here we introduce

More information

Dimensions represent classes of units we use to describe a physical quantity. Most fluid problems involve four primary dimensions

Dimensions represent classes of units we use to describe a physical quantity. Most fluid problems involve four primary dimensions BEE 5330 Fluids FE Review, Feb 24, 2010 1 A fluid is a substance that can not support a shear stress. Liquids differ from gasses in that liquids that do not completely fill a container will form a free

More information

UNIT V : DIMENSIONAL ANALYSIS AND MODEL STUDIES

UNIT V : DIMENSIONAL ANALYSIS AND MODEL STUDIES UNIT V : DIMENSIONAL ANALYSIS AND MODEL STUDIES 1. Define dimensional analysis. Dimensional analysis is a mathematical technique which makes use of the study of dimensions as an aid to solution of several

More information

5 SIMILITUDE. 5.1 Use of Nondimensional Groups

5 SIMILITUDE. 5.1 Use of Nondimensional Groups 5 SIMIITDE 5. se of Nondimensional Groups For a consistent description of physical processes, we require that all terms in an equation must have the same units. On the basis of physical laws, some quantities

More information

Reduction of Variables Dimensional Analysis

Reduction of Variables Dimensional Analysis Reduction of Variables Dimensional Analysis Dimensions and Units Review Dimension: Measure of a physical quantity, e.g., length, time, mass Units: Assignment of a number to a dimension, e.g., (m), (sec),

More information

Scaling and Dimensional Analysis

Scaling and Dimensional Analysis Scaling and Dimensional Analysis Understanding the role of dimensions and the use of dimensionless numbers for evaluating the forces in a system so that the correct assumptions about it can be made and

More information

Modeling. Eric G. Paterson. Spring Department of Mechanical and Nuclear Engineering The Pennsylvania State University.

Modeling. Eric G. Paterson. Spring Department of Mechanical and Nuclear Engineering The Pennsylvania State University. Eric G. Paterson Department of Mechanical and Nuclear Engineering The Pennsylvania State University Spring 2005 Blackboard notes Blackboard notes Nondimensionalization of an equation is useful only when

More information

It is important to develop a meaningful and systematic way to perform an experiment.

It is important to develop a meaningful and systematic way to perform an experiment. Chapter 7: Dimensional Analysis, Modeling and Similitude. The solution to many engineering problems is achieved through the use of a combination of analysis and experimental data. One of the goals of an

More information

Introduction to Fluid Mechanics

Introduction to Fluid Mechanics Introduction to Fluid Mechanics Tien-Tsan Shieh April 16, 2009 What is a Fluid? The key distinction between a fluid and a solid lies in the mode of resistance to change of shape. The fluid, unlike the

More information

Similitude and Dimensional Analysis. CE Fluid Mechanics Diogo Bolster

Similitude and Dimensional Analysis. CE Fluid Mechanics Diogo Bolster Similitude and Dimensional Analysis CE30460 - Fluid Mechanics Diogo Bolster Goals of Chapter Apply Pi Theorem Develop dimensionless variables for a given flow situation Use dimensional variables in data

More information

Engineering Fluid Mechanics

Engineering Fluid Mechanics Engineering Fluid Mechanics Eighth Edition Clayton T. Crowe WASHINGTON STATE UNIVERSITY, PULLMAN Donald F. Elger UNIVERSITY OF IDAHO, MOSCOW John A. Roberson WASHINGTON STATE UNIVERSITY, PULLMAN WILEY

More information

Hydromechanics: Course Summary

Hydromechanics: Course Summary Hydromechanics: Course Summary Hydromechanics VVR090 Material Included; French: Chapters to 9 and 4 + Sample problems Vennard & Street: Chapters 8 + 3, and (part of it) Roberson & Crowe: Chapter Collection

More information

Please remember all the unit that you use in your calculation. There are no marks for correct answer without unit.

Please remember all the unit that you use in your calculation. There are no marks for correct answer without unit. CHAPTER 1 : PROPERTIES OF FLUIDS What is fluid? A fluid is defined as a substance that deforms continuously when acted on by a shearing stress at any magnitude. In a fluid at rest, normal stress is called

More information

CHAPTER 9 DIMENSIONAL ANALYSIS AND SCALING

CHAPTER 9 DIMENSIONAL ANALYSIS AND SCALING CHAPTER 9 DIMENSIONAL ANALYSIS AND SCALING The Philosopher s approach The Mathematicians s approach The Engineer s approach Example - an orifice plate Example - an aeroplane Example - the drag force on

More information

Fluid Mechanics III. 1. Dimensional analysis and similarity

Fluid Mechanics III. 1. Dimensional analysis and similarity Fluid Mechanics III 1. Dimensional analysis and similarity Similarity The real world is non-dimensional. The proposition the Eiffel Tower is tall has no sense unless we state what is the object we compare

More information

Flow past a circular cylinder with Re 2000: The pathlines of flow past any circular cylinder 1regardless of size, velocity, or fluid2 are as shown

Flow past a circular cylinder with Re 2000: The pathlines of flow past any circular cylinder 1regardless of size, velocity, or fluid2 are as shown 7708d_c07_384* 7/23/01 10:00 AM Page 384 Flow past a circular cylinder with Re 2000: The pathlines of flow past any circular cylinder 1regardless of size, velocity, or fluid2 are as shown provided that

More information

Introduction to Marine Hydrodynamics

Introduction to Marine Hydrodynamics 1896 190 1987 006 Introduction to Marine Hydrodynamics (NA35) Department of Naval Architecture and Ocean Engineering School of Naval Architecture, Ocean & ivil Engineering Shanghai Jiao Tong University

More information

B.E/B.Tech/M.E/M.Tech : Chemical Engineering Regulation: 2016 PG Specialisation : NA Sub. Code / Sub. Name : CH16304 FLUID MECHANICS Unit : I

B.E/B.Tech/M.E/M.Tech : Chemical Engineering Regulation: 2016 PG Specialisation : NA Sub. Code / Sub. Name : CH16304 FLUID MECHANICS Unit : I Department of Chemical Engineering B.E/B.Tech/M.E/M.Tech : Chemical Engineering Regulation: 2016 PG Specialisation : NA Sub. Code / Sub. Name : CH16304 FLUID MECHANICS Unit : I LP: CH 16304 Rev. No: 00

More information

Fluid Mechanics Answer Key of Objective & Conventional Questions

Fluid Mechanics Answer Key of Objective & Conventional Questions 019 MPROVEMENT Mechanical Engineering Fluid Mechanics Answer Key of Objective & Conventional Questions 1 Fluid Properties 1. (c). (b) 3. (c) 4. (576) 5. (3.61)(3.50 to 3.75) 6. (0.058)(0.05 to 0.06) 7.

More information

UNIT IV DIMENSIONAL AND MODEL ANALYSIS

UNIT IV DIMENSIONAL AND MODEL ANALYSIS UNIT IV DIMENSIONAL AND MODEL ANALYSIS INTRODUCTION Dimensional analysis is a method of dimensions. It is a mathematical technique used in research work for design and for conducting model tests. It deals

More information

ρ Du i Dt = p x i together with the continuity equation = 0, x i

ρ Du i Dt = p x i together with the continuity equation = 0, x i 1 DIMENSIONAL ANALYSIS AND SCALING Observation 1: Consider the flow past a sphere: U a y x ρ, µ Figure 1: Flow past a sphere. Far away from the sphere of radius a, the fluid has a uniform velocity, u =

More information

ENGINEERING FLUID MECHANICS. CHAPTER 1 Properties of Fluids

ENGINEERING FLUID MECHANICS. CHAPTER 1 Properties of Fluids CHAPTER 1 Properties of Fluids ENGINEERING FLUID MECHANICS 1.1 Introduction 1.2 Development of Fluid Mechanics 1.3 Units of Measurement (SI units) 1.4 Mass, Density, Specific Weight, Specific Volume, Specific

More information

DIMENSIONAL ANALYSIS IN MOMENTUM TRANSFER

DIMENSIONAL ANALYSIS IN MOMENTUM TRANSFER DIMENSIONAL ANALYSIS IN MOMENTUM TRANSFER FT I Alda Simões Techniques for Dimensional Analysis Fluid Dynamics: Microscopic analysis, theory Physical modelling Differential balances Limited to simple geometries

More information

Chapter 7: Dimensional Analysis

Chapter 7: Dimensional Analysis 7-1 Dimension and Units 7-2 Dimensional Homogeneity 7-3 Dimensional Analysis and Similarity 7-4 Methods of Repeating Variables 7-5 Experimental Testing and Incomplete Similarity 7-1 Dimensions and Units

More information

Fluid Dynamics Exercises and questions for the course

Fluid Dynamics Exercises and questions for the course Fluid Dynamics Exercises and questions for the course January 15, 2014 A two dimensional flow field characterised by the following velocity components in polar coordinates is called a free vortex: u r

More information

Dimensional Analysis (Partial Analysis)

Dimensional Analysis (Partial Analysis) Dimensional Analysis (Partial Analysis) DA is a mathematical method of considerable value to problems in science and engineering especially physics and fluid mechanics. All physical quantities can usually

More information

Lab #4 Similitude: The Kármán Vortex Street CEE 331 Fall 2004

Lab #4 Similitude: The Kármán Vortex Street CEE 331 Fall 2004 CEE 331 Lab 4 Page 1 of 6 Lab #4 Similitude: The Kármán Vortex Street CEE 331 Fall 2004 Safety The major safety hazard in this laboratory is a shock hazard. Given that you will be working with water and

More information

CE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK 3 0 0 3 UNIT I FLUID PROPERTIES AND FLUID STATICS PART - A 1. Define fluid and fluid mechanics. 2. Define real and ideal fluids. 3. Define mass density

More information

Applied Fluid Mechanics

Applied Fluid Mechanics Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

More information

Chapter 2 Similitude Theory and Applications

Chapter 2 Similitude Theory and Applications Chapter 2 Similitude Theory and Applications Wikipedia definition of similitude is a concept that is used in the testing of engineering models. A model is said to have similitude with the real application

More information

Fundamentals of Fluid Mechanics

Fundamentals of Fluid Mechanics Sixth Edition Fundamentals of Fluid Mechanics International Student Version BRUCE R. MUNSON DONALD F. YOUNG Department of Aerospace Engineering and Engineering Mechanics THEODORE H. OKIISHI Department

More information

2. FLUID-FLOW EQUATIONS SPRING 2019

2. FLUID-FLOW EQUATIONS SPRING 2019 2. FLUID-FLOW EQUATIONS SPRING 2019 2.1 Introduction 2.2 Conservative differential equations 2.3 Non-conservative differential equations 2.4 Non-dimensionalisation Summary Examples 2.1 Introduction Fluid

More information

Chapter 6: Incompressible Inviscid Flow

Chapter 6: Incompressible Inviscid Flow Chapter 6: Incompressible Inviscid Flow 6-1 Introduction 6-2 Nondimensionalization of the NSE 6-3 Creeping Flow 6-4 Inviscid Regions of Flow 6-5 Irrotational Flow Approximation 6-6 Elementary Planar Irrotational

More information

Middle East Technical University Department of Mechanical Engineering ME 305 Fluid Mechanics I Fall 2018 Section 4 (Dr.

Middle East Technical University Department of Mechanical Engineering ME 305 Fluid Mechanics I Fall 2018 Section 4 (Dr. Middle East Technical University Department of Mechanical Engineering ME 305 Fluid Mechanics I Fall 2018 Section 4 (Dr. Sert) Study Set 7 Reading Assignment R1. Read the section Common Dimensionless Groups

More information

ME 3560 Fluid Mechanics

ME 3560 Fluid Mechanics ME 3560 Fluid Mechanics 1 7.1 Dimensional Analysis Many problems of interest in fluid mechanics cannot be solved using the integral and/or differential equations. Examples of problems that are studied

More information

BAE 820 Physical Principles of Environmental Systems

BAE 820 Physical Principles of Environmental Systems BAE 820 Physical Principles of Environmental Systems Stokes' law and Reynold number Dr. Zifei Liu The motion of a particle in a fluid environment, such as air or water m dv =F(t) - F dt d - 1 4 2 3 πr3

More information

Part A: 1 pts each, 10 pts total, no partial credit.

Part A: 1 pts each, 10 pts total, no partial credit. Part A: 1 pts each, 10 pts total, no partial credit. 1) (Correct: 1 pt/ Wrong: -3 pts). The sum of static, dynamic, and hydrostatic pressures is constant when flow is steady, irrotational, incompressible,

More information

Go back to the main index page

Go back to the main index page 1 of 10 8/24/2006 11:22 AM Go back to the main index page 1. In engineering the application of fluid mechanics in designs make much of the use of empirical results from a lot of experiments. This data

More information

1. Introduction Some Basic Concepts

1. Introduction Some Basic Concepts 1. Introduction Some Basic Concepts 1.What is a fluid? A substance that will go on deforming in the presence of a deforming force, however small 2. What Properties Do Fluids Have? Density ( ) Pressure

More information

BUCKINGHAM PI THEOREM

BUCKINGHAM PI THEOREM BUCKINGHAM PI THEOREM Dimensional Analysis It is used to determine the equation is right or wrong. The calculation is depends on the unit or dimensional conditions of the equations. For example; F=ma F=MLT

More information

EXAMPLE SHEET FOR TOPIC 3 AUTUMN 2013

EXAMPLE SHEET FOR TOPIC 3 AUTUMN 2013 EXAMPLE SHEET FOR TOPIC ATMN 01 Q1. se dimensional analysis to investigate how the capillary rise h of a liquid in a tube varies with tube diameter d, gravity g, fluid density ρ, surface tension σ and

More information

Prof. Scalo Prof. Vlachos Prof. Ardekani Prof. Dabiri 08:30 09:20 A.M 10:30 11:20 A.M. 1:30 2:20 P.M. 3:30 4:20 P.M.

Prof. Scalo Prof. Vlachos Prof. Ardekani Prof. Dabiri 08:30 09:20 A.M 10:30 11:20 A.M. 1:30 2:20 P.M. 3:30 4:20 P.M. Page 1 Neatly print your name: Signature: (Note that unsigned exams will be given a score of zero.) Circle your lecture section (-1 point if not circled, or circled incorrectly): Prof. Scalo Prof. Vlachos

More information

LECTURE 1 THE CONTENTS OF THIS LECTURE ARE AS FOLLOWS:

LECTURE 1 THE CONTENTS OF THIS LECTURE ARE AS FOLLOWS: LECTURE 1 THE CONTENTS OF THIS LECTURE ARE AS FOLLOWS: 1.0 INTRODUCTION TO FLUID AND BASIC EQUATIONS 2.0 REYNOLDS NUMBER AND CRITICAL VELOCITY 3.0 APPROACH TOWARDS REYNOLDS NUMBER REFERENCES Page 1 of

More information

Hydroelectric Design

Hydroelectric Design INTERAMERICAN UNIVERSITY OF BAYAMON PUERTO RICO Hydroelectric Design Dr. Eduardo G. Pérez Díaz Erik T. Rosado González 5/14/2012 Hydroelectric design project for fluid class. TABLE OF CONTENTS TABLE OF

More information

NPTEL Quiz Hydraulics

NPTEL Quiz Hydraulics Introduction NPTEL Quiz Hydraulics 1. An ideal fluid is a. One which obeys Newton s law of viscosity b. Frictionless and incompressible c. Very viscous d. Frictionless and compressible 2. The unit of kinematic

More information

7.6 Example von Kármán s Laminar Boundary Layer Problem

7.6 Example von Kármán s Laminar Boundary Layer Problem CEE 3310 External Flows (Boundary Layers & Drag, Nov. 11, 2016 157 7.5 Review Non-Circular Pipes Laminar: f = 64/Re DH ± 40% Turbulent: f(re DH, ɛ/d H ) Moody chart for f ± 15% Bernoulli-Based Flow Metering

More information

Euler equation and Navier-Stokes equation

Euler equation and Navier-Stokes equation Euler equation and Navier-Stokes equation WeiHan Hsiao a a Department of Physics, The University of Chicago E-mail: weihanhsiao@uchicago.edu ABSTRACT: This is the note prepared for the Kadanoff center

More information

FLUID MECHANICS. Chapter 9 Flow over Immersed Bodies

FLUID MECHANICS. Chapter 9 Flow over Immersed Bodies FLUID MECHANICS Chapter 9 Flow over Immersed Bodies CHAP 9. FLOW OVER IMMERSED BODIES CONTENTS 9.1 General External Flow Characteristics 9.3 Drag 9.4 Lift 9.1 General External Flow Characteristics 9.1.1

More information

Fluid Mechanics. du dy

Fluid Mechanics. du dy FLUID MECHANICS Technical English - I 1 th week Fluid Mechanics FLUID STATICS FLUID DYNAMICS Fluid Statics or Hydrostatics is the study of fluids at rest. The main equation required for this is Newton's

More information

Friction Factors and Drag Coefficients

Friction Factors and Drag Coefficients Levicky 1 Friction Factors and Drag Coefficients Several equations that we have seen have included terms to represent dissipation of energy due to the viscous nature of fluid flow. For example, in the

More information

DIMENSIONAL REASONING

DIMENSIONAL REASONING Measurements consist of two properties: ) a quality or dimension, and ) a quantity expressed in terms of "units" Dimensions DIMENSIONAL REASONING A. Everything that can be measured consists of a combination

More information

Relativistic Hydrodynamics L3&4/SS14/ZAH

Relativistic Hydrodynamics L3&4/SS14/ZAH Conservation form: Remember: [ q] 0 conservative div Flux t f non-conservative 1. Euler equations: are the hydrodynamical equations describing the time-evolution of ideal fluids/plasmas, i.e., frictionless

More information

Turbulent Boundary Layers: Roughness Effects

Turbulent Boundary Layers: Roughness Effects 2.20 - Marine Hydrodynamics, Spring 2005 Lecture 19 2.20 - Marine Hydrodynamics Lecture 19 Turbulent Boundary Layers: Roughness Effects So far, we have assumed a hydraulically smooth surface. In practice,

More information

Fundamentals of Fluid Dynamics: Elementary Viscous Flow

Fundamentals of Fluid Dynamics: Elementary Viscous Flow Fundamentals of Fluid Dynamics: Elementary Viscous Flow Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI bluebox.ippt.pan.pl/ tzielins/ Institute of Fundamental Technological Research

More information

Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015

Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015 Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015 I. Introduction (Chapters 1 and 2) A. What is Fluid Mechanics? 1. What is a fluid? 2. What is mechanics? B. Classification of Fluid Flows 1. Viscous

More information

S.E. (Mech.) (First Sem.) EXAMINATION, (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum Marks : 100

S.E. (Mech.) (First Sem.) EXAMINATION, (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum Marks : 100 Total No. of Questions 12] [Total No. of Printed Pages 8 Seat No. [4262]-113 S.E. (Mech.) (First Sem.) EXAMINATION, 2012 (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum

More information

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t)

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t) IV. DIFFERENTIAL RELATIONS FOR A FLUID PARTICLE This chapter presents the development and application of the basic differential equations of fluid motion. Simplifications in the general equations and common

More information

CLASS SCHEDULE 2013 FALL

CLASS SCHEDULE 2013 FALL CLASS SCHEDULE 2013 FALL Class # or Lab # 1 Date Aug 26 2 28 Important Concepts (Section # in Text Reading, Lecture note) Examples/Lab Activities Definition fluid; continuum hypothesis; fluid properties

More information

The Generalized Boundary Layer Equations

The Generalized Boundary Layer Equations The Generalized Boundary Layer Equations Gareth H. McKinley (MIT-HML) November 004 We have seen that in general high Reynolds number flow past a slender body such as an airfoil can be considered as an

More information

Quick Recapitulation of Fluid Mechanics

Quick Recapitulation of Fluid Mechanics Quick Recapitulation of Fluid Mechanics Amey Joshi 07-Feb-018 1 Equations of ideal fluids onsider a volume element of a fluid of density ρ. If there are no sources or sinks in, the mass in it will change

More information

Tutorial 10. Boundary layer theory

Tutorial 10. Boundary layer theory Tutorial 10 Boundary layer theory 1. If the velocity distribution law in a laminar boundary layer over a flat plate is assumes to be of the form, determine the velocity distribution law. At y = 0, u= 0

More information

FLUID MECHANICS AND HEAT TRANSFER

FLUID MECHANICS AND HEAT TRANSFER AN INTRODUCTION TO FLUID MECHANICS AND HEAT TRANSFER AN INTRODUCTION TO FLUID MECHANICS AND HEAT TRANSFER WITH APPLICATIONS IN CHEMICAL & MECHANICAL PROCESS ENGINEERING BY J. M. KAY AND R. M. NEDDERMAN

More information

M E 320 Supplementary Material Pralav Shetty

M E 320 Supplementary Material Pralav Shetty M E 320 Supplementary Material Pralav Shetty Note: In order to view the demonstrations below, you must first download CDF player to your PC/Mac/Linux. Link for CDF player http://www.wolfram.com/cdf-player/

More information

William В. Brower, Jr. A PRIMER IN FLUID MECHANICS. Dynamics of Flows in One Space Dimension. CRC Press Boca Raton London New York Washington, D.C.

William В. Brower, Jr. A PRIMER IN FLUID MECHANICS. Dynamics of Flows in One Space Dimension. CRC Press Boca Raton London New York Washington, D.C. William В. Brower, Jr. A PRIMER IN FLUID MECHANICS Dynamics of Flows in One Space Dimension CRC Press Boca Raton London New York Washington, D.C. Table of Contents Chapter 1 Fluid Properties Kinetic Theory

More information

FE Exam Fluids Review October 23, Important Concepts

FE Exam Fluids Review October 23, Important Concepts FE Exam Fluids Review October 3, 013 mportant Concepts Density, specific volume, specific weight, specific gravity (Water 1000 kg/m^3, Air 1. kg/m^3) Meaning & Symbols? Stress, Pressure, Viscosity; Meaning

More information

Summary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer

Summary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer 1. Nusselt number Summary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer Average Nusselt number: convective heat transfer Nu L = conductive heat transfer = hl where L is the characteristic

More information

TURBOMACHINES. VIJAYAVITHAL BONGALE Associate Professor and Head Department of Mechanical Engineering Malnad College of Engineering, Hassan

TURBOMACHINES. VIJAYAVITHAL BONGALE Associate Professor and Head Department of Mechanical Engineering Malnad College of Engineering, Hassan TURBOMACHINES VIJAYAVITHAL BONGALE Associate Professor and Head Department of Mechanical Engineering Malnad College of Engineering, Hassan 573 201. Mobile No:9448821954 E-mail : vvb@mcehassan.ac.in 1 Dimensional

More information

Lesson 6 Review of fundamentals: Fluid flow

Lesson 6 Review of fundamentals: Fluid flow Lesson 6 Review of fundamentals: Fluid flow The specific objective of this lesson is to conduct a brief review of the fundamentals of fluid flow and present: A general equation for conservation of mass

More information

What s important: viscosity Poiseuille's law Stokes' law Demo: dissipation in flow through a tube

What s important: viscosity Poiseuille's law Stokes' law Demo: dissipation in flow through a tube PHYS 101 Lecture 29x - Viscosity 29x - 1 Lecture 29x Viscosity (extended version) What s important: viscosity Poiseuille's law Stokes' law Demo: dissipation in flow through a tube Viscosity We introduced

More information

10 Dimensional Analysis

10 Dimensional Analysis 18.354/12.207 Spring 2014 10 Dimensional Analysis Before moving on to more sophisticated things, we pause to think a little about dimensional analysis and scaling. On the one hand these are trivial, and

More information

FORMULA SHEET. General formulas:

FORMULA SHEET. General formulas: FORMULA SHEET You may use this formula sheet during the Advanced Transport Phenomena course and it should contain all formulas you need during this course. Note that the weeks are numbered from 1.1 to

More information

Introduction to Aerodynamics. Dr. Guven Aerospace Engineer (P.hD)

Introduction to Aerodynamics. Dr. Guven Aerospace Engineer (P.hD) Introduction to Aerodynamics Dr. Guven Aerospace Engineer (P.hD) Aerodynamic Forces All aerodynamic forces are generated wither through pressure distribution or a shear stress distribution on a body. The

More information

The Pilot Design Studio-Classroom. Joseph Cataldo The Cooper Union for the Advancement of Science and Art

The Pilot Design Studio-Classroom. Joseph Cataldo The Cooper Union for the Advancement of Science and Art The Pilot Design Studio-Classroom Joseph Cataldo The Cooper Union for the Advancement of Science and Art Studio Method Used for Many decades in Architectural and Art Schools Origins The concept of the

More information

FE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering)

FE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering) Topic: Fluid Properties 1. If 6 m 3 of oil weighs 47 kn, calculate its specific weight, density, and specific gravity. 2. 10.0 L of an incompressible liquid exert a force of 20 N at the earth s surface.

More information

UNIT III DIMENSIONAL ANALYSIS

UNIT III DIMENSIONAL ANALYSIS UNIT III DIMENSIONAL ANALYSIS INTRODUCTION Dimensional analysis is one of the most important mathematical tools in the study of fluid mechanics. It is a mathematical technique, which makes use of the study

More information

Figure 3: Problem 7. (a) 0.9 m (b) 1.8 m (c) 2.7 m (d) 3.6 m

Figure 3: Problem 7. (a) 0.9 m (b) 1.8 m (c) 2.7 m (d) 3.6 m 1. For the manometer shown in figure 1, if the absolute pressure at point A is 1.013 10 5 Pa, the absolute pressure at point B is (ρ water =10 3 kg/m 3, ρ Hg =13.56 10 3 kg/m 3, ρ oil = 800kg/m 3 ): (a)

More information

Fundamental Concepts of Convection : Flow and Thermal Considerations. Chapter Six and Appendix D Sections 6.1 through 6.8 and D.1 through D.

Fundamental Concepts of Convection : Flow and Thermal Considerations. Chapter Six and Appendix D Sections 6.1 through 6.8 and D.1 through D. Fundamental Concepts of Convection : Flow and Thermal Considerations Chapter Six and Appendix D Sections 6.1 through 6.8 and D.1 through D.3 6.1 Boundary Layers: Physical Features Velocity Boundary Layer

More information

To study the motion of a perfect gas, the conservation equations of continuity

To study the motion of a perfect gas, the conservation equations of continuity Chapter 1 Ideal Gas Flow The Navier-Stokes equations To study the motion of a perfect gas, the conservation equations of continuity ρ + (ρ v = 0, (1.1 momentum ρ D v Dt = p+ τ +ρ f m, (1.2 and energy ρ

More information

Lecture 3: Fundamentals of Fluid Flow: fluid properties and types; Boundary layer structure; unidirectional flows

Lecture 3: Fundamentals of Fluid Flow: fluid properties and types; Boundary layer structure; unidirectional flows GEOL 440 Sedimentology and stratigraphy: processes, environments and deposits Lecture 3: Fundamentals of Fluid Flow: fluid properties and types; Boundary layer structure; unidirectional flows Why study

More information

Homework #1 Solution Problem 1

Homework #1 Solution Problem 1 Homework #1 Solution Problem 1 In this problem, we are asked to consider the design of a straw by a fast-food company for a new milkshake. We need to perform a dimensionless analysis so that there is sufficient

More information

58:160 Intermediate Fluid Mechanics Bluff Body Professor Fred Stern Fall 2014

58:160 Intermediate Fluid Mechanics Bluff Body Professor Fred Stern Fall 2014 Professor Fred Stern Fall 04 Chapter 7 Bluff Body Fluid flows are broadly categorized:. Internal flows such as ducts/pipes, turbomachinery, open channel/river, which are bounded by walls or fluid interfaces:

More information

CE FLUID MECHANICS AND MECHINERY UNIT I

CE FLUID MECHANICS AND MECHINERY UNIT I CE 6451- FLUID MECHANICS AND MECHINERY UNIT I 1. Define specific volume of a fluid and write its unit. [N/D-14] Volume per unit mass of a fluid is called specific volume. Unit: m3 / kg. 2. Name the devices

More information

Fluid Mechanics c) Orificemeter a) Viscous force, Turbulence force, Compressible force a) Turbulence force c) Integration d) The flow is rotational

Fluid Mechanics c) Orificemeter a) Viscous force, Turbulence force, Compressible force a) Turbulence force c) Integration d) The flow is rotational Fluid Mechanics 1. Which is the cheapest device for measuring flow / discharge rate. a) Venturimeter b) Pitot tube c) Orificemeter d) None of the mentioned 2. Which forces are neglected to obtain Euler

More information

conservation of linear momentum 1+8Fr = 1+ Sufficiently short that energy loss due to channel friction is negligible h L = 0 Bernoulli s equation.

conservation of linear momentum 1+8Fr = 1+ Sufficiently short that energy loss due to channel friction is negligible h L = 0 Bernoulli s equation. 174 Review Flow through a contraction Critical and choked flows The hydraulic jump conservation of linear momentum y y 1 = 1+ 1+8Fr 1 8.1 Rapidly Varied Flows Weirs 8.1.1 Broad-Crested Weir Consider the

More information

Figure 11.1: A fluid jet extruded where we define the dimensionless groups

Figure 11.1: A fluid jet extruded where we define the dimensionless groups 11. Fluid Jets 11.1 The shape of a falling fluid jet Consider a circular orifice of a radius a ejecting a flux Q of fluid density ρ and kinematic viscosity ν (see Fig. 11.1). The resulting jet accelerates

More information

Student name: This is a closed book examination. You are allowed 1 sheet of 8.5 x 11 paper with notes.

Student name: This is a closed book examination. You are allowed 1 sheet of 8.5 x 11 paper with notes. 13.012 Marine Hydrodynamics for Ocean Engineers Fall 2004 Quiz #2 Student name: This is a closed book examination. You are allowed 1 sheet of 8.5 x 11 paper with notes. For the problems in Section A, fill

More information

Introduction to Fluid Flow

Introduction to Fluid Flow Introduction to Fluid Flow Learning Outcomes After this lecture you should be able to Explain viscosity and how it changes with temperature Write the continuity equation Define laminar and turbulent flow

More information

Answers to Homework #9

Answers to Homework #9 Answers to Homework #9 Problem 1: 1. We want to express the kinetic energy per unit wavelength E(k), of dimensions L 3 T 2, as a function of the local rate of energy dissipation ɛ, of dimensions L 2 T

More information

Prototype Instabilities

Prototype Instabilities Prototype Instabilities David Randall Introduction Broadly speaking, a growing atmospheric disturbance can draw its kinetic energy from two possible sources: the kinetic and available potential energies

More information

Physics GRE Review Fall 2004 Classical Mechanics Problems

Physics GRE Review Fall 2004 Classical Mechanics Problems Massachusetts Institute of Technology Society of Physics Students October 18, 2004 Physics GRE Review Fall 2004 Classical Mechanics Problems Classical Mechanics Problem Set These problems are intended

More information

Numerical Investigation of the Fluid Flow around and Past a Circular Cylinder by Ansys Simulation

Numerical Investigation of the Fluid Flow around and Past a Circular Cylinder by Ansys Simulation , pp.49-58 http://dx.doi.org/10.1457/ijast.016.9.06 Numerical Investigation of the Fluid Flow around and Past a Circular Cylinder by Ansys Simulation Mojtaba Daneshi Department of Mechanical Engineering,

More information

UNIT II CONVECTION HEAT TRANSFER

UNIT II CONVECTION HEAT TRANSFER UNIT II CONVECTION HEAT TRANSFER Convection is the mode of heat transfer between a surface and a fluid moving over it. The energy transfer in convection is predominately due to the bulk motion of the fluid

More information