Solutions to Homework 2 - Probability Review

Size: px
Start display at page:

Download "Solutions to Homework 2 - Probability Review"

Transcription

1 Solutios to Homework 2 - Probability Review Beroulli, biomial, Poisso ad ormal distributios. A Biomial distributio. Sice X is a biomial RV with parameters, p), it ca be writte as X = B i ) where B,..., B are i.i.d. Beroulli RVs with parameter p i.e., P B i = ) = p). From the liearity of the epectatio operator, we have from ) [ ] E [X ] = E B i = E [B i ] = E [B ]. i= The epectatio of the Beroulli RVs is E [B ] = P B = ) + P B = ) = p. Hece, it follows that i= i= E [X ] = E [B ] = p. Now for the variace, sice B,..., B are idepet ad hece ucorrelated RVs we ca write [ ] var [X ] = var B i = var [B i ] = var [B ]. i= To calculate var [B ] = E [ B E [B ]) 2] = E [ B 2 ] E [B ] 2 we should fid the secod momet E [ B 2 ] we already kow E [B ] 2 = p 2 ). But this is straightforward because for Beroulli B, it holds that B = B 2. Hece E [ B 2 ] = p ad the sought variace of X is i= var [X ] = var [B ] = p p 2 ) = p p). The followig Matlab fuctio calculates the pmf of a biomial RV. % This fuctio returs a vector the same size as u where etries % are the biomial pmf with parameters ad p, calculated % at each elemet of u. This tries to mimic Matlab s % built-i fuctio f= bio,u,,p) % For how Matlab itself calculates the biomial, see bio.m fuctio f=my_biomial_pmfu,,p) f=zerossizeu)); %iitializatio of f for i=:legthu) if ui)>=) && ui)<=) % sice support of biomial,p) is,,.., fi)=choosek,ui))*pˆui)*-p)ˆ-ui)); % pmf epressio of biomial RV with parameters,p) Usig the fuctio my_biomial_pmf the followig mai script plots the required pmfs ad s, for fi E [X ] = 5 ad = 6,, 2, 5. Notice that for discrete RVs, we ca use the commad stem for plottig the pmf ad stairs for the. clear all; close all; clc; _vector=[6,,2,5];

2 i=; for =_vector p=5/; figure) % pmfs subplot2,2,i); % stem:, bio,:,,p),. ); % cheat lie! stem:,my_biomial_pmf:,,p),. ); title[ =,um2str)]); label ); ylabel pmf ); grid o; ais[,5,,.5]); figure2) % s subplot2,2,i); % stairs:, bio,:,,p),. ); % cheat lie! % stairs:,my_biomial_:,,p),. ); % see my_biomial_ below stairs:,cumsummy_biomial_pmf:,,p)), LieWidth,); % with cumsum title[ =,um2str)]); label ); ylabel ); grid o; ais[,5,,]); i=i+; I case you prefer a separate fuctio to calculate the biomial : % fuctio takes vector u, ad scalars ad p, % ad returs a vector of the same size as u, where etries % are the biomial with parameters ad p, calculated % at the poits of elemets of u. tryig to mimic Matlab s % built-i fuctio f= bio,u,,p) % This fuctio calls my_biomial_ ad calculates a cumulative sum % over possible values up to ui) for each etry of u. fuctio F=my_biomial_u,,p) F=zerossizeu)); %iitializatio of F for i=:legthu) Fi)=summy_biomial_:ui),,p)); The obtaied pmf ad plots are show i Figs. ad 2. B Biomial ad Poisso distributios. For a Poisso RV X p with parameter λ, we wet through the calculatio of E [X P ] i class check the lecture slides). A differet way of evaluatig the epected value is E [X P ] = kp X p = k) = k e λ λ k = λe λ kλ k. 2) k= Recall the Taylor series epasio e λ = k= Pluggig this result back i 2) yields kλ k k= λk = d dλ E [X P ] = λe λ k= k= k=, ad from the liearity of the differetiatio operator we have ) λ k = d e λ ) = e λ. dλ kλ k k= = λe λ e λ = λ.

3 .5 =6.5 = = = Fig.. Biomial pmf for = 6,, 2, 5 ad p = 5/. Part A). =6 = = = Fig. 2. Biomial for = 6,, 2, 5 ad p = 5/. Part A). The Matlab code to plot the pmf of a Poisso distributio with parameter λ = 5 follows. clear all; close all; clc; figure lambda=5;

4 =:5; % stem, poiss,,lambda),. ); % cheat lie! my_poisso_pmf=ep-lambda)*lambda.ˆ)./factorial); % Note the use of "dot" for elemet-wise operatio % Thus, my_poisso_pmf is ow a vector with the same size as. stem,my_poisso_pmf,. ); title[ Poisso distributio with \lambda =,um2strlambda)]); label ); ylabel pmf ); grid o; ais[,5,,.5]); The obtaied pmf is depicted i Fig Poisso Distributio with λ = Fig. 3. Pmf of the Poisso distributio with λ = 5. Note that the support of a Poisso RV are the oegative itegers. However, the pmf for oly the first 5 poits is show. Note the similarity with Fig. for large. Now we eed to calculate the mea-squared error MSE) betwee the biomial ad Poisso pmfs. The MSE is defied as X, X P ) = = P X = ) P X P = ) ) 2 P XP = ). To umerically evaluate the MSE, the ifiite sum eeds to be trucated by e.g., eglectig probabilities smaller tha 5 2. To idetify those small probabilities, the followig code reveals that we eed ot go beyod = 8 i the MSE summatio ote from Fig. 3 that the Poisso distributio has a decliig tail, which meas that as, P X P = ) ). clear all; close all; clc; =:2; lambda=5; my poisso=ep-lambda)*lambda.ˆ./factorial); test=my poisso<5e-2 % Etries equal to oe idicate small probabilities More precisely, it turs out we should cosider oly the terms for = 2,..., 8 sice P X P = ) ad P X P = ) are also small. Note that by lookig at Fig. 3, you ca also idetify those values for which the probability mass is greater that 5 2. The followig Matlab script evaluates the MSE, ad geerates the plot i Fig. 4. close all; clear all; clc; lambda=5;

5 =2:8; _ide=; _vector=[6 2 5]; my_mse=zeros,4); for =_vector _ide=_ide+; my_poisso_pmf=ep-lambda)*lambda.ˆ)./factorial); my_mse,_ide)=summy_biomial_pmf,,lambda/)... -my_poisso_pmf).ˆ2.*my_poisso_pmf); stem_vector,my_mse, * ); label ); ylabel MSE ); grid o; ais[,5,,.2]); The results reported i Table I show the MSE betwee the biomial ad Poisso distributios for = 6,, 2, 5. As icreases, the MSE falls rapidly to zero, idicatig the distributios become more ad more similar for larger s. It is critical here that for give λ i the Poisso distributio, p = λ/ i the biomial. The decreasig MSE is also apparet from Fig. 4. TABLE I MEAN-SQUARED ERROR MSE) BETWEEN THE PMFS OF A POISSON WITH λ = 5 AND BINOMIALS WITH PARAMETER, λ/) FOR = 6,, 2, 5. THE POISSON PROBABILITIES SMALLER THAN.5 ARE NEGLECTED. MSE MSE Fig. 4. Mea-Square-Error betwee of a Poisso with λ = 5 ad Biomials of, λ/) for = 6,, 2, 5. The probabilities i the Poisso less tha.5 are eglected. As we see, by icreasig, the MSE rapidly vaishes. part B)

6 C Biomial ad Poisso distributios agai. This is a iterestig situatio where we ca aalytically establish what simulatios are suggestig. Specifically, as we did i class we will show here that the pmf of a biomial RV X with parameters, λ/) coverges to the pmf of a Poisso RV with parameter λ, as. Startig from the epressio for the pmf of X we have ) ) λ p X ) = λ )! λ = ) λ. 3) )!! ) From the defiitio of factorials, we ca simplify! )... + ) )! = = )... + ) 4) )! )! ad rewrite 3) after some reorderig of terms to obtai )! λ p X ) = λ ) = )!! )... + ) I order to take the limit as it is useful to recogize that )... + ) lim =, ad lim λ =. ) I additio to the Taylor series e λ = the sequece λ) k k= lim ) ) λ λ )! λ. 5), the fuctio e λ ca be equivaletly defied as the limit of ) λ = e λ. Usig all these results whe takig the limit as i 6) yields the desired result, amely ) ) lim p )... + ) λ λ X ) = lim )! λ = λ e λ. 6)! D Biomial ad ormal distributios. Recall that a biomial RV X with parameters, p) ca be writte as X = i= where B,..., B are i.i.d. Beroulli RVs with parameter p. We also showed that E [B i ] = p ad var [B i ] = p p). From the CLT, for sufficietly large the distributio of i= Z = B i p = X p 7) p p) p p) is approimately stadard ormal. From the properties of ormal RVs, 7) also implies that B i X = p p)z + p is approimately ormal distributed with mea p ad variace p p). I coclusio, for sufficietly large the of X ca be approimated as F X ) = P X ) 2πp p) e u p)2 /2p p) du. The Matlab code to approimate a biomial with a ormal for p =.5 ad =, 2, 5 follows: close all; clear all; clc; _vector=[ 2 5]; p=.5; _ide=; for =_vector _ide=_ide+;

7 mea_ormal=*p; %defiig the mea std_ormal=sqrt*p*-p)); %defiig the stadard deviatio =:; subplot3,,_ide); %plottig graphs stairs,[my_biomial_,,p)),... orm,mea_ormal,variace_ormal) ], LieWidth,2); title[ =,um2str)]); label ); ylabel ); leg Biomial, Normal ); grid o; ais[,5,,]); The resultig plots are depicted i Fig 5. As epected from the CLT, by icreasig the ormal distributio offers a icreasigly accurate approimatio of the biomial distributio. = Biomial Normal =2 Biomial Normal =5 Biomial Normal Fig. 5. Cdf of the biomial RV X for =, 2, 5, ad its approimatio by a ormal. As we ca see, by icreasig the ormal distributio offers a icreasigly accurate approimatio of the biomial distributio. This follows from the CLT. Part D). E Normal ad Poisso approimatios. I provide you with a hit for this part: the Poisso limit theorem also kow as law of rare evets) is about accumulatio of icreasigly improbable evets. I particular, ote that for covergece of the distributio of sum of i.i.d. Beroulli RVs which is a biomial RV) to a Poisso distributio with mea λ, we eeded the success probability i the Beroulli RV to be p = λ/. Accordigly, as this probability goes to zero. O the other had, for the CLT p is fied ad ot ecessarily small. Hece, the CLT ad Poisso limit theorem are addressig basically differet limits. I leave more cotemplatio o this matter to you!

Probability review (week 2) Solutions

Probability review (week 2) Solutions Probability review (week 2) Solutios A. Biomial distributio. BERNOULLI, BINOMIAL, POISSON AND NORMAL DISTRIBUTIONS. X is a biomial RV with parameters,p. Let u i be a Beroulli RV with probability of success

More information

Week 2: Probability review Bernoulli, binomial, Poisson, and normal distributions Solutions

Week 2: Probability review Bernoulli, binomial, Poisson, and normal distributions Solutions Wee 2: Probability review Beroulli, biomial, Poisso, ad ormal distributios Solutios A Biomial distributio. To evaluate the mea ad variace of a biomial RV B with parameters, p), we will rely o the relatio

More information

7.1 Convergence of sequences of random variables

7.1 Convergence of sequences of random variables Chapter 7 Limit theorems Throughout this sectio we will assume a probability space (Ω, F, P), i which is defied a ifiite sequece of radom variables (X ) ad a radom variable X. The fact that for every ifiite

More information

Lecture 19: Convergence

Lecture 19: Convergence Lecture 19: Covergece Asymptotic approach I statistical aalysis or iferece, a key to the success of fidig a good procedure is beig able to fid some momets ad/or distributios of various statistics. I may

More information

7.1 Convergence of sequences of random variables

7.1 Convergence of sequences of random variables Chapter 7 Limit Theorems Throughout this sectio we will assume a probability space (, F, P), i which is defied a ifiite sequece of radom variables (X ) ad a radom variable X. The fact that for every ifiite

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 19 11/17/2008 LAWS OF LARGE NUMBERS II THE STRONG LAW OF LARGE NUMBERS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 19 11/17/2008 LAWS OF LARGE NUMBERS II THE STRONG LAW OF LARGE NUMBERS MASSACHUSTTS INSTITUT OF TCHNOLOGY 6.436J/5.085J Fall 2008 Lecture 9 /7/2008 LAWS OF LARG NUMBRS II Cotets. The strog law of large umbers 2. The Cheroff boud TH STRONG LAW OF LARG NUMBRS While the weak

More information

6.3 Testing Series With Positive Terms

6.3 Testing Series With Positive Terms 6.3. TESTING SERIES WITH POSITIVE TERMS 307 6.3 Testig Series With Positive Terms 6.3. Review of what is kow up to ow I theory, testig a series a i for covergece amouts to fidig the i= sequece of partial

More information

Topic 8: Expected Values

Topic 8: Expected Values Topic 8: Jue 6, 20 The simplest summary of quatitative data is the sample mea. Give a radom variable, the correspodig cocept is called the distributioal mea, the epectatio or the epected value. We begi

More information

Math 210A Homework 1

Math 210A Homework 1 Math 0A Homework Edward Burkard Exercise. a) State the defiitio of a aalytic fuctio. b) What are the relatioships betwee aalytic fuctios ad the Cauchy-Riema equatios? Solutio. a) A fuctio f : G C is called

More information

4. Partial Sums and the Central Limit Theorem

4. Partial Sums and the Central Limit Theorem 1 of 10 7/16/2009 6:05 AM Virtual Laboratories > 6. Radom Samples > 1 2 3 4 5 6 7 4. Partial Sums ad the Cetral Limit Theorem The cetral limit theorem ad the law of large umbers are the two fudametal theorems

More information

Chapter 2 The Monte Carlo Method

Chapter 2 The Monte Carlo Method Chapter 2 The Mote Carlo Method The Mote Carlo Method stads for a broad class of computatioal algorithms that rely o radom sampligs. It is ofte used i physical ad mathematical problems ad is most useful

More information

Convergence of random variables. (telegram style notes) P.J.C. Spreij

Convergence of random variables. (telegram style notes) P.J.C. Spreij Covergece of radom variables (telegram style otes).j.c. Spreij this versio: September 6, 2005 Itroductio As we kow, radom variables are by defiitio measurable fuctios o some uderlyig measurable space

More information

Comparison Study of Series Approximation. and Convergence between Chebyshev. and Legendre Series

Comparison Study of Series Approximation. and Convergence between Chebyshev. and Legendre Series Applied Mathematical Scieces, Vol. 7, 03, o. 6, 3-337 HIKARI Ltd, www.m-hikari.com http://d.doi.org/0.988/ams.03.3430 Compariso Study of Series Approimatio ad Covergece betwee Chebyshev ad Legedre Series

More information

Math 10A final exam, December 16, 2016

Math 10A final exam, December 16, 2016 Please put away all books, calculators, cell phoes ad other devices. You may cosult a sigle two-sided sheet of otes. Please write carefully ad clearly, USING WORDS (ot just symbols). Remember that the

More information

BINOMIAL COEFFICIENT AND THE GAUSSIAN

BINOMIAL COEFFICIENT AND THE GAUSSIAN BINOMIAL COEFFICIENT AND THE GAUSSIAN The biomial coefficiet is defied as-! k!(! ad ca be writte out i the form of a Pascal Triagle startig at the zeroth row with elemet 0,0) ad followed by the two umbers,

More information

Econ 325/327 Notes on Sample Mean, Sample Proportion, Central Limit Theorem, Chi-square Distribution, Student s t distribution 1.

Econ 325/327 Notes on Sample Mean, Sample Proportion, Central Limit Theorem, Chi-square Distribution, Student s t distribution 1. Eco 325/327 Notes o Sample Mea, Sample Proportio, Cetral Limit Theorem, Chi-square Distributio, Studet s t distributio 1 Sample Mea By Hiro Kasahara We cosider a radom sample from a populatio. Defiitio

More information

Sequences A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence

Sequences A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence Sequeces A sequece of umbers is a fuctio whose domai is the positive itegers. We ca see that the sequece 1, 1, 2, 2, 3, 3,... is a fuctio from the positive itegers whe we write the first sequece elemet

More information

Infinite Sequences and Series

Infinite Sequences and Series Chapter 6 Ifiite Sequeces ad Series 6.1 Ifiite Sequeces 6.1.1 Elemetary Cocepts Simply speakig, a sequece is a ordered list of umbers writte: {a 1, a 2, a 3,...a, a +1,...} where the elemets a i represet

More information

Topic 9: Sampling Distributions of Estimators

Topic 9: Sampling Distributions of Estimators Topic 9: Samplig Distributios of Estimators Course 003, 2018 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

More information

Lecture 2: Concentration Bounds

Lecture 2: Concentration Bounds CSE 52: Desig ad Aalysis of Algorithms I Sprig 206 Lecture 2: Cocetratio Bouds Lecturer: Shaya Oveis Ghara March 30th Scribe: Syuzaa Sargsya Disclaimer: These otes have ot bee subjected to the usual scrutiy

More information

CS / MCS 401 Homework 3 grader solutions

CS / MCS 401 Homework 3 grader solutions CS / MCS 401 Homework 3 grader solutios assigmet due July 6, 016 writte by Jāis Lazovskis maximum poits: 33 Some questios from CLRS. Questios marked with a asterisk were ot graded. 1 Use the defiitio of

More information

Physics 116A Solutions to Homework Set #1 Winter Boas, problem Use equation 1.8 to find a fraction describing

Physics 116A Solutions to Homework Set #1 Winter Boas, problem Use equation 1.8 to find a fraction describing Physics 6A Solutios to Homework Set # Witer 0. Boas, problem. 8 Use equatio.8 to fid a fractio describig 0.694444444... Start with the formula S = a, ad otice that we ca remove ay umber of r fiite decimals

More information

Sequences I. Chapter Introduction

Sequences I. Chapter Introduction Chapter 2 Sequeces I 2. Itroductio A sequece is a list of umbers i a defiite order so that we kow which umber is i the first place, which umber is i the secod place ad, for ay atural umber, we kow which

More information

AMS570 Lecture Notes #2

AMS570 Lecture Notes #2 AMS570 Lecture Notes # Review of Probability (cotiued) Probability distributios. () Biomial distributio Biomial Experimet: ) It cosists of trials ) Each trial results i of possible outcomes, S or F 3)

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 2 9/9/2013. Large Deviations for i.i.d. Random Variables

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 2 9/9/2013. Large Deviations for i.i.d. Random Variables MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 2 9/9/2013 Large Deviatios for i.i.d. Radom Variables Cotet. Cheroff boud usig expoetial momet geeratig fuctios. Properties of a momet

More information

Find a formula for the exponential function whose graph is given , 1 2,16 1, 6

Find a formula for the exponential function whose graph is given , 1 2,16 1, 6 Math 4 Activity (Due by EOC Apr. ) Graph the followig epoetial fuctios by modifyig the graph of f. Fid the rage of each fuctio.. g. g. g 4. g. g 6. g Fid a formula for the epoetial fuctio whose graph is

More information

s = and t = with C ij = A i B j F. (i) Note that cs = M and so ca i µ(a i ) I E (cs) = = c a i µ(a i ) = ci E (s). (ii) Note that s + t = M and so

s = and t = with C ij = A i B j F. (i) Note that cs = M and so ca i µ(a i ) I E (cs) = = c a i µ(a i ) = ci E (s). (ii) Note that s + t = M and so 3 From the otes we see that the parts of Theorem 4. that cocer us are: Let s ad t be two simple o-egative F-measurable fuctios o X, F, µ ad E, F F. The i I E cs ci E s for all c R, ii I E s + t I E s +

More information

Probability and statistics: basic terms

Probability and statistics: basic terms Probability ad statistics: basic terms M. Veeraraghava August 203 A radom variable is a rule that assigs a umerical value to each possible outcome of a experimet. Outcomes of a experimet form the sample

More information

Topic 9: Sampling Distributions of Estimators

Topic 9: Sampling Distributions of Estimators Topic 9: Samplig Distributios of Estimators Course 003, 2018 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

More information

1 of 7 7/16/2009 6:06 AM Virtual Laboratories > 6. Radom Samples > 1 2 3 4 5 6 7 6. Order Statistics Defiitios Suppose agai that we have a basic radom experimet, ad that X is a real-valued radom variable

More information

7 Sequences of real numbers

7 Sequences of real numbers 40 7 Sequeces of real umbers 7. Defiitios ad examples Defiitio 7... A sequece of real umbers is a real fuctio whose domai is the set N of atural umbers. Let s : N R be a sequece. The the values of s are

More information

EECS564 Estimation, Filtering, and Detection Hwk 2 Solns. Winter p θ (z) = (2θz + 1 θ), 0 z 1

EECS564 Estimation, Filtering, and Detection Hwk 2 Solns. Winter p θ (z) = (2θz + 1 θ), 0 z 1 EECS564 Estimatio, Filterig, ad Detectio Hwk 2 Sols. Witer 25 4. Let Z be a sigle observatio havig desity fuctio where. p (z) = (2z + ), z (a) Assumig that is a oradom parameter, fid ad plot the maximum

More information

A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence

A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence Sequeces A sequece of umbers is a fuctio whose domai is the positive itegers. We ca see that the sequece,, 2, 2, 3, 3,... is a fuctio from the positive itegers whe we write the first sequece elemet as

More information

(A sequence also can be thought of as the list of function values attained for a function f :ℵ X, where f (n) = x n for n 1.) x 1 x N +k x N +4 x 3

(A sequence also can be thought of as the list of function values attained for a function f :ℵ X, where f (n) = x n for n 1.) x 1 x N +k x N +4 x 3 MATH 337 Sequeces Dr. Neal, WKU Let X be a metric space with distace fuctio d. We shall defie the geeral cocept of sequece ad limit i a metric space, the apply the results i particular to some special

More information

SOLUTIONS TO EXAM 3. Solution: Note that this defines two convergent geometric series with respective radii r 1 = 2/5 < 1 and r 2 = 1/5 < 1.

SOLUTIONS TO EXAM 3. Solution: Note that this defines two convergent geometric series with respective radii r 1 = 2/5 < 1 and r 2 = 1/5 < 1. SOLUTIONS TO EXAM 3 Problem Fid the sum of the followig series 2 + ( ) 5 5 2 5 3 25 2 2 This series diverges Solutio: Note that this defies two coverget geometric series with respective radii r 2/5 < ad

More information

Lecture Chapter 6: Convergence of Random Sequences

Lecture Chapter 6: Convergence of Random Sequences ECE5: Aalysis of Radom Sigals Fall 6 Lecture Chapter 6: Covergece of Radom Sequeces Dr Salim El Rouayheb Scribe: Abhay Ashutosh Doel, Qibo Zhag, Peiwe Tia, Pegzhe Wag, Lu Liu Radom sequece Defiitio A ifiite

More information

MA131 - Analysis 1. Workbook 2 Sequences I

MA131 - Analysis 1. Workbook 2 Sequences I MA3 - Aalysis Workbook 2 Sequeces I Autum 203 Cotets 2 Sequeces I 2. Itroductio.............................. 2.2 Icreasig ad Decreasig Sequeces................ 2 2.3 Bouded Sequeces..........................

More information

4. Basic probability theory

4. Basic probability theory Cotets Basic cocepts Discrete radom variables Discrete distributios (br distributios) Cotiuous radom variables Cotiuous distributios (time distributios) Other radom variables Lect04.ppt S-38.45 - Itroductio

More information

1 Introduction to reducing variance in Monte Carlo simulations

1 Introduction to reducing variance in Monte Carlo simulations Copyright c 010 by Karl Sigma 1 Itroductio to reducig variace i Mote Carlo simulatios 11 Review of cofidece itervals for estimatig a mea I statistics, we estimate a ukow mea µ = E(X) of a distributio by

More information

Math 140A Elementary Analysis Homework Questions 3-1

Math 140A Elementary Analysis Homework Questions 3-1 Math 0A Elemetary Aalysis Homework Questios -.9 Limits Theorems for Sequeces Suppose that lim x =, lim y = 7 ad that all y are o-zero. Detarime the followig limits: (a) lim(x + y ) (b) lim y x y Let s

More information

This section is optional.

This section is optional. 4 Momet Geeratig Fuctios* This sectio is optioal. The momet geeratig fuctio g : R R of a radom variable X is defied as g(t) = E[e tx ]. Propositio 1. We have g () (0) = E[X ] for = 1, 2,... Proof. Therefore

More information

HOMEWORK I: PREREQUISITES FROM MATH 727

HOMEWORK I: PREREQUISITES FROM MATH 727 HOMEWORK I: PREREQUISITES FROM MATH 727 Questio. Let X, X 2,... be idepedet expoetial radom variables with mea µ. (a) Show that for Z +, we have EX µ!. (b) Show that almost surely, X + + X (c) Fid the

More information

Linear Regression Demystified

Linear Regression Demystified Liear Regressio Demystified Liear regressio is a importat subject i statistics. I elemetary statistics courses, formulae related to liear regressio are ofte stated without derivatio. This ote iteds to

More information

Mathematical Series (You Should Know)

Mathematical Series (You Should Know) Mathematical Series You Should Kow Mathematical series represetatios are very useful tools for describig images or for solvig/approimatig the solutios to imagig problems. The may be used to epad a fuctio

More information

CHAPTER 10 INFINITE SEQUENCES AND SERIES

CHAPTER 10 INFINITE SEQUENCES AND SERIES CHAPTER 10 INFINITE SEQUENCES AND SERIES 10.1 Sequeces 10.2 Ifiite Series 10.3 The Itegral Tests 10.4 Compariso Tests 10.5 The Ratio ad Root Tests 10.6 Alteratig Series: Absolute ad Coditioal Covergece

More information

Lecture 2: Monte Carlo Simulation

Lecture 2: Monte Carlo Simulation STAT/Q SCI 43: Itroductio to Resamplig ethods Sprig 27 Istructor: Ye-Chi Che Lecture 2: ote Carlo Simulatio 2 ote Carlo Itegratio Assume we wat to evaluate the followig itegratio: e x3 dx What ca we do?

More information

This exam contains 19 pages (including this cover page) and 10 questions. A Formulae sheet is provided with the exam.

This exam contains 19 pages (including this cover page) and 10 questions. A Formulae sheet is provided with the exam. Probability ad Statistics FS 07 Secod Sessio Exam 09.0.08 Time Limit: 80 Miutes Name: Studet ID: This exam cotais 9 pages (icludig this cover page) ad 0 questios. A Formulae sheet is provided with the

More information

10.1 Sequences. n term. We will deal a. a n or a n n. ( 1) n ( 1) n 1 2 ( 1) a =, 0 0,,,,, ln n. n an 2. n term.

10.1 Sequences. n term. We will deal a. a n or a n n. ( 1) n ( 1) n 1 2 ( 1) a =, 0 0,,,,, ln n. n an 2. n term. 0. Sequeces A sequece is a list of umbers writte i a defiite order: a, a,, a, a is called the first term, a is the secod term, ad i geeral eclusively with ifiite sequeces ad so each term Notatio: the sequece

More information

Solutions to Homework 7

Solutions to Homework 7 Solutios to Homework 7 Due Wedesday, August 4, 004. Chapter 4.1) 3, 4, 9, 0, 7, 30. Chapter 4.) 4, 9, 10, 11, 1. Chapter 4.1. Solutio to problem 3. The sum has the form a 1 a + a 3 with a k = 1/k. Sice

More information

Topic 5 [434 marks] (i) Find the range of values of n for which. (ii) Write down the value of x dx in terms of n, when it does exist.

Topic 5 [434 marks] (i) Find the range of values of n for which. (ii) Write down the value of x dx in terms of n, when it does exist. Topic 5 [44 marks] 1a (i) Fid the rage of values of for which eists 1 Write dow the value of i terms of 1, whe it does eist Fid the solutio to the differetial equatio 1b give that y = 1 whe = π (cos si

More information

Lecture 7: Properties of Random Samples

Lecture 7: Properties of Random Samples Lecture 7: Properties of Radom Samples 1 Cotiued From Last Class Theorem 1.1. Let X 1, X,...X be a radom sample from a populatio with mea µ ad variace σ

More information

32 estimating the cumulative distribution function

32 estimating the cumulative distribution function 32 estimatig the cumulative distributio fuctio 4.6 types of cofidece itervals/bads Let F be a class of distributio fuctios F ad let θ be some quatity of iterest, such as the mea of F or the whole fuctio

More information

Solutions to Tutorial 3 (Week 4)

Solutions to Tutorial 3 (Week 4) The Uiversity of Sydey School of Mathematics ad Statistics Solutios to Tutorial Week 4 MATH2962: Real ad Complex Aalysis Advaced Semester 1, 2017 Web Page: http://www.maths.usyd.edu.au/u/ug/im/math2962/

More information

Chapter 6 Principles of Data Reduction

Chapter 6 Principles of Data Reduction Chapter 6 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 0 Chapter 6 Priciples of Data Reductio Sectio 6. Itroductio Goal: To summarize or reduce the data X, X,, X to get iformatio about a

More information

CEE 522 Autumn Uncertainty Concepts for Geotechnical Engineering

CEE 522 Autumn Uncertainty Concepts for Geotechnical Engineering CEE 5 Autum 005 Ucertaity Cocepts for Geotechical Egieerig Basic Termiology Set A set is a collectio of (mutually exclusive) objects or evets. The sample space is the (collectively exhaustive) collectio

More information

Topic 9: Sampling Distributions of Estimators

Topic 9: Sampling Distributions of Estimators Topic 9: Samplig Distributios of Estimators Course 003, 2016 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

More information

Discrete probability distributions

Discrete probability distributions Discrete probability distributios I the chapter o probability we used the classical method to calculate the probability of various values of a radom variable. I some cases, however, we may be able to develop

More information

1. (25 points) Use the limit definition of the definite integral and the sum formulas 1 to compute

1. (25 points) Use the limit definition of the definite integral and the sum formulas 1 to compute Math, Calculus II Fial Eam Solutios. 5 poits) Use the limit defiitio of the defiite itegral ad the sum formulas to compute 4 d. The check your aswer usig the Evaluatio Theorem. ) ) Solutio: I this itegral,

More information

Math 680 Fall Chebyshev s Estimates. Here we will prove Chebyshev s estimates for the prime counting function π(x). These estimates are

Math 680 Fall Chebyshev s Estimates. Here we will prove Chebyshev s estimates for the prime counting function π(x). These estimates are Math 680 Fall 07 Chebyshev s Estimates Here we will prove Chebyshev s estimates for the prime coutig fuctio. These estimates are superseded by the Prime Number Theorem, of course, but are iterestig from

More information

Handout #5. Discrete Random Variables and Probability Distributions

Handout #5. Discrete Random Variables and Probability Distributions Hadout #5 Title: Foudatios of Ecoometrics Course: Eco 367 Fall/015 Istructor: Dr. I-Mig Chiu Discrete Radom Variables ad Probability Distributios Radom Variable (RV) Cosider the followig experimet: Toss

More information

7-1. Chapter 4. Part I. Sampling Distributions and Confidence Intervals

7-1. Chapter 4. Part I. Sampling Distributions and Confidence Intervals 7-1 Chapter 4 Part I. Samplig Distributios ad Cofidece Itervals 1 7- Sectio 1. Samplig Distributio 7-3 Usig Statistics Statistical Iferece: Predict ad forecast values of populatio parameters... Test hypotheses

More information

Integrable Functions. { f n } is called a determining sequence for f. If f is integrable with respect to, then f d does exist as a finite real number

Integrable Functions. { f n } is called a determining sequence for f. If f is integrable with respect to, then f d does exist as a finite real number MATH 532 Itegrable Fuctios Dr. Neal, WKU We ow shall defie what it meas for a measurable fuctio to be itegrable, show that all itegral properties of simple fuctios still hold, ad the give some coditios

More information

3. Z Transform. Recall that the Fourier transform (FT) of a DT signal xn [ ] is ( ) [ ] = In order for the FT to exist in the finite magnitude sense,

3. Z Transform. Recall that the Fourier transform (FT) of a DT signal xn [ ] is ( ) [ ] = In order for the FT to exist in the finite magnitude sense, 3. Z Trasform Referece: Etire Chapter 3 of text. Recall that the Fourier trasform (FT) of a DT sigal x [ ] is ω ( ) [ ] X e = j jω k = xe I order for the FT to exist i the fiite magitude sese, S = x [

More information

Lecture 20: Multivariate convergence and the Central Limit Theorem

Lecture 20: Multivariate convergence and the Central Limit Theorem Lecture 20: Multivariate covergece ad the Cetral Limit Theorem Covergece i distributio for radom vectors Let Z,Z 1,Z 2,... be radom vectors o R k. If the cdf of Z is cotiuous, the we ca defie covergece

More information

Lecture Note 8 Point Estimators and Point Estimation Methods. MIT Spring 2006 Herman Bennett

Lecture Note 8 Point Estimators and Point Estimation Methods. MIT Spring 2006 Herman Bennett Lecture Note 8 Poit Estimators ad Poit Estimatio Methods MIT 14.30 Sprig 2006 Herma Beett Give a parameter with ukow value, the goal of poit estimatio is to use a sample to compute a umber that represets

More information

Department of Civil Engineering-I.I.T. Delhi CEL 899: Environmental Risk Assessment HW5 Solution

Department of Civil Engineering-I.I.T. Delhi CEL 899: Environmental Risk Assessment HW5 Solution Departmet of Civil Egieerig-I.I.T. Delhi CEL 899: Evirometal Risk Assessmet HW5 Solutio Note: Assume missig data (if ay) ad metio the same. Q. Suppose X has a ormal distributio defied as N (mea=5, variace=

More information

Ma 530 Infinite Series I

Ma 530 Infinite Series I Ma 50 Ifiite Series I Please ote that i additio to the material below this lecture icorporated material from the Visual Calculus web site. The material o sequeces is at Visual Sequeces. (To use this li

More information

Sequences. A Sequence is a list of numbers written in order.

Sequences. A Sequence is a list of numbers written in order. Sequeces A Sequece is a list of umbers writte i order. {a, a 2, a 3,... } The sequece may be ifiite. The th term of the sequece is the th umber o the list. O the list above a = st term, a 2 = 2 d term,

More information

Notes on iteration and Newton s method. Iteration

Notes on iteration and Newton s method. Iteration Notes o iteratio ad Newto s method Iteratio Iteratio meas doig somethig over ad over. I our cotet, a iteratio is a sequece of umbers, vectors, fuctios, etc. geerated by a iteratio rule of the type 1 f

More information

Last time: Moments of the Poisson distribution from its generating function. Example: Using telescope to measure intensity of an object

Last time: Moments of the Poisson distribution from its generating function. Example: Using telescope to measure intensity of an object 6.3 Stochastic Estimatio ad Cotrol, Fall 004 Lecture 7 Last time: Momets of the Poisso distributio from its geeratig fuctio. Gs () e dg µ e ds dg µ ( s) µ ( s) µ ( s) µ e ds dg X µ ds X s dg dg + ds ds

More information

Math 113, Calculus II Winter 2007 Final Exam Solutions

Math 113, Calculus II Winter 2007 Final Exam Solutions Math, Calculus II Witer 7 Fial Exam Solutios (5 poits) Use the limit defiitio of the defiite itegral ad the sum formulas to compute x x + dx The check your aswer usig the Evaluatio Theorem Solutio: I this

More information

Lecture 12: November 13, 2018

Lecture 12: November 13, 2018 Mathematical Toolkit Autum 2018 Lecturer: Madhur Tulsiai Lecture 12: November 13, 2018 1 Radomized polyomial idetity testig We will use our kowledge of coditioal probability to prove the followig lemma,

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 3 9/11/2013. Large deviations Theory. Cramér s Theorem

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 3 9/11/2013. Large deviations Theory. Cramér s Theorem MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/5.070J Fall 203 Lecture 3 9//203 Large deviatios Theory. Cramér s Theorem Cotet.. Cramér s Theorem. 2. Rate fuctio ad properties. 3. Chage of measure techique.

More information

Definition An infinite sequence of numbers is an ordered set of real numbers.

Definition An infinite sequence of numbers is an ordered set of real numbers. Ifiite sequeces (Sect. 0. Today s Lecture: Review: Ifiite sequeces. The Cotiuous Fuctio Theorem for sequeces. Usig L Hôpital s rule o sequeces. Table of useful its. Bouded ad mootoic sequeces. Previous

More information

Analytic Continuation

Analytic Continuation Aalytic Cotiuatio The stadard example of this is give by Example Let h (z) = 1 + z + z 2 + z 3 +... kow to coverge oly for z < 1. I fact h (z) = 1/ (1 z) for such z. Yet H (z) = 1/ (1 z) is defied for

More information

STAT Homework 1 - Solutions

STAT Homework 1 - Solutions STAT-36700 Homework 1 - Solutios Fall 018 September 11, 018 This cotais solutios for Homework 1. Please ote that we have icluded several additioal commets ad approaches to the problems to give you better

More information

Random Models. Tusheng Zhang. February 14, 2013

Random Models. Tusheng Zhang. February 14, 2013 Radom Models Tusheg Zhag February 14, 013 1 Radom Walks Let me describe the model. Radom walks are used to describe the motio of a movig particle (object). Suppose that a particle (object) moves alog the

More information

Probability and Statistics

Probability and Statistics robability ad Statistics rof. Zheg Zheg Radom Variable A fiite sigle valued fuctio.) that maps the set of all eperimetal outcomes ito the set of real umbers R is a r.v., if the set ) is a evet F ) for

More information

Exercise 4.3 Use the Continuity Theorem to prove the Cramér-Wold Theorem, Theorem. (1) φ a X(1).

Exercise 4.3 Use the Continuity Theorem to prove the Cramér-Wold Theorem, Theorem. (1) φ a X(1). Assigmet 7 Exercise 4.3 Use the Cotiuity Theorem to prove the Cramér-Wold Theorem, Theorem 4.12. Hit: a X d a X implies that φ a X (1) φ a X(1). Sketch of solutio: As we poited out i class, the oly tricky

More information

Please do NOT write in this box. Multiple Choice. Total

Please do NOT write in this box. Multiple Choice. Total Istructor: Math 0560, Worksheet Alteratig Series Jauary, 3000 For realistic exam practice solve these problems without lookig at your book ad without usig a calculator. Multiple choice questios should

More information

Math 113 Exam 3 Practice

Math 113 Exam 3 Practice Math Exam Practice Exam will cover.-.9. This sheet has three sectios. The first sectio will remid you about techiques ad formulas that you should kow. The secod gives a umber of practice questios for you

More information

MATH 320: Probability and Statistics 9. Estimation and Testing of Parameters. Readings: Pruim, Chapter 4

MATH 320: Probability and Statistics 9. Estimation and Testing of Parameters. Readings: Pruim, Chapter 4 MATH 30: Probability ad Statistics 9. Estimatio ad Testig of Parameters Estimatio ad Testig of Parameters We have bee dealig situatios i which we have full kowledge of the distributio of a radom variable.

More information

f t dt. Write the third-degree Taylor polynomial for G

f t dt. Write the third-degree Taylor polynomial for G AP Calculus BC Homework - Chapter 8B Taylor, Maclauri, ad Power Series # Taylor & Maclauri Polyomials Critical Thikig Joural: (CTJ: 5 pts.) Discuss the followig questios i a paragraph: What does it mea

More information

Parameter, Statistic and Random Samples

Parameter, Statistic and Random Samples Parameter, Statistic ad Radom Samples A parameter is a umber that describes the populatio. It is a fixed umber, but i practice we do ot kow its value. A statistic is a fuctio of the sample data, i.e.,

More information

Distribution of Random Samples & Limit theorems

Distribution of Random Samples & Limit theorems STAT/MATH 395 A - PROBABILITY II UW Witer Quarter 2017 Néhémy Lim Distributio of Radom Samples & Limit theorems 1 Distributio of i.i.d. Samples Motivatig example. Assume that the goal of a study is to

More information

The Ratio Test. THEOREM 9.17 Ratio Test Let a n be a series with nonzero terms. 1. a. n converges absolutely if lim. n 1

The Ratio Test. THEOREM 9.17 Ratio Test Let a n be a series with nonzero terms. 1. a. n converges absolutely if lim. n 1 460_0906.qxd //04 :8 PM Page 69 SECTION 9.6 The Ratio ad Root Tests 69 Sectio 9.6 EXPLORATION Writig a Series Oe of the followig coditios guaratees that a series will diverge, two coditios guaratee that

More information

Signals & Systems Chapter3

Signals & Systems Chapter3 Sigals & Systems Chapter3 1.2 Discrete-Time (D-T) Sigals Electroic systems do most of the processig of a sigal usig a computer. A computer ca t directly process a C-T sigal but istead eeds a stream of

More information

Chapter 3. Strong convergence. 3.1 Definition of almost sure convergence

Chapter 3. Strong convergence. 3.1 Definition of almost sure convergence Chapter 3 Strog covergece As poited out i the Chapter 2, there are multiple ways to defie the otio of covergece of a sequece of radom variables. That chapter defied covergece i probability, covergece i

More information

Mathematics 170B Selected HW Solutions.

Mathematics 170B Selected HW Solutions. Mathematics 17B Selected HW Solutios. F 4. Suppose X is B(,p). (a)fidthemometgeeratigfuctiom (s)of(x p)/ p(1 p). Write q = 1 p. The MGF of X is (pe s + q), sice X ca be writte as the sum of idepedet Beroulli

More information

Discrete Mathematics for CS Spring 2008 David Wagner Note 22

Discrete Mathematics for CS Spring 2008 David Wagner Note 22 CS 70 Discrete Mathematics for CS Sprig 2008 David Wager Note 22 I.I.D. Radom Variables Estimatig the bias of a coi Questio: We wat to estimate the proportio p of Democrats i the US populatio, by takig

More information

Solution to Chapter 2 Analytical Exercises

Solution to Chapter 2 Analytical Exercises Nov. 25, 23, Revised Dec. 27, 23 Hayashi Ecoometrics Solutio to Chapter 2 Aalytical Exercises. For ay ε >, So, plim z =. O the other had, which meas that lim E(z =. 2. As show i the hit, Prob( z > ε =

More information

1.3 Convergence Theorems of Fourier Series. k k k k. N N k 1. With this in mind, we state (without proof) the convergence of Fourier series.

1.3 Convergence Theorems of Fourier Series. k k k k. N N k 1. With this in mind, we state (without proof) the convergence of Fourier series. .3 Covergece Theorems of Fourier Series I this sectio, we preset the covergece of Fourier series. A ifiite sum is, by defiitio, a limit of partial sums, that is, a cos( kx) b si( kx) lim a cos( kx) b si(

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation ECE 645: Estimatio Theory Sprig 2015 Istructor: Prof. Staley H. Cha Maximum Likelihood Estimatio (LaTeX prepared by Shaobo Fag) April 14, 2015 This lecture ote is based o ECE 645(Sprig 2015) by Prof. Staley

More information

Sequences, Series, and All That

Sequences, Series, and All That Chapter Te Sequeces, Series, ad All That. Itroductio Suppose we wat to compute a approximatio of the umber e by usig the Taylor polyomial p for f ( x) = e x at a =. This polyomial is easily see to be 3

More information

It is always the case that unions, intersections, complements, and set differences are preserved by the inverse image of a function.

It is always the case that unions, intersections, complements, and set differences are preserved by the inverse image of a function. MATH 532 Measurable Fuctios Dr. Neal, WKU Throughout, let ( X, F, µ) be a measure space ad let (!, F, P ) deote the special case of a probability space. We shall ow begi to study real-valued fuctios defied

More information

Discrete-Time Systems, LTI Systems, and Discrete-Time Convolution

Discrete-Time Systems, LTI Systems, and Discrete-Time Convolution EEL5: Discrete-Time Sigals ad Systems. Itroductio I this set of otes, we begi our mathematical treatmet of discrete-time s. As show i Figure, a discrete-time operates or trasforms some iput sequece x [

More information

Math 104: Homework 2 solutions

Math 104: Homework 2 solutions Math 04: Homework solutios. A (0, ): Sice this is a ope iterval, the miimum is udefied, ad sice the set is ot bouded above, the maximum is also udefied. if A 0 ad sup A. B { m + : m, N}: This set does

More information

THE SOLUTION OF NONLINEAR EQUATIONS f( x ) = 0.

THE SOLUTION OF NONLINEAR EQUATIONS f( x ) = 0. THE SOLUTION OF NONLINEAR EQUATIONS f( ) = 0. Noliear Equatio Solvers Bracketig. Graphical. Aalytical Ope Methods Bisectio False Positio (Regula-Falsi) Fied poit iteratio Newto Raphso Secat The root of

More information

Confidence Level We want to estimate the true mean of a random variable X economically and with confidence.

Confidence Level We want to estimate the true mean of a random variable X economically and with confidence. Cofidece Iterval 700 Samples Sample Mea 03 Cofidece Level 095 Margi of Error 0037 We wat to estimate the true mea of a radom variable X ecoomically ad with cofidece True Mea μ from the Etire Populatio

More information

Approximations and more PMFs and PDFs

Approximations and more PMFs and PDFs Approximatios ad more PMFs ad PDFs Saad Meimeh 1 Approximatio of biomial with Poisso Cosider the biomial distributio ( b(k,,p = p k (1 p k, k λ: k Assume that is large, ad p is small, but p λ at the limit.

More information