CS 798: Homework Assignment 2 (Probability)

Size: px
Start display at page:

Download "CS 798: Homework Assignment 2 (Probability)"

Transcription

1 0 Sample space Assgned: September 30, 2009 In the IEEE 802 protocol, the congeston wndow (CW) parameter s used as follows: ntally, a termnal wats for a random tme perod (called backoff) chosen n the range [, 2 CW ] before sendng a packet If an acknowledgement for the packet s not receved n tme, then CW s doubled, and the process s repeated, untl CW reaches the value CWMAX The ntal value of CW s CWMIN What s the sample space for (a) the value of CW? ( the value of the the backoff? Soluton: The sample space for CW s the dscrete set {CWMIN, 2* CWMIN, 4* CWMIN, 2 n *K*CWMIN}, where K s chosen so that 2 n *K*CWMIN < CWMAX The sample space for backoff, gven CW s a subset of the real lne defned by [0, CW] 20 Interpretatons of probablty Consder the statement: gven the condtons rght now, the probablty of a snowstorm tomorrow mornng s 25% How would you nterpret ths statement from the perspectve of an objectve, frequentst, and subjectve nterpretaton of probablty (assumng these are possble)? Soluton: An objectve nterpretaton would be that we have a complete weather model that has an ntrsc source of randomness Gven ths model and the current weather condtons, the model predcts that the probablty of a snowstorm s 25% A frequentst approach would be to look at all pror days where today s weather condtons also held, and look at the number of such days where there was a snowstorm the next mornng We would see that 25% of the tme, gven the current weather, there was as snowstorm A subjectve nterpretaton would be that an expert, who knew all the varables, would take 4: odds (or bettter) on a bet that t would snow tomorrow 30 Condtonal probablty Consder a devce that samples packets on a lnk (a) Suppose that measurements show that 20% of packets are UDP, and that 0% of all packets are UDP packets wth a packet sze of 00 byteswhat s the condtonal probablty that a UDP packet has sze 00 bytes? ( Suppose 50% of packets were UDP, and 50% of UDP packets were 00 bytes long What fracton of all packets are 00 byte UDP packets? Soluton: (a) We have P(UDP) = 02, and P(UDP AND 00) = 0 So, P(00 UDP) = 0/02 = 05 ( Here, P(UDP) = 05 and P(00 UDP) = 05 So, P(00 AND UDP) = 05*05 = Condtonal probablty agan Contnung wth Ex 3: How does the knowledge of the protocol type change the sample space of possble packet lengths? In other words, what s the sample space before and after you know the protocol type of a packet? Soluton: Before you know the protocol type of a packet, the sample space s all possble packet lengths of all possble protocol types After you know the protocol type, the sample space only nclude packet lengths for that protocol Page of 5

2 50 Bayes rule For Exercse 3(a), what addtonal nformaton do you need to compute P(UDP 00)? Settng that value to x, express P(UDP 00) n terms of x Soluton: P(UDP 00) = (P(00 UDP)P(UDP))/P(00) We need P(00) = x Then, P(UDP 00) = 05*02/x = 0/x 60 Cumulatve dstrbuton functon (a) Suppose dscrete random varable D take values {, 2, 3,,,} wth probablty /2 What s ts CDF? ( Suppose contnuous random varable C s unform n the range [x, ] Whats s ts CDF? Soluton: (a) F D () = --- = -2 - ( f C(x) = x x, so F C (x) = = x dx x x 70 Expectatons Compute the expectatons of the D and C n Exercse 6 Soluton: (a) E[D] = --- ( By geometry, E[C] = ( +x )/2 (you can also derve ths analytcally) 80 Varance 2 j j = Prove that V[aX] = a 2 V[X] 2 j j = x x Soluton: V[aX] = E[a 2 X 2 ] - (E[aX]) 2 = a 2 (E[X 2 ] - (E[X]) 2 ) = a 2 V[X] 90 Bernoull dstrbuton A hotel has 20 guest rooms Assumng outgong calls are ndependent and that a guest room makes 0 mnutes worth of outgong calls durng the busest hour of the day, what s the probablty that 5 calls are smultaneously actve durng the busest hour? What s the probablty of 5 smultaneous calls? Soluton: Consder the event E defned as Room X s makng an outgong call durng the busy hour Clearly, P(E) =p = /6 The probablty of 5 smultaneous calls s and of 5 smultaneous calls s = = 4*0 8 Page 2 of 5

3 00 Geometrc dstrbuton Consder a lnk that has a packet loss rate of 0% Suppose that every packet transmsson has to be acknowledged Compute the expected number of data transmssons for a successful packet+ack transfer Soluton: Packet and ack transmssons are geometrcally dstrbuted wth parameter p=0 So the expected number of packet transmssons s /p = 0 and the expected number of ack transmssons s also 0 These are ndependent events, so the expected number of data transmssons for successful packet+ack transfer = 0+0 = 20 0 Posson dstrbuton Consder a bnomally dstrbuted random varable X wth parameters n=0, p=0 (a) Compute the value of P(X=8) usng both the bnomal dstrbuton and the Posson approxmaton ( Repeat for n=00, p=0 Soluton: (a) Usng the bnomal dstrbuton, the value s 0 8 ( 0 )( 09 2 ) = 36*0-6 For the Posson 8 approxmaton, λ=, so the value s PX ( = 8) = e = 89*0-6 ( Usng the bnomal dstrbuton, the 8! value s 00 8 ( 0 )( ) = 4 For the Posson approxmaton, λ= 0, so the value s 8 PX ( = 8) = e = 2 It s clear that as n ncreases, the approxmaton greatly mproves 8! 20 Gaussan dstrbuton Prove that f X s Gaussan wth parameters ( μ, σ 2 ), then the random varable Y=aX + b, where a and b are constants, s also Gaussan, wth parameters( aμ + b, ( aσ) 2 ) Soluton: Consder the cumulatve dstrbuton of Y = F Y (y) = PY ( y) PaX ( + b y) P ( y X ( y = = = F a X f a > 0 a Then, f Y (y) = F Y (y) = F X ( y --f ( a a x y 2σ 2 2a a 2 σ 2 2a 2 σ 2 = = = = Comparng wth the standard defnton of a Gaussan, we see that the parameters of Y are ( aμ + b, ( aσ) 2 ) A smlar calculaton holds f a < 0 30 Exponental dstrbuton y b μ 2 a ( y b aμ) ( y ( b+ aμ) ) Suppose that customers arrve to a bank wth an exponentally dstrbuted nter-arrval tme wth mean 5 mnutes A customer walks nto the bank at 3pm What s the probablty that the next customer arrves no sooner than 3:5? Soluton: We have / λ =5 We need to compute -F(5) = ( e λx ) = e 5 = e 3 = 485 % Page 3 of 5

4 40 Exponental dstrbuton It s late August and you are watchng the Persed meteor shower You are told that that the tme between meteors s exponentally dstrbuted wth a mean of 200 seconds At 0:05 pm, you see a meteor, after whch you head to the ktchen for a bowl of cecream, returnng outsde at 0:08pm How long do you expect to wat to see the next meteor? Soluton: Because the exponental dstrbuton s memoryless, the expected watng tme s the same, e 200 seconds, no matter how long your break for cecream Isn t that nce? 50 Power law Consder a power-law dstrbuton wth x mn = and n the followng table: α = 2 and an exponental dstrbuton wth λ = 2 Fll x f power_law (x) f exponental (x) Soluton: x f power_law (x) f exponental (x) * * * * * *0-87 It should now be obvous why a power-law dstrbuton s called heavy-taled! 60 Markov s nequalty Consder a random varable X that exponentally dstrbuted wth parameter λ = 2 What s the probablty that X > 0 usng (a) the exponental dstrbuton ( Markov s nequalty Soluton: (a) We need -F(0) = e -20 = 206*0-9 ( The mean of ths dstrbuton s /2 So, 05 PX ( 0) = 005 It s clear that the bound s very loose 0 70 Jont probablty dstrbuton Consder the followng probablty mass functon defned jontly over the random varables, X, Y, and Z: Page 4 of 5

5 P(000) = 005; P(00) = 005; P(00) = 0; P(0)=03;P(00) = 005; P(0) = 005; P(0) = 0; P()=03 (a) Wrte down p X, p Y,p z,p XY,p XZ,p YZ ( Are X and Y, X and Z, or Y and Z ndependent? What s the probablty that X=0 gven that Z=? Soluton: (a) p X = {05, 05}; p Y = {02, 08}; p Z = {03, 07}; p XY = {0, 04, 0, 04}; p XZ = {05, 035, 05, 035}; p YZ = {0, 0, 02, 06} ( X and Y are ndependent because p XY = p X p Y X and Z are ndependent because p XZ = p X p Z (c) P(X=0 Z=) = P(X=0 AND Z=)/P(Z=) = 035/07 = 05 Page 5 of 5

CS-433: Simulation and Modeling Modeling and Probability Review

CS-433: Simulation and Modeling Modeling and Probability Review CS-433: Smulaton and Modelng Modelng and Probablty Revew Exercse 1. (Probablty of Smple Events) Exercse 1.1 The owner of a camera shop receves a shpment of fve cameras from a camera manufacturer. Unknown

More information

Probability and Random Variable Primer

Probability and Random Variable Primer B. Maddah ENMG 622 Smulaton 2/22/ Probablty and Random Varable Prmer Sample space and Events Suppose that an eperment wth an uncertan outcome s performed (e.g., rollng a de). Whle the outcome of the eperment

More information

Analysis of Discrete Time Queues (Section 4.6)

Analysis of Discrete Time Queues (Section 4.6) Analyss of Dscrete Tme Queues (Secton 4.6) Copyrght 2002, Sanjay K. Bose Tme axs dvded nto slots slot slot boundares Arrvals can only occur at slot boundares Servce to a job can only start at a slot boundary

More information

Expected Value and Variance

Expected Value and Variance MATH 38 Expected Value and Varance Dr. Neal, WKU We now shall dscuss how to fnd the average and standard devaton of a random varable X. Expected Value Defnton. The expected value (or average value, or

More information

Applied Stochastic Processes

Applied Stochastic Processes STAT455/855 Fall 23 Appled Stochastc Processes Fnal Exam, Bref Solutons 1. (15 marks) (a) (7 marks) The dstrbuton of Y s gven by ( ) ( ) y 2 1 5 P (Y y) for y 2, 3,... The above follows because each of

More information

Randomness and Computation

Randomness and Computation Randomness and Computaton or, Randomzed Algorthms Mary Cryan School of Informatcs Unversty of Ednburgh RC 208/9) Lecture 0 slde Balls n Bns m balls, n bns, and balls thrown unformly at random nto bns usually

More information

j) = 1 (note sigma notation) ii. Continuous random variable (e.g. Normal distribution) 1. density function: f ( x) 0 and f ( x) dx = 1

j) = 1 (note sigma notation) ii. Continuous random variable (e.g. Normal distribution) 1. density function: f ( x) 0 and f ( x) dx = 1 Random varables Measure of central tendences and varablty (means and varances) Jont densty functons and ndependence Measures of assocaton (covarance and correlaton) Interestng result Condtonal dstrbutons

More information

6. Stochastic processes (2)

6. Stochastic processes (2) Contents Markov processes Brth-death processes Lect6.ppt S-38.45 - Introducton to Teletraffc Theory Sprng 5 Markov process Consder a contnuous-tme and dscrete-state stochastc process X(t) wth state space

More information

Engineering Risk Benefit Analysis

Engineering Risk Benefit Analysis Engneerng Rsk Beneft Analyss.55, 2.943, 3.577, 6.938, 0.86, 3.62, 6.862, 22.82, ESD.72, ESD.72 RPRA 2. Elements of Probablty Theory George E. Apostolaks Massachusetts Insttute of Technology Sprng 2007

More information

6. Stochastic processes (2)

6. Stochastic processes (2) 6. Stochastc processes () Lect6.ppt S-38.45 - Introducton to Teletraffc Theory Sprng 5 6. Stochastc processes () Contents Markov processes Brth-death processes 6. Stochastc processes () Markov process

More information

Lecture 3: Probability Distributions

Lecture 3: Probability Distributions Lecture 3: Probablty Dstrbutons Random Varables Let us begn by defnng a sample space as a set of outcomes from an experment. We denote ths by S. A random varable s a functon whch maps outcomes nto the

More information

Convergence of random processes

Convergence of random processes DS-GA 12 Lecture notes 6 Fall 216 Convergence of random processes 1 Introducton In these notes we study convergence of dscrete random processes. Ths allows to characterze phenomena such as the law of large

More information

Chapter 1. Probability

Chapter 1. Probability Chapter. Probablty Mcroscopc propertes of matter: quantum mechancs, atomc and molecular propertes Macroscopc propertes of matter: thermodynamcs, E, H, C V, C p, S, A, G How do we relate these two propertes?

More information

Simulation and Random Number Generation

Simulation and Random Number Generation Smulaton and Random Number Generaton Summary Dscrete Tme vs Dscrete Event Smulaton Random number generaton Generatng a random sequence Generatng random varates from a Unform dstrbuton Testng the qualty

More information

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X Statstcs 1: Probablty Theory II 37 3 EPECTATION OF SEVERAL RANDOM VARIABLES As n Probablty Theory I, the nterest n most stuatons les not on the actual dstrbuton of a random vector, but rather on a number

More information

Notes prepared by Prof Mrs) M.J. Gholba Class M.Sc Part(I) Information Technology

Notes prepared by Prof Mrs) M.J. Gholba Class M.Sc Part(I) Information Technology Inverse transformatons Generaton of random observatons from gven dstrbutons Assume that random numbers,,, are readly avalable, where each tself s a random varable whch s unformly dstrbuted over the range(,).

More information

Homework Assignment 3 Due in class, Thursday October 15

Homework Assignment 3 Due in class, Thursday October 15 Homework Assgnment 3 Due n class, Thursday October 15 SDS 383C Statstcal Modelng I 1 Rdge regresson and Lasso 1. Get the Prostrate cancer data from http://statweb.stanford.edu/~tbs/elemstatlearn/ datasets/prostate.data.

More information

Introduction to Continuous-Time Markov Chains and Queueing Theory

Introduction to Continuous-Time Markov Chains and Queueing Theory Introducton to Contnuous-Tme Markov Chans and Queueng Theory From DTMC to CTMC p p 1 p 12 1 2 k-1 k p k-1,k p k-1,k k+1 p 1 p 21 p k,k-1 p k,k-1 DTMC 1. Transtons at dscrete tme steps n=,1,2, 2. Past doesn

More information

CS 2750 Machine Learning. Lecture 5. Density estimation. CS 2750 Machine Learning. Announcements

CS 2750 Machine Learning. Lecture 5. Density estimation. CS 2750 Machine Learning. Announcements CS 750 Machne Learnng Lecture 5 Densty estmaton Mlos Hauskrecht mlos@cs.ptt.edu 539 Sennott Square CS 750 Machne Learnng Announcements Homework Due on Wednesday before the class Reports: hand n before

More information

Markov Chain Monte Carlo (MCMC), Gibbs Sampling, Metropolis Algorithms, and Simulated Annealing Bioinformatics Course Supplement

Markov Chain Monte Carlo (MCMC), Gibbs Sampling, Metropolis Algorithms, and Simulated Annealing Bioinformatics Course Supplement Markov Chan Monte Carlo MCMC, Gbbs Samplng, Metropols Algorthms, and Smulated Annealng 2001 Bonformatcs Course Supplement SNU Bontellgence Lab http://bsnuackr/ Outlne! Markov Chan Monte Carlo MCMC! Metropols-Hastngs

More information

Chapter 13: Multiple Regression

Chapter 13: Multiple Regression Chapter 13: Multple Regresson 13.1 Developng the multple-regresson Model The general model can be descrbed as: It smplfes for two ndependent varables: The sample ft parameter b 0, b 1, and b are used to

More information

princeton univ. F 13 cos 521: Advanced Algorithm Design Lecture 3: Large deviations bounds and applications Lecturer: Sanjeev Arora

princeton univ. F 13 cos 521: Advanced Algorithm Design Lecture 3: Large deviations bounds and applications Lecturer: Sanjeev Arora prnceton unv. F 13 cos 521: Advanced Algorthm Desgn Lecture 3: Large devatons bounds and applcatons Lecturer: Sanjeev Arora Scrbe: Today s topc s devaton bounds: what s the probablty that a random varable

More information

Hydrological statistics. Hydrological statistics and extremes

Hydrological statistics. Hydrological statistics and extremes 5--0 Stochastc Hydrology Hydrologcal statstcs and extremes Marc F.P. Berkens Professor of Hydrology Faculty of Geoscences Hydrologcal statstcs Mostly concernes wth the statstcal analyss of hydrologcal

More information

PROBABILITY PRIMER. Exercise Solutions

PROBABILITY PRIMER. Exercise Solutions PROBABILITY PRIMER Exercse Solutons 1 Probablty Prmer, Exercse Solutons, Prncples of Econometrcs, e EXERCISE P.1 (b) X s a random varable because attendance s not known pror to the outdoor concert. Before

More information

Lecture Notes on Linear Regression

Lecture Notes on Linear Regression Lecture Notes on Lnear Regresson Feng L fl@sdueducn Shandong Unversty, Chna Lnear Regresson Problem In regresson problem, we am at predct a contnuous target value gven an nput feature vector We assume

More information

Statistics and Probability Theory in Civil, Surveying and Environmental Engineering

Statistics and Probability Theory in Civil, Surveying and Environmental Engineering Statstcs and Probablty Theory n Cvl, Surveyng and Envronmental Engneerng Pro. Dr. Mchael Havbro Faber ETH Zurch, Swtzerland Contents o Todays Lecture Overvew o Uncertanty Modelng Random Varables - propertes

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

TCOM 501: Networking Theory & Fundamentals. Lecture 7 February 25, 2003 Prof. Yannis A. Korilis

TCOM 501: Networking Theory & Fundamentals. Lecture 7 February 25, 2003 Prof. Yannis A. Korilis TCOM 501: Networkng Theory & Fundamentals Lecture 7 February 25, 2003 Prof. Yanns A. Korls 1 7-2 Topcs Open Jackson Networks Network Flows State-Dependent Servce Rates Networks of Transmsson Lnes Klenrock

More information

MATH 829: Introduction to Data Mining and Analysis The EM algorithm (part 2)

MATH 829: Introduction to Data Mining and Analysis The EM algorithm (part 2) 1/16 MATH 829: Introducton to Data Mnng and Analyss The EM algorthm (part 2) Domnque Gullot Departments of Mathematcal Scences Unversty of Delaware Aprl 20, 2016 Recall 2/16 We are gven ndependent observatons

More information

A be a probability space. A random vector

A be a probability space. A random vector Statstcs 1: Probablty Theory II 8 1 JOINT AND MARGINAL DISTRIBUTIONS In Probablty Theory I we formulate the concept of a (real) random varable and descrbe the probablstc behavor of ths random varable by

More information

P R. Lecture 4. Theory and Applications of Pattern Recognition. Dept. of Electrical and Computer Engineering /

P R. Lecture 4. Theory and Applications of Pattern Recognition. Dept. of Electrical and Computer Engineering / Theory and Applcatons of Pattern Recognton 003, Rob Polkar, Rowan Unversty, Glassboro, NJ Lecture 4 Bayes Classfcaton Rule Dept. of Electrcal and Computer Engneerng 0909.40.0 / 0909.504.04 Theory & Applcatons

More information

Conjugacy and the Exponential Family

Conjugacy and the Exponential Family CS281B/Stat241B: Advanced Topcs n Learnng & Decson Makng Conjugacy and the Exponental Famly Lecturer: Mchael I. Jordan Scrbes: Bran Mlch 1 Conjugacy In the prevous lecture, we saw conjugate prors for the

More information

Limited Dependent Variables

Limited Dependent Variables Lmted Dependent Varables. What f the left-hand sde varable s not a contnuous thng spread from mnus nfnty to plus nfnty? That s, gven a model = f (, β, ε, where a. s bounded below at zero, such as wages

More information

Lecture 6 More on Complete Randomized Block Design (RBD)

Lecture 6 More on Complete Randomized Block Design (RBD) Lecture 6 More on Complete Randomzed Block Desgn (RBD) Multple test Multple test The multple comparsons or multple testng problem occurs when one consders a set of statstcal nferences smultaneously. For

More information

Predictive Analytics : QM901.1x Prof U Dinesh Kumar, IIMB. All Rights Reserved, Indian Institute of Management Bangalore

Predictive Analytics : QM901.1x Prof U Dinesh Kumar, IIMB. All Rights Reserved, Indian Institute of Management Bangalore Sesson Outlne Introducton to classfcaton problems and dscrete choce models. Introducton to Logstcs Regresson. Logstc functon and Logt functon. Maxmum Lkelhood Estmator (MLE) for estmaton of LR parameters.

More information

Strong Markov property: Same assertion holds for stopping times τ.

Strong Markov property: Same assertion holds for stopping times τ. Brownan moton Let X ={X t : t R + } be a real-valued stochastc process: a famlty of real random varables all defned on the same probablty space. Defne F t = nformaton avalable by observng the process up

More information

xp(x µ) = 0 p(x = 0 µ) + 1 p(x = 1 µ) = µ

xp(x µ) = 0 p(x = 0 µ) + 1 p(x = 1 µ) = µ CSE 455/555 Sprng 2013 Homework 7: Parametrc Technques Jason J. Corso Computer Scence and Engneerng SUY at Buffalo jcorso@buffalo.edu Solutons by Yngbo Zhou Ths assgnment does not need to be submtted and

More information

Probability Theory (revisited)

Probability Theory (revisited) Probablty Theory (revsted) Summary Probablty v.s. plausblty Random varables Smulaton of Random Experments Challenge The alarm of a shop rang. Soon afterwards, a man was seen runnng n the street, persecuted

More information

Supplementary material: Margin based PU Learning. Matrix Concentration Inequalities

Supplementary material: Margin based PU Learning. Matrix Concentration Inequalities Supplementary materal: Margn based PU Learnng We gve the complete proofs of Theorem and n Secton We frst ntroduce the well-known concentraton nequalty, so the covarance estmator can be bounded Then we

More information

MLE and Bayesian Estimation. Jie Tang Department of Computer Science & Technology Tsinghua University 2012

MLE and Bayesian Estimation. Jie Tang Department of Computer Science & Technology Tsinghua University 2012 MLE and Bayesan Estmaton Je Tang Department of Computer Scence & Technology Tsnghua Unversty 01 1 Lnear Regresson? As the frst step, we need to decde how we re gong to represent the functon f. One example:

More information

CS286r Assign One. Answer Key

CS286r Assign One. Answer Key CS286r Assgn One Answer Key 1 Game theory 1.1 1.1.1 Let off-equlbrum strateges also be that people contnue to play n Nash equlbrum. Devatng from any Nash equlbrum s a weakly domnated strategy. That s,

More information

Logistic Regression. CAP 5610: Machine Learning Instructor: Guo-Jun QI

Logistic Regression. CAP 5610: Machine Learning Instructor: Guo-Jun QI Logstc Regresson CAP 561: achne Learnng Instructor: Guo-Jun QI Bayes Classfer: A Generatve model odel the posteror dstrbuton P(Y X) Estmate class-condtonal dstrbuton P(X Y) for each Y Estmate pror dstrbuton

More information

Math 426: Probability MWF 1pm, Gasson 310 Homework 4 Selected Solutions

Math 426: Probability MWF 1pm, Gasson 310 Homework 4 Selected Solutions Exercses from Ross, 3, : Math 26: Probablty MWF pm, Gasson 30 Homework Selected Solutons 3, p. 05 Problems 76, 86 3, p. 06 Theoretcal exercses 3, 6, p. 63 Problems 5, 0, 20, p. 69 Theoretcal exercses 2,

More information

Queueing Networks II Network Performance

Queueing Networks II Network Performance Queueng Networks II Network Performance Davd Tpper Assocate Professor Graduate Telecommuncatons and Networkng Program Unversty of Pttsburgh Sldes 6 Networks of Queues Many communcaton systems must be modeled

More information

Lecture 14 (03/27/18). Channels. Decoding. Preview of the Capacity Theorem.

Lecture 14 (03/27/18). Channels. Decoding. Preview of the Capacity Theorem. Lecture 14 (03/27/18). Channels. Decodng. Prevew of the Capacty Theorem. A. Barg The concept of a communcaton channel n nformaton theory s an abstracton for transmttng dgtal (and analog) nformaton from

More information

ECE 534: Elements of Information Theory. Solutions to Midterm Exam (Spring 2006)

ECE 534: Elements of Information Theory. Solutions to Midterm Exam (Spring 2006) ECE 534: Elements of Informaton Theory Solutons to Mdterm Eam (Sprng 6) Problem [ pts.] A dscrete memoryless source has an alphabet of three letters,, =,, 3, wth probabltes.4,.4, and., respectvely. (a)

More information

Equilibrium Analysis of the M/G/1 Queue

Equilibrium Analysis of the M/G/1 Queue Eulbrum nalyss of the M/G/ Queue Copyrght, Sanay K. ose. Mean nalyss usng Resdual Lfe rguments Secton 3.. nalyss usng an Imbedded Marov Chan pproach Secton 3. 3. Method of Supplementary Varables done later!

More information

Statistical analysis using matlab. HY 439 Presented by: George Fortetsanakis

Statistical analysis using matlab. HY 439 Presented by: George Fortetsanakis Statstcal analyss usng matlab HY 439 Presented by: George Fortetsanaks Roadmap Probablty dstrbutons Statstcal estmaton Fttng data to probablty dstrbutons Contnuous dstrbutons Contnuous random varable X

More information

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models ECO 452 -- OE 4: Probt and Logt Models ECO 452 -- OE 4 Maxmum Lkelhood Estmaton of Bnary Dependent Varables Models: Probt and Logt hs note demonstrates how to formulate bnary dependent varables models

More information

MATH 5630: Discrete Time-Space Model Hung Phan, UMass Lowell March 1, 2018

MATH 5630: Discrete Time-Space Model Hung Phan, UMass Lowell March 1, 2018 MATH 5630: Dscrete Tme-Space Model Hung Phan, UMass Lowell March, 08 Newton s Law of Coolng Consder the coolng of a well strred coffee so that the temperature does not depend on space Newton s law of collng

More information

Application of Queuing Theory to Waiting Time of Out-Patients in Hospitals.

Application of Queuing Theory to Waiting Time of Out-Patients in Hospitals. Applcaton of Queung Theory to Watng Tme of Out-Patents n Hosptals. R.A. Adeleke *, O.D. Ogunwale, and O.Y. Hald. Department of Mathematcal Scences, Unversty of Ado-Ekt, Ado-Ekt, Ekt State, Ngera. E-mal:

More information

Continuous Time Markov Chain

Continuous Time Markov Chain Contnuous Tme Markov Chan Hu Jn Department of Electroncs and Communcaton Engneerng Hanyang Unversty ERICA Campus Contents Contnuous tme Markov Chan (CTMC) Propertes of sojourn tme Relatons Transton probablty

More information

Homework 9 for BST 631: Statistical Theory I Problems, 11/02/2006

Homework 9 for BST 631: Statistical Theory I Problems, 11/02/2006 Due Tme: 5:00PM Thursda, on /09/006 Problem (8 ponts) Book problem 45 Let U = X + and V = X, then the jont pmf of ( UV, ) s θ λ θ e λ e f( u, ) = ( = 0, ; u =, +, )! ( u )! Then f( u, ) u θ λ f ( x x+

More information

First Year Examination Department of Statistics, University of Florida

First Year Examination Department of Statistics, University of Florida Frst Year Examnaton Department of Statstcs, Unversty of Florda May 7, 010, 8:00 am - 1:00 noon Instructons: 1. You have four hours to answer questons n ths examnaton.. You must show your work to receve

More information

Negative Binomial Regression

Negative Binomial Regression STATGRAPHICS Rev. 9/16/2013 Negatve Bnomal Regresson Summary... 1 Data Input... 3 Statstcal Model... 3 Analyss Summary... 4 Analyss Optons... 7 Plot of Ftted Model... 8 Observed Versus Predcted... 10 Predctons...

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com PhscsAndMathsTutor.com phscsandmathstutor.com June 005 5. The random varable X has probablt functon k, = 1,, 3, P( X = ) = k ( + 1), = 4, 5, where k s a constant. (a) Fnd the value of k. (b) Fnd the eact

More information

EGR 544 Communication Theory

EGR 544 Communication Theory EGR 544 Communcaton Theory. Informaton Sources Z. Alyazcoglu Electrcal and Computer Engneerng Department Cal Poly Pomona Introducton Informaton Source x n Informaton sources Analog sources Dscrete sources

More information

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models ECO 452 -- OE 4: Probt and Logt Models ECO 452 -- OE 4 Mamum Lkelhood Estmaton of Bnary Dependent Varables Models: Probt and Logt hs note demonstrates how to formulate bnary dependent varables models for

More information

Tornado and Luby Transform Codes. Ashish Khisti Presentation October 22, 2003

Tornado and Luby Transform Codes. Ashish Khisti Presentation October 22, 2003 Tornado and Luby Transform Codes Ashsh Khst 6.454 Presentaton October 22, 2003 Background: Erasure Channel Elas[956] studed the Erasure Channel β x x β β x 2 m x 2 k? Capacty of Noseless Erasure Channel

More information

Stanford University CS254: Computational Complexity Notes 7 Luca Trevisan January 29, Notes for Lecture 7

Stanford University CS254: Computational Complexity Notes 7 Luca Trevisan January 29, Notes for Lecture 7 Stanford Unversty CS54: Computatonal Complexty Notes 7 Luca Trevsan January 9, 014 Notes for Lecture 7 1 Approxmate Countng wt an N oracle We complete te proof of te followng result: Teorem 1 For every

More information

CIS526: Machine Learning Lecture 3 (Sept 16, 2003) Linear Regression. Preparation help: Xiaoying Huang. x 1 θ 1 output... θ M x M

CIS526: Machine Learning Lecture 3 (Sept 16, 2003) Linear Regression. Preparation help: Xiaoying Huang. x 1 θ 1 output... θ M x M CIS56: achne Learnng Lecture 3 (Sept 6, 003) Preparaton help: Xaoyng Huang Lnear Regresson Lnear regresson can be represented by a functonal form: f(; θ) = θ 0 0 +θ + + θ = θ = 0 ote: 0 s a dummy attrbute

More information

THE ROYAL STATISTICAL SOCIETY 2006 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE

THE ROYAL STATISTICAL SOCIETY 2006 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE THE ROYAL STATISTICAL SOCIETY 6 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE PAPER I STATISTICAL THEORY The Socety provdes these solutons to assst canddates preparng for the eamnatons n future years and for

More information

Hidden Markov Models

Hidden Markov Models Hdden Markov Models Namrata Vaswan, Iowa State Unversty Aprl 24, 204 Hdden Markov Model Defntons and Examples Defntons:. A hdden Markov model (HMM) refers to a set of hdden states X 0, X,..., X t,...,

More information

Chapter 7 Channel Capacity and Coding

Chapter 7 Channel Capacity and Coding Wreless Informaton Transmsson System Lab. Chapter 7 Channel Capacty and Codng Insttute of Communcatons Engneerng atonal Sun Yat-sen Unversty Contents 7. Channel models and channel capacty 7.. Channel models

More information

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017 U.C. Berkeley CS94: Beyond Worst-Case Analyss Handout 4s Luca Trevsan September 5, 07 Summary of Lecture 4 In whch we ntroduce semdefnte programmng and apply t to Max Cut. Semdefnte Programmng Recall that

More information

Lecture 4. Instructor: Haipeng Luo

Lecture 4. Instructor: Haipeng Luo Lecture 4 Instructor: Hapeng Luo In the followng lectures, we focus on the expert problem and study more adaptve algorthms. Although Hedge s proven to be worst-case optmal, one may wonder how well t would

More information

Chapter 7 Channel Capacity and Coding

Chapter 7 Channel Capacity and Coding Chapter 7 Channel Capacty and Codng Contents 7. Channel models and channel capacty 7.. Channel models Bnary symmetrc channel Dscrete memoryless channels Dscrete-nput, contnuous-output channel Waveform

More information

DS-GA 1002 Lecture notes 5 Fall Random processes

DS-GA 1002 Lecture notes 5 Fall Random processes DS-GA Lecture notes 5 Fall 6 Introducton Random processes Random processes, also known as stochastc processes, allow us to model quanttes that evolve n tme (or space n an uncertan way: the trajectory of

More information

18.1 Introduction and Recap

18.1 Introduction and Recap CS787: Advanced Algorthms Scrbe: Pryananda Shenoy and Shjn Kong Lecturer: Shuch Chawla Topc: Streamng Algorthmscontnued) Date: 0/26/2007 We contnue talng about streamng algorthms n ths lecture, ncludng

More information

Learning from Data 1 Naive Bayes

Learning from Data 1 Naive Bayes Learnng from Data 1 Nave Bayes Davd Barber dbarber@anc.ed.ac.uk course page : http://anc.ed.ac.uk/ dbarber/lfd1/lfd1.html c Davd Barber 2001, 2002 1 Learnng from Data 1 : c Davd Barber 2001,2002 2 1 Why

More information

Lecture 4: November 17, Part 1 Single Buffer Management

Lecture 4: November 17, Part 1 Single Buffer Management Lecturer: Ad Rosén Algorthms for the anagement of Networs Fall 2003-2004 Lecture 4: November 7, 2003 Scrbe: Guy Grebla Part Sngle Buffer anagement In the prevous lecture we taled about the Combned Input

More information

Markov chains. Definition of a CTMC: [2, page 381] is a continuous time, discrete value random process such that for an infinitesimal

Markov chains. Definition of a CTMC: [2, page 381] is a continuous time, discrete value random process such that for an infinitesimal Markov chans M. Veeraraghavan; March 17, 2004 [Tp: Study the MC, QT, and Lttle s law lectures together: CTMC (MC lecture), M/M/1 queue (QT lecture), Lttle s law lecture (when dervng the mean response tme

More information

See Book Chapter 11 2 nd Edition (Chapter 10 1 st Edition)

See Book Chapter 11 2 nd Edition (Chapter 10 1 st Edition) Count Data Models See Book Chapter 11 2 nd Edton (Chapter 10 1 st Edton) Count data consst of non-negatve nteger values Examples: number of drver route changes per week, the number of trp departure changes

More information

9.07 Introduction to Probability and Statistics for Brain and Cognitive Sciences Emery N. Brown

9.07 Introduction to Probability and Statistics for Brain and Cognitive Sciences Emery N. Brown 9.07 Introducton to Probablty and Statstcs for Bran and Cogntve Scences Emery N. Brown Lecture 6: Epectaton and Varance, Covarance and Correlaton, And Movement Generatng Functons I. Objectves Understand

More information

INTRODUCTION TO MACHINE LEARNING 3RD EDITION

INTRODUCTION TO MACHINE LEARNING 3RD EDITION ETHEM ALPAYDIN The MIT Press, 2014 Lecture Sldes for INTRODUCTION TO MACHINE LEARNING 3RD EDITION alpaydn@boun.edu.tr http://www.cmpe.boun.edu.tr/~ethem/2ml3e CHAPTER 3: BAYESIAN DECISION THEORY Probablty

More information

Lecture 5. ALOHAnet. ALOHA protocols. Client. Client. Hub. Client

Lecture 5. ALOHAnet. ALOHA protocols. Client. Client. Hub. Client Lecture 5 ALOHA protocols ALOHAnet Aloha was a poneerng computer networkng system developed at the Unversty of Hawa n 97 s. The dea was to use rado to create a computer network lnkng the far-flung campuses

More information

2.3 Nilpotent endomorphisms

2.3 Nilpotent endomorphisms s a block dagonal matrx, wth A Mat dm U (C) In fact, we can assume that B = B 1 B k, wth B an ordered bass of U, and that A = [f U ] B, where f U : U U s the restrcton of f to U 40 23 Nlpotent endomorphsms

More information

SELECTED PROOFS. DeMorgan s formulas: The first one is clear from Venn diagram, or the following truth table:

SELECTED PROOFS. DeMorgan s formulas: The first one is clear from Venn diagram, or the following truth table: SELECTED PROOFS DeMorgan s formulas: The frst one s clear from Venn dagram, or the followng truth table: A B A B A B Ā B Ā B T T T F F F F T F T F F T F F T T F T F F F F F T T T T The second one can be

More information

MATH 281A: Homework #6

MATH 281A: Homework #6 MATH 28A: Homework #6 Jongha Ryu Due date: November 8, 206 Problem. (Problem 2..2. Soluton. If X,..., X n Bern(p, then T = X s a complete suffcent statstc. Our target s g(p = p, and the nave guess suggested

More information

1 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations

1 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations Physcs 171/271 -Davd Klenfeld - Fall 2005 (revsed Wnter 2011) 1 Dervaton of Rate Equatons from Sngle-Cell Conductance (Hodgkn-Huxley-lke) Equatons We consder a network of many neurons, each of whch obeys

More information

1.4. Experiments, Outcome, Sample Space, Events, and Random Variables

1.4. Experiments, Outcome, Sample Space, Events, and Random Variables 1.4. Experments, Outcome, Sample Space, Events, and Random Varables In Secton 1.2.5, we dscuss how to fnd probabltes based on countng. Whle the probablty of any complex event s bult on countng, brute force

More information

Distributions /06. G.Serazzi 05/06 Dimensionamento degli Impianti Informatici distrib - 1

Distributions /06. G.Serazzi 05/06 Dimensionamento degli Impianti Informatici distrib - 1 Dstrbutons 8/03/06 /06 G.Serazz 05/06 Dmensonamento degl Impant Informatc dstrb - outlne densty, dstrbuton, moments unform dstrbuton Posson process, eponental dstrbuton Pareto functon densty and dstrbuton

More information

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction ECONOMICS 5* -- NOTE (Summary) ECON 5* -- NOTE The Multple Classcal Lnear Regresson Model (CLRM): Specfcaton and Assumptons. Introducton CLRM stands for the Classcal Lnear Regresson Model. The CLRM s also

More information

Case A. P k = Ni ( 2L i k 1 ) + (# big cells) 10d 2 P k.

Case A. P k = Ni ( 2L i k 1 ) + (# big cells) 10d 2 P k. THE CELLULAR METHOD In ths lecture, we ntroduce the cellular method as an approach to ncdence geometry theorems lke the Szemeréd-Trotter theorem. The method was ntroduced n the paper Combnatoral complexty

More information

STATS 306B: Unsupervised Learning Spring Lecture 10 April 30

STATS 306B: Unsupervised Learning Spring Lecture 10 April 30 STATS 306B: Unsupervsed Learnng Sprng 2014 Lecture 10 Aprl 30 Lecturer: Lester Mackey Scrbe: Joey Arthur, Rakesh Achanta 10.1 Factor Analyss 10.1.1 Recap Recall the factor analyss (FA) model for lnear

More information

Problem Set 9 - Solutions Due: April 27, 2005

Problem Set 9 - Solutions Due: April 27, 2005 Problem Set - Solutons Due: Aprl 27, 2005. (a) Frst note that spam messages, nvtatons and other e-mal are all ndependent Posson processes, at rates pλ, qλ, and ( p q)λ. The event of the tme T at whch you

More information

Estimation: Part 2. Chapter GREG estimation

Estimation: Part 2. Chapter GREG estimation Chapter 9 Estmaton: Part 2 9. GREG estmaton In Chapter 8, we have seen that the regresson estmator s an effcent estmator when there s a lnear relatonshp between y and x. In ths chapter, we generalzed the

More information

ECE559VV Project Report

ECE559VV Project Report ECE559VV Project Report (Supplementary Notes Loc Xuan Bu I. MAX SUM-RATE SCHEDULING: THE UPLINK CASE We have seen (n the presentaton that, for downlnk (broadcast channels, the strategy maxmzng the sum-rate

More information

Semi-Supervised Learning

Semi-Supervised Learning Sem-Supervsed Learnng Consder the problem of Prepostonal Phrase Attachment. Buy car wth money ; buy car wth wheel There are several ways to generate features. Gven the lmted representaton, we can assume

More information

First day August 1, Problems and Solutions

First day August 1, Problems and Solutions FOURTH INTERNATIONAL COMPETITION FOR UNIVERSITY STUDENTS IN MATHEMATICS July 30 August 4, 997, Plovdv, BULGARIA Frst day August, 997 Problems and Solutons Problem. Let {ε n } n= be a sequence of postve

More information

since [1-( 0+ 1x1i+ 2x2 i)] [ 0+ 1x1i+ assumed to be a reasonable approximation

since [1-( 0+ 1x1i+ 2x2 i)] [ 0+ 1x1i+ assumed to be a reasonable approximation Econ 388 R. Butler 204 revsons Lecture 4 Dummy Dependent Varables I. Lnear Probablty Model: the Regresson model wth a dummy varables as the dependent varable assumpton, mplcaton regular multple regresson

More information

3.1 ML and Empirical Distribution

3.1 ML and Empirical Distribution 67577 Intro. to Machne Learnng Fall semester, 2008/9 Lecture 3: Maxmum Lkelhood/ Maxmum Entropy Dualty Lecturer: Amnon Shashua Scrbe: Amnon Shashua 1 In the prevous lecture we defned the prncple of Maxmum

More information

Probability review. Adopted from notes of Andrew W. Moore and Eric Xing from CMU. Copyright Andrew W. Moore Slide 1

Probability review. Adopted from notes of Andrew W. Moore and Eric Xing from CMU. Copyright Andrew W. Moore Slide 1 robablty reew dopted from notes of ndrew W. Moore and Erc Xng from CMU Copyrght ndrew W. Moore Slde So far our classfers are determnstc! For a gen X, the classfers we learned so far ge a sngle predcted

More information

The EM Algorithm (Dempster, Laird, Rubin 1977) The missing data or incomplete data setting: ODL(φ;Y ) = [Y;φ] = [Y X,φ][X φ] = X

The EM Algorithm (Dempster, Laird, Rubin 1977) The missing data or incomplete data setting: ODL(φ;Y ) = [Y;φ] = [Y X,φ][X φ] = X The EM Algorthm (Dempster, Lard, Rubn 1977 The mssng data or ncomplete data settng: An Observed Data Lkelhood (ODL that s a mxture or ntegral of Complete Data Lkelhoods (CDL. (1a ODL(;Y = [Y;] = [Y,][

More information

U.C. Berkeley CS294: Beyond Worst-Case Analysis Handout 6 Luca Trevisan September 12, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Handout 6 Luca Trevisan September 12, 2017 U.C. Berkeley CS94: Beyond Worst-Case Analyss Handout 6 Luca Trevsan September, 07 Scrbed by Theo McKenze Lecture 6 In whch we study the spectrum of random graphs. Overvew When attemptng to fnd n polynomal

More information

Lecture 3 January 31, 2017

Lecture 3 January 31, 2017 CS 224: Advanced Algorthms Sprng 207 Prof. Jelan Nelson Lecture 3 January 3, 207 Scrbe: Saketh Rama Overvew In the last lecture we covered Y-fast tres and Fuson Trees. In ths lecture we start our dscusson

More information

The optimal delay of the second test is therefore approximately 210 hours earlier than =2.

The optimal delay of the second test is therefore approximately 210 hours earlier than =2. THE IEC 61508 FORMULAS 223 The optmal delay of the second test s therefore approxmately 210 hours earler than =2. 8.4 The IEC 61508 Formulas IEC 61508-6 provdes approxmaton formulas for the PF for smple

More information

Complex Numbers, Signals, and Circuits

Complex Numbers, Signals, and Circuits Complex Numbers, Sgnals, and Crcuts 3 August, 009 Complex Numbers: a Revew Suppose we have a complex number z = x jy. To convert to polar form, we need to know the magntude of z and the phase of z. z =

More information

Lecture Randomized Load Balancing strategies and their analysis. Probability concepts include, counting, the union bound, and Chernoff bounds.

Lecture Randomized Load Balancing strategies and their analysis. Probability concepts include, counting, the union bound, and Chernoff bounds. U.C. Berkeley CS273: Parallel and Dstrbuted Theory Lecture 1 Professor Satsh Rao August 26, 2010 Lecturer: Satsh Rao Last revsed September 2, 2010 Lecture 1 1 Course Outlne We wll cover a samplng of the

More information

The Expectation-Maximization Algorithm

The Expectation-Maximization Algorithm The Expectaton-Maxmaton Algorthm Charles Elan elan@cs.ucsd.edu November 16, 2007 Ths chapter explans the EM algorthm at multple levels of generalty. Secton 1 gves the standard hgh-level verson of the algorthm.

More information