Spectral Partitioning in the Planted Partition Model

Size: px
Start display at page:

Download "Spectral Partitioning in the Planted Partition Model"

Transcription

1 Spectral Graph Theory Lecture 21 Spectral Partitioig i the Plated Partitio Model Daiel A. Spielma November 11, Itroductio I this lecture, we will perform a crude aalysis of the performace of spectral partitioig algorithms i the plated partitio model. I this model, we build a radom graph that has a atural partitio. The simplest model of this form is for the graph bisectio problem. This is the problem of partitioig the vertices of a graph ito two equal-sized sets while miimizig the umber of edges bridgig the sets. To create a istace of the plated bisectio problem, we first choose a parititio of the vertices ito equal-sized sets V 1 ad V 2. Whe the choose probabilities p > q, ad place edges betwee vertices with the followig probabilities: p if u V 1 ad v V 1 Pr [(u, v) E] = p if u V 2 ad v V 2 q otherwise. The expected umber of edges crossig betwee V 1 ad V 2 will be q V 1 V 2. If p is sufficietly larger tha q, the every other bisectio will have more crossig edges. I this lecture, we will show that this partitio ca be recovered from the secod eigevector of the adjacecy matrix of the graph. This will be a crude versio of a aalysis of McSherry [McS01] There have bee may aalyses of graph partitioig algorithms uder plated partitio models such as this. The model is motivated by the idea that vertices (or geeral items) belog to certai categories, ad that vertices i the same categories are more likely to be coected. Such models also arise i the aalysis of clusterig algorithms. However, it is ot clear that these models represet practice very well The Perturbatio Approach As log as we do t tell our algorithm, we ca choose V 1 = {1,..., /2} ad V 2 = {/2 + 1,..., }. Let s do this for simplicity. 21-1

2 Lecture 21: November 11, Defie the matrix p p q q.. [ ] M = p p q q pj/2 qj q q p p = /2, qj /2 pj /2.. q q p p where we write J /2 for the square all-1s matrix of size /2. The adjacecy matrix of the plated partitio graph is obtaied by settig A(i, j) = 1 with probability M(i, j), subject to A(i, j) = A(j, i). So, this is a radom graph, but the probabilities of some edges are differet from others. We will study a very simple algorithm for fidig a approximatio of the plated bisectio: compute v 2, the eigevector of the secod-largest eigevalue of A. The, set S = {i : v 2 (i) < 0}. We guess that S is oe of the sets i the bisectio. We will show that uder reasoable coditios o p ad q, S will be mostly right. Ituitively, the reaso is that A is a slight perturbatio of M, ad so the eigevectors of A should look like the eigevectors of M. For that to make sese, I should have said what the eigevectors M look like. costat vectors are eigevectors of M. We have M1 = (p + q)1. 2 Of course, the The secod eigevector of M has two values: oe o V 1 ad oe o V 2. Let s be careful to make this a uit vector. We take { 1 i V 1 w 2 (i) = 1 i V 2. The, Mv 2 = 2 (p q)w 2. So, the secod-largest eigevalue of M is (/2)(p q). As M has rak 2, all the other eigevalues of M are zero. Now, let R = A M. For (u, v) i the same compoet, ad for (u, v) i differet compoets, Pr [R(u, v) = 1 p] = p Pr [R(u, v) = p] = 1 p, Pr [R(u, v) = 1 q] = q Pr [R(u, v) = q] = 1 q. As i the last lecture, we ca boud the probability that the orm of R is large. While I m ot yet sure if we ca boud it usig the same techique, we ca appeal to a result of Vu [Vu07, Theorem 1.4], which implies the followig. ad ad

3 Lecture 21: November 11, Theorem There exist costats c 1 ad c 2 such that with probability approachig 1, R 2 p + c 1 (p) 1/4 l, provided that p c 2 l 4. We apply the followig corollary. Corollary There exists a costat c 0 such that with probability approachig 1, R 3 p, provided that p c 0 l 4. I fact, Krivelevich ad Vu [?, Theorem??] prove that the probability that the orm of R exceeds this value by more tha t is expoetially small i t. However, we will ot eed that fact for this lecture. Igorig the details of the asymptotics, let s just assume that R is small, ad ivestigate the cosequeces Perturbatio Theory for Eigevectors Let α 1 α 2 α be the eigevalues of A, ad let µ 1 > µ 2 > µ 3 = = µ be the eigevalues of M. We kow from a problem set that α i µ i R. I particular, if the ad, assumig q > p/3, we have R < (p q), 4 4 (p q) < α 2 < 3 (p q) 4 α 1 > 3 (p q). 4 So, we ca view α 2 as a perturbatio of µ 2. The atural questio is whether we ca view w 2 as a perturbatio of v 2. Here is the theory that says we ca.

4 Lecture 21: November 11, Theorem Let A ad M be symmetric matrices. Let R = M A. Let α 1 α be the eigevalues of A with correspodig eigevectors v 1,..., v ad let Let µ 1 µ be the eigevalues of M with correspodig eigevectors w 1,..., w. Let θ i be the agle betwee v i ad w i. The, 2 R si θ i mi j i α i α j, ad si θ i 2 R mi j i µ i µ j. We remark that this boud may be tighteed slightly, essetially elimiatig the 2. We defer the proof of this theorem for a few miutes, ad first see what it implies Partitioig Cosider δ = v 2 w 2. For every vertex i that is mis-classified by v 2, we have δ(i) 1. So, if v 2 mis-classifies k vertices, the k δ. As w ad v are uit vectors, we may apply the crude iequality (the 2 disappears as θ 2 gets small). δ 2 si θ 2 To combie this with the perturbatio boud, we assume q > p/3, ad fid Assumig that R 3 p, we fid mi µ 2 µ j = (p q). j 2 2 si θ 2 3 p 2 (p q) = 6 p. (p q) So, the umber k of misclassified vertices satisfies k 6 p, (p q) which implies k 36p (p q) 2.

5 Lecture 21: November 11, So, if p ad q are both costats, we expect to misclassify at most a costat umber of vertices. If p = 1/2, ad q = p 12/, the we get 36p (p q) 2 = 8, so we expect to mis-classify at most a costat fractio of the vertices Proof of Eigevector Perturbatio Proof of Theorem By cosiderig the matrices M λ i I ad A µ i I istead of M ad A, we ca assume that µ i = 0. As the theorem is vacuous if µ i has multiplicity more tha 1, we may also assume that µ i has multiplicity 1 as a eigevalue, ad that w i is a uit vector i the ullspace of M. Our assumptio that µ i = 0 also leads to λ i R. Expad v i i the eigebasis of M, as v i = j c j w j, where c j = w T j v i. Settig we may compute δ = mi j i µ j, Mv i 2 = j c 2 jµ 2 j j i c 2 jδ 2 = δ 2 j i c 2 j = δ 2 (1 c 2 i ) = δ 2 si 2 θ i. O the other had, So, Mv i Av i + Rv i = λ i + Rv i 2 R. si θ i 2 R. δ

6 Lecture 21: November 11, It may seem surprisig that the amout by which eigevectors move depeds upo how close their respective eigevalues are to the other eigevalues. However, this depedece is ecessary. To see why, first cosider a matrix with a repeated eigevalue, such as [ ] 1 0 A =. 0 1 Now, let v be ay uit vector, ad cosider B = A + ɛvv T. The matrix B will have v as a eigevector of eigevalue 1 + ɛ as well as a eigevalue of 1. So, by makig a arbitrarily small perturbatio, we were able to select which eigevalue of B was largest. To make this effect clearer, let w be ay other uit vector, ad cosider the matrix C = A + ɛww T. So, w is the eigevector of C of eigevalue (1 + ɛ), ad the other eigevalue is 1. O the other had, C B ɛww T + ɛww T = 2ɛ. So, while B ad C differ very little, their domiat eigevectors ca be completely differet. This is because the eigevalues were close together Improvig the Partitio If I get a chace, I ll describe how oe improves such a partitio i practice, ad how McSherry did it i theory. I ll begi by observig that the aalysis we performed is very pessimistic. It relies o a upper boud o w 2 v 2. But, v 2 was produced by a radom process. So, it seems ulikely that all of its weight would be cocetrated o a few vertices. Refereces [McS01] F. McSherry. Spectral partitioig of radom graphs. I FOCS 01: Proceedigs of the 42d IEEE symposium o Foudatios of Computer Sciece, page 529, Washigto, DC, USA, IEEE Computer Society. [Vu07] Va Vu. Spectral orm of radom matrices. Combiatorica, 27(6): , 2007.

Lecture: Some Statistical Inference Issues (3 of 3)

Lecture: Some Statistical Inference Issues (3 of 3) Stat260/CS294: Spectral Graph Methods Lecture 24-04/21/2015 Lecture: Some Statistical Iferece Issues (3 of 3) Lecturer: Michael Mahoey Scribe: Michael Mahoey Warig: these otes are still very rough. They

More information

5.1 Review of Singular Value Decomposition (SVD)

5.1 Review of Singular Value Decomposition (SVD) MGMT 69000: Topics i High-dimesioal Data Aalysis Falll 06 Lecture 5: Spectral Clusterig: Overview (cotd) ad Aalysis Lecturer: Jiamig Xu Scribe: Adarsh Barik, Taotao He, September 3, 06 Outlie Review of

More information

ECE 901 Lecture 12: Complexity Regularization and the Squared Loss

ECE 901 Lecture 12: Complexity Regularization and the Squared Loss ECE 90 Lecture : Complexity Regularizatio ad the Squared Loss R. Nowak 5/7/009 I the previous lectures we made use of the Cheroff/Hoeffdig bouds for our aalysis of classifier errors. Hoeffdig s iequality

More information

Spectral Partitiong in a Stochastic Block Model

Spectral Partitiong in a Stochastic Block Model Spectral Graph Theory Lecture 21 Spectral Partitiong in a Stochastic Block Model Daniel A. Spielman November 16, 2015 Disclaimer These notes are not necessarily an accurate representation of what happened

More information

Notes for Lecture 11

Notes for Lecture 11 U.C. Berkeley CS78: Computatioal Complexity Hadout N Professor Luca Trevisa 3/4/008 Notes for Lecture Eigevalues, Expasio, ad Radom Walks As usual by ow, let G = (V, E) be a udirected d-regular graph with

More information

Lecture 3: August 31

Lecture 3: August 31 36-705: Itermediate Statistics Fall 018 Lecturer: Siva Balakrisha Lecture 3: August 31 This lecture will be mostly a summary of other useful expoetial tail bouds We will ot prove ay of these i lecture,

More information

Math 2784 (or 2794W) University of Connecticut

Math 2784 (or 2794W) University of Connecticut ORDERS OF GROWTH PAT SMITH Math 2784 (or 2794W) Uiversity of Coecticut Date: Mar. 2, 22. ORDERS OF GROWTH. Itroductio Gaiig a ituitive feel for the relative growth of fuctios is importat if you really

More information

Infinite Sequences and Series

Infinite Sequences and Series Chapter 6 Ifiite Sequeces ad Series 6.1 Ifiite Sequeces 6.1.1 Elemetary Cocepts Simply speakig, a sequece is a ordered list of umbers writte: {a 1, a 2, a 3,...a, a +1,...} where the elemets a i represet

More information

Lecture 9: Expanders Part 2, Extractors

Lecture 9: Expanders Part 2, Extractors Lecture 9: Expaders Part, Extractors Topics i Complexity Theory ad Pseudoradomess Sprig 013 Rutgers Uiversity Swastik Kopparty Scribes: Jaso Perry, Joh Kim I this lecture, we will discuss further the pseudoradomess

More information

Fastest mixing Markov chain on a path

Fastest mixing Markov chain on a path Fastest mixig Markov chai o a path Stephe Boyd Persi Diacois Ju Su Li Xiao Revised July 2004 Abstract We ider the problem of assigig trasitio probabilities to the edges of a path, so the resultig Markov

More information

Analysis of Algorithms. Introduction. Contents

Analysis of Algorithms. Introduction. Contents Itroductio The focus of this module is mathematical aspects of algorithms. Our mai focus is aalysis of algorithms, which meas evaluatig efficiecy of algorithms by aalytical ad mathematical methods. We

More information

Lecture 9: Hierarchy Theorems

Lecture 9: Hierarchy Theorems IAS/PCMI Summer Sessio 2000 Clay Mathematics Udergraduate Program Basic Course o Computatioal Complexity Lecture 9: Hierarchy Theorems David Mix Barrigto ad Alexis Maciel July 27, 2000 Most of this lecture

More information

Math 778S Spectral Graph Theory Handout #3: Eigenvalues of Adjacency Matrix

Math 778S Spectral Graph Theory Handout #3: Eigenvalues of Adjacency Matrix Math 778S Spectral Graph Theory Hadout #3: Eigevalues of Adjacecy Matrix The Cartesia product (deoted by G H) of two simple graphs G ad H has the vertex-set V (G) V (H). For ay u, v V (G) ad x, y V (H),

More information

Lecture 14: Graph Entropy

Lecture 14: Graph Entropy 15-859: Iformatio Theory ad Applicatios i TCS Sprig 2013 Lecture 14: Graph Etropy March 19, 2013 Lecturer: Mahdi Cheraghchi Scribe: Euiwoog Lee 1 Recap Bergma s boud o the permaet Shearer s Lemma Number

More information

Lecture 2. The Lovász Local Lemma

Lecture 2. The Lovász Local Lemma Staford Uiversity Sprig 208 Math 233A: No-costructive methods i combiatorics Istructor: Ja Vodrák Lecture date: Jauary 0, 208 Origial scribe: Apoorva Khare Lecture 2. The Lovász Local Lemma 2. Itroductio

More information

18.S096: Homework Problem Set 1 (revised)

18.S096: Homework Problem Set 1 (revised) 8.S096: Homework Problem Set (revised) Topics i Mathematics of Data Sciece (Fall 05) Afoso S. Badeira Due o October 6, 05 Exteded to: October 8, 05 This homework problem set is due o October 6, at the

More information

Problem Set 2 Solutions

Problem Set 2 Solutions CS271 Radomess & Computatio, Sprig 2018 Problem Set 2 Solutios Poit totals are i the margi; the maximum total umber of poits was 52. 1. Probabilistic method for domiatig sets 6pts Pick a radom subset S

More information

A class of spectral bounds for Max k-cut

A class of spectral bounds for Max k-cut A class of spectral bouds for Max k-cut Miguel F. Ajos, José Neto December 07 Abstract Let G be a udirected ad edge-weighted simple graph. I this paper we itroduce a class of bouds for the maximum k-cut

More information

Posted-Price, Sealed-Bid Auctions

Posted-Price, Sealed-Bid Auctions Posted-Price, Sealed-Bid Auctios Professors Greewald ad Oyakawa 207-02-08 We itroduce the posted-price, sealed-bid auctio. This auctio format itroduces the idea of approximatios. We describe how well this

More information

The minimum value and the L 1 norm of the Dirichlet kernel

The minimum value and the L 1 norm of the Dirichlet kernel The miimum value ad the L orm of the Dirichlet kerel For each positive iteger, defie the fuctio D (θ + ( cos θ + cos θ + + cos θ e iθ + + e iθ + e iθ + e + e iθ + e iθ + + e iθ which we call the (th Dirichlet

More information

CMSE 820: Math. Foundations of Data Sci.

CMSE 820: Math. Foundations of Data Sci. Lecture 17 8.4 Weighted path graphs Take from [10, Lecture 3] As alluded to at the ed of the previous sectio, we ow aalyze weighted path graphs. To that ed, we prove the followig: Theorem 6 (Fiedler).

More information

Chapter 10: Power Series

Chapter 10: Power Series Chapter : Power Series 57 Chapter Overview: Power Series The reaso series are part of a Calculus course is that there are fuctios which caot be itegrated. All power series, though, ca be itegrated because

More information

Stochastic Matrices in a Finite Field

Stochastic Matrices in a Finite Field Stochastic Matrices i a Fiite Field Abstract: I this project we will explore the properties of stochastic matrices i both the real ad the fiite fields. We first explore what properties 2 2 stochastic matrices

More information

10. Comparative Tests among Spatial Regression Models. Here we revisit the example in Section 8.1 of estimating the mean of a normal random

10. Comparative Tests among Spatial Regression Models. Here we revisit the example in Section 8.1 of estimating the mean of a normal random Part III. Areal Data Aalysis 0. Comparative Tests amog Spatial Regressio Models While the otio of relative likelihood values for differet models is somewhat difficult to iterpret directly (as metioed above),

More information

4.3 Growth Rates of Solutions to Recurrences

4.3 Growth Rates of Solutions to Recurrences 4.3. GROWTH RATES OF SOLUTIONS TO RECURRENCES 81 4.3 Growth Rates of Solutios to Recurreces 4.3.1 Divide ad Coquer Algorithms Oe of the most basic ad powerful algorithmic techiques is divide ad coquer.

More information

Application to Random Graphs

Application to Random Graphs A Applicatio to Radom Graphs Brachig processes have a umber of iterestig ad importat applicatios. We shall cosider oe of the most famous of them, the Erdős-Réyi radom graph theory. 1 Defiitio A.1. Let

More information

SRC Technical Note June 17, Tight Thresholds for The Pure Literal Rule. Michael Mitzenmacher. d i g i t a l

SRC Technical Note June 17, Tight Thresholds for The Pure Literal Rule. Michael Mitzenmacher. d i g i t a l SRC Techical Note 1997-011 Jue 17, 1997 Tight Thresholds for The Pure Literal Rule Michael Mitzemacher d i g i t a l Systems Research Ceter 130 Lytto Aveue Palo Alto, Califoria 94301 http://www.research.digital.com/src/

More information

Lecture 19: Convergence

Lecture 19: Convergence Lecture 19: Covergece Asymptotic approach I statistical aalysis or iferece, a key to the success of fidig a good procedure is beig able to fid some momets ad/or distributios of various statistics. I may

More information

Lesson 10: Limits and Continuity

Lesson 10: Limits and Continuity www.scimsacademy.com Lesso 10: Limits ad Cotiuity SCIMS Academy 1 Limit of a fuctio The cocept of limit of a fuctio is cetral to all other cocepts i calculus (like cotiuity, derivative, defiite itegrals

More information

ECE 8527: Introduction to Machine Learning and Pattern Recognition Midterm # 1. Vaishali Amin Fall, 2015

ECE 8527: Introduction to Machine Learning and Pattern Recognition Midterm # 1. Vaishali Amin Fall, 2015 ECE 8527: Itroductio to Machie Learig ad Patter Recogitio Midterm # 1 Vaishali Ami Fall, 2015 tue39624@temple.edu Problem No. 1: Cosider a two-class discrete distributio problem: ω 1 :{[0,0], [2,0], [2,2],

More information

Optimally Sparse SVMs

Optimally Sparse SVMs A. Proof of Lemma 3. We here prove a lower boud o the umber of support vectors to achieve geeralizatio bouds of the form which we cosider. Importatly, this result holds ot oly for liear classifiers, but

More information

Recursive Algorithms. Recurrences. Recursive Algorithms Analysis

Recursive Algorithms. Recurrences. Recursive Algorithms Analysis Recursive Algorithms Recurreces Computer Sciece & Egieerig 35: Discrete Mathematics Christopher M Bourke cbourke@cseuledu A recursive algorithm is oe i which objects are defied i terms of other objects

More information

OPTIMAL ALGORITHMS -- SUPPLEMENTAL NOTES

OPTIMAL ALGORITHMS -- SUPPLEMENTAL NOTES OPTIMAL ALGORITHMS -- SUPPLEMENTAL NOTES Peter M. Maurer Why Hashig is θ(). As i biary search, hashig assumes that keys are stored i a array which is idexed by a iteger. However, hashig attempts to bypass

More information

c 2006 Society for Industrial and Applied Mathematics

c 2006 Society for Industrial and Applied Mathematics SIAM J. MATRIX ANAL. APPL. Vol. 7, No. 3, pp. 851 860 c 006 Society for Idustrial ad Applied Mathematics EXTREMAL EIGENVALUES OF REAL SYMMETRIC MATRICES WITH ENTRIES IN AN INTERVAL XINGZHI ZHAN Abstract.

More information

Statistical Pattern Recognition

Statistical Pattern Recognition Statistical Patter Recogitio Classificatio: No-Parametric Modelig Hamid R. Rabiee Jafar Muhammadi Sprig 2014 http://ce.sharif.edu/courses/92-93/2/ce725-2/ Ageda Parametric Modelig No-Parametric Modelig

More information

Introduction to Computational Molecular Biology. Gibbs Sampling

Introduction to Computational Molecular Biology. Gibbs Sampling 18.417 Itroductio to Computatioal Molecular Biology Lecture 19: November 16, 2004 Scribe: Tushara C. Karuarata Lecturer: Ross Lippert Editor: Tushara C. Karuarata Gibbs Samplig Itroductio Let s first recall

More information

Summary and Discussion on Simultaneous Analysis of Lasso and Dantzig Selector

Summary and Discussion on Simultaneous Analysis of Lasso and Dantzig Selector Summary ad Discussio o Simultaeous Aalysis of Lasso ad Datzig Selector STAT732, Sprig 28 Duzhe Wag May 4, 28 Abstract This is a discussio o the work i Bickel, Ritov ad Tsybakov (29). We begi with a short

More information

4.1 Sigma Notation and Riemann Sums

4.1 Sigma Notation and Riemann Sums 0 the itegral. Sigma Notatio ad Riema Sums Oe strategy for calculatig the area of a regio is to cut the regio ito simple shapes, calculate the area of each simple shape, ad the add these smaller areas

More information

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 +

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + 62. Power series Defiitio 16. (Power series) Give a sequece {c }, the series c x = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + is called a power series i the variable x. The umbers c are called the coefficiets of

More information

6.3 Testing Series With Positive Terms

6.3 Testing Series With Positive Terms 6.3. TESTING SERIES WITH POSITIVE TERMS 307 6.3 Testig Series With Positive Terms 6.3. Review of what is kow up to ow I theory, testig a series a i for covergece amouts to fidig the i= sequece of partial

More information

Lecture 12: February 28

Lecture 12: February 28 10-716: Advaced Machie Learig Sprig 2019 Lecture 12: February 28 Lecturer: Pradeep Ravikumar Scribes: Jacob Tyo, Rishub Jai, Ojash Neopae Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer:

More information

Goodness-of-Fit Tests and Categorical Data Analysis (Devore Chapter Fourteen)

Goodness-of-Fit Tests and Categorical Data Analysis (Devore Chapter Fourteen) Goodess-of-Fit Tests ad Categorical Data Aalysis (Devore Chapter Fourtee) MATH-252-01: Probability ad Statistics II Sprig 2019 Cotets 1 Chi-Squared Tests with Kow Probabilities 1 1.1 Chi-Squared Testig................

More information

Spectral Graph Theory and its Applications. Lillian Dai Oct. 20, 2004

Spectral Graph Theory and its Applications. Lillian Dai Oct. 20, 2004 Spectral raph Theory ad its Applicatios Lillia Dai 6.454 Oct. 0, 004 Outlie Basic spectral graph theory raph partitioig usig spectral methods D. Spielma ad S. Teg, Spectral Partitioig Works: Plaar raphs

More information

MA131 - Analysis 1. Workbook 3 Sequences II

MA131 - Analysis 1. Workbook 3 Sequences II MA3 - Aalysis Workbook 3 Sequeces II Autum 2004 Cotets 2.8 Coverget Sequeces........................ 2.9 Algebra of Limits......................... 2 2.0 Further Useful Results........................

More information

CHAPTER 10 INFINITE SEQUENCES AND SERIES

CHAPTER 10 INFINITE SEQUENCES AND SERIES CHAPTER 10 INFINITE SEQUENCES AND SERIES 10.1 Sequeces 10.2 Ifiite Series 10.3 The Itegral Tests 10.4 Compariso Tests 10.5 The Ratio ad Root Tests 10.6 Alteratig Series: Absolute ad Coditioal Covergece

More information

Econ 325 Notes on Point Estimator and Confidence Interval 1 By Hiro Kasahara

Econ 325 Notes on Point Estimator and Confidence Interval 1 By Hiro Kasahara Poit Estimator Eco 325 Notes o Poit Estimator ad Cofidece Iterval 1 By Hiro Kasahara Parameter, Estimator, ad Estimate The ormal probability desity fuctio is fully characterized by two costats: populatio

More information

TR/46 OCTOBER THE ZEROS OF PARTIAL SUMS OF A MACLAURIN EXPANSION A. TALBOT

TR/46 OCTOBER THE ZEROS OF PARTIAL SUMS OF A MACLAURIN EXPANSION A. TALBOT TR/46 OCTOBER 974 THE ZEROS OF PARTIAL SUMS OF A MACLAURIN EXPANSION by A. TALBOT .. Itroductio. A problem i approximatio theory o which I have recetly worked [] required for its solutio a proof that the

More information

MA131 - Analysis 1. Workbook 2 Sequences I

MA131 - Analysis 1. Workbook 2 Sequences I MA3 - Aalysis Workbook 2 Sequeces I Autum 203 Cotets 2 Sequeces I 2. Itroductio.............................. 2.2 Icreasig ad Decreasig Sequeces................ 2 2.3 Bouded Sequeces..........................

More information

Rates of Convergence by Moduli of Continuity

Rates of Convergence by Moduli of Continuity Rates of Covergece by Moduli of Cotiuity Joh Duchi: Notes for Statistics 300b March, 017 1 Itroductio I this ote, we give a presetatio showig the importace, ad relatioship betwee, the modulis of cotiuity

More information

On Random Line Segments in the Unit Square

On Random Line Segments in the Unit Square O Radom Lie Segmets i the Uit Square Thomas A. Courtade Departmet of Electrical Egieerig Uiversity of Califoria Los Ageles, Califoria 90095 Email: tacourta@ee.ucla.edu I. INTRODUCTION Let Q = [0, 1] [0,

More information

(b) What is the probability that a particle reaches the upper boundary n before the lower boundary m?

(b) What is the probability that a particle reaches the upper boundary n before the lower boundary m? MATH 529 The Boudary Problem The drukard s walk (or boudary problem) is oe of the most famous problems i the theory of radom walks. Oe versio of the problem is described as follows: Suppose a particle

More information

General IxJ Contingency Tables

General IxJ Contingency Tables page1 Geeral x Cotigecy Tables We ow geeralize our previous results from the prospective, retrospective ad cross-sectioal studies ad the Poisso samplig case to x cotigecy tables. For such tables, the test

More information

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 5

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 5 CS434a/54a: Patter Recogitio Prof. Olga Veksler Lecture 5 Today Itroductio to parameter estimatio Two methods for parameter estimatio Maimum Likelihood Estimatio Bayesia Estimatio Itroducto Bayesia Decisio

More information

AN INTRODUCTION TO SPECTRAL GRAPH THEORY

AN INTRODUCTION TO SPECTRAL GRAPH THEORY AN INTRODUCTION TO SPECTRAL GRAPH THEORY JIAQI JIANG Abstract. Spectral graph theory is the study of properties of the Laplacia matrix or adjacecy matrix associated with a graph. I this paper, we focus

More information

Area As A Limit & Sigma Notation

Area As A Limit & Sigma Notation Area As A Limit & Sigma Notatio SUGGESTED REFERENCE MATERIAL: As you work through the problems listed below, you should referece Chapter 5.4 of the recommeded textbook (or the equivalet chapter i your

More information

Entropy Rates and Asymptotic Equipartition

Entropy Rates and Asymptotic Equipartition Chapter 29 Etropy Rates ad Asymptotic Equipartitio Sectio 29. itroduces the etropy rate the asymptotic etropy per time-step of a stochastic process ad shows that it is well-defied; ad similarly for iformatio,

More information

Session 5. (1) Principal component analysis and Karhunen-Loève transformation

Session 5. (1) Principal component analysis and Karhunen-Loève transformation 200 Autum semester Patter Iformatio Processig Topic 2 Image compressio by orthogoal trasformatio Sessio 5 () Pricipal compoet aalysis ad Karhue-Loève trasformatio Topic 2 of this course explais the image

More information

Sequences. Notation. Convergence of a Sequence

Sequences. Notation. Convergence of a Sequence Sequeces A sequece is essetially just a list. Defiitio (Sequece of Real Numbers). A sequece of real umbers is a fuctio Z (, ) R for some real umber. Do t let the descriptio of the domai cofuse you; it

More information

4.1 SIGMA NOTATION AND RIEMANN SUMS

4.1 SIGMA NOTATION AND RIEMANN SUMS .1 Sigma Notatio ad Riema Sums Cotemporary Calculus 1.1 SIGMA NOTATION AND RIEMANN SUMS Oe strategy for calculatig the area of a regio is to cut the regio ito simple shapes, calculate the area of each

More information

CS 332: Algorithms. Linear-Time Sorting. Order statistics. Slide credit: David Luebke (Virginia)

CS 332: Algorithms. Linear-Time Sorting. Order statistics. Slide credit: David Luebke (Virginia) 1 CS 332: Algorithms Liear-Time Sortig. Order statistics. Slide credit: David Luebke (Virgiia) Quicksort: Partitio I Words Partitio(A, p, r): Select a elemet to act as the pivot (which?) Grow two regios,

More information

Lecture 2 Clustering Part II

Lecture 2 Clustering Part II COMS 4995: Usupervised Learig (Summer 8) May 24, 208 Lecture 2 Clusterig Part II Istructor: Nakul Verma Scribes: Jie Li, Yadi Rozov Today, we will be talkig about the hardess results for k-meas. More specifically,

More information

Some special clique problems

Some special clique problems Some special clique problems Reate Witer Istitut für Iformatik Marti-Luther-Uiversität Halle-Witteberg Vo-Seckedorff-Platz, D 0620 Halle Saale Germay Abstract: We cosider graphs with cliques of size k

More information

Lecture 7: Density Estimation: k-nearest Neighbor and Basis Approach

Lecture 7: Density Estimation: k-nearest Neighbor and Basis Approach STAT 425: Itroductio to Noparametric Statistics Witer 28 Lecture 7: Desity Estimatio: k-nearest Neighbor ad Basis Approach Istructor: Ye-Chi Che Referece: Sectio 8.4 of All of Noparametric Statistics.

More information

In algebra one spends much time finding common denominators and thus simplifying rational expressions. For example:

In algebra one spends much time finding common denominators and thus simplifying rational expressions. For example: 74 The Method of Partial Fractios I algebra oe speds much time fidig commo deomiators ad thus simplifyig ratioal epressios For eample: + + + 6 5 + = + = = + + + + + ( )( ) 5 It may the seem odd to be watig

More information

Zeros of Polynomials

Zeros of Polynomials Math 160 www.timetodare.com 4.5 4.6 Zeros of Polyomials I these sectios we will study polyomials algebraically. Most of our work will be cocered with fidig the solutios of polyomial equatios of ay degree

More information

Algorithm Analysis. Chapter 3

Algorithm Analysis. Chapter 3 Data Structures Dr Ahmed Rafat Abas Computer Sciece Dept, Faculty of Computer ad Iformatio, Zagazig Uiversity arabas@zu.edu.eg http://www.arsaliem.faculty.zu.edu.eg/ Algorithm Aalysis Chapter 3 3. Itroductio

More information

Self-normalized deviation inequalities with application to t-statistic

Self-normalized deviation inequalities with application to t-statistic Self-ormalized deviatio iequalities with applicatio to t-statistic Xiequa Fa Ceter for Applied Mathematics, Tiaji Uiversity, 30007 Tiaji, Chia Abstract Let ξ i i 1 be a sequece of idepedet ad symmetric

More information

1 Review and Overview

1 Review and Overview DRAFT a fial versio will be posted shortly CS229T/STATS231: Statistical Learig Theory Lecturer: Tegyu Ma Lecture #3 Scribe: Migda Qiao October 1, 2013 1 Review ad Overview I the first half of this course,

More information

Math 104: Homework 2 solutions

Math 104: Homework 2 solutions Math 04: Homework solutios. A (0, ): Sice this is a ope iterval, the miimum is udefied, ad sice the set is ot bouded above, the maximum is also udefied. if A 0 ad sup A. B { m + : m, N}: This set does

More information

A Hadamard-type lower bound for symmetric diagonally dominant positive matrices

A Hadamard-type lower bound for symmetric diagonally dominant positive matrices A Hadamard-type lower boud for symmetric diagoally domiat positive matrices Christopher J. Hillar, Adre Wibisoo Uiversity of Califoria, Berkeley Jauary 7, 205 Abstract We prove a ew lower-boud form of

More information

Balanced coloring of bipartite graphs

Balanced coloring of bipartite graphs Balaced colorig of bipartite graphs Uriel Feige Shimo Koga Departmet of Computer Sciece ad Applied Mathematics Weizma Istitute, Rehovot 76100, Israel uriel.feige@weizma.ac.il Jue 16, 009 Abstract Give

More information

Lecture 2 Long paths in random graphs

Lecture 2 Long paths in random graphs Lecture Log paths i radom graphs 1 Itroductio I this lecture we treat the appearace of log paths ad cycles i sparse radom graphs. will wor with the probability space G(, p) of biomial radom graphs, aalogous

More information

It is often useful to approximate complicated functions using simpler ones. We consider the task of approximating a function by a polynomial.

It is often useful to approximate complicated functions using simpler ones. We consider the task of approximating a function by a polynomial. Taylor Polyomials ad Taylor Series It is ofte useful to approximate complicated fuctios usig simpler oes We cosider the task of approximatig a fuctio by a polyomial If f is at least -times differetiable

More information

Estimation of a population proportion March 23,

Estimation of a population proportion March 23, 1 Social Studies 201 Notes for March 23, 2005 Estimatio of a populatio proportio Sectio 8.5, p. 521. For the most part, we have dealt with meas ad stadard deviatios this semester. This sectio of the otes

More information

6.046 Recitation 5: Binary Search Trees Bill Thies, Fall 2004 Outline

6.046 Recitation 5: Binary Search Trees Bill Thies, Fall 2004 Outline 6.046 Recitatio 5: Biary Search Trees Bill Thies, Fall 2004 Outlie My cotact iformatio: Bill Thies thies@mit.edu Office hours: Sat 1-3pm, 36-153 Recitatio website: http://cag.lcs.mit.edu/~thies/6.046/

More information

Chapter 2 The Solution of Numerical Algebraic and Transcendental Equations

Chapter 2 The Solution of Numerical Algebraic and Transcendental Equations Chapter The Solutio of Numerical Algebraic ad Trascedetal Equatios Itroductio I this chapter we shall discuss some umerical methods for solvig algebraic ad trascedetal equatios. The equatio f( is said

More information

On Algorithm for the Minimum Spanning Trees Problem with Diameter Bounded Below

On Algorithm for the Minimum Spanning Trees Problem with Diameter Bounded Below O Algorithm for the Miimum Spaig Trees Problem with Diameter Bouded Below Edward Kh. Gimadi 1,2, Alexey M. Istomi 1, ad Ekateria Yu. Shi 2 1 Sobolev Istitute of Mathematics, 4 Acad. Koptyug aveue, 630090

More information

A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence

A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence Sequeces A sequece of umbers is a fuctio whose domai is the positive itegers. We ca see that the sequece,, 2, 2, 3, 3,... is a fuctio from the positive itegers whe we write the first sequece elemet as

More information

1 Review of Probability & Statistics

1 Review of Probability & Statistics 1 Review of Probability & Statistics a. I a group of 000 people, it has bee reported that there are: 61 smokers 670 over 5 960 people who imbibe (drik alcohol) 86 smokers who imbibe 90 imbibers over 5

More information

Rademacher Complexity

Rademacher Complexity EECS 598: Statistical Learig Theory, Witer 204 Topic 0 Rademacher Complexity Lecturer: Clayto Scott Scribe: Ya Deg, Kevi Moo Disclaimer: These otes have ot bee subjected to the usual scrutiy reserved for

More information

Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 12

Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 12 Machie Learig Theory Tübige Uiversity, WS 06/07 Lecture Tolstikhi Ilya Abstract I this lecture we derive risk bouds for kerel methods. We will start by showig that Soft Margi kerel SVM correspods to miimizig

More information

Lecture 2: April 3, 2013

Lecture 2: April 3, 2013 TTIC/CMSC 350 Mathematical Toolkit Sprig 203 Madhur Tulsiai Lecture 2: April 3, 203 Scribe: Shubhedu Trivedi Coi tosses cotiued We retur to the coi tossig example from the last lecture agai: Example. Give,

More information

Lecture 10 October Minimaxity and least favorable prior sequences

Lecture 10 October Minimaxity and least favorable prior sequences STATS 300A: Theory of Statistics Fall 205 Lecture 0 October 22 Lecturer: Lester Mackey Scribe: Brya He, Rahul Makhijai Warig: These otes may cotai factual ad/or typographic errors. 0. Miimaxity ad least

More information

Slide Set 13 Linear Model with Endogenous Regressors and the GMM estimator

Slide Set 13 Linear Model with Endogenous Regressors and the GMM estimator Slide Set 13 Liear Model with Edogeous Regressors ad the GMM estimator Pietro Coretto pcoretto@uisa.it Ecoometrics Master i Ecoomics ad Fiace (MEF) Uiversità degli Studi di Napoli Federico II Versio: Friday

More information

SPECTRAL THEOREM AND APPLICATIONS

SPECTRAL THEOREM AND APPLICATIONS SPECTRAL THEOREM AND APPLICATIONS JINGJING (JENNY) LI Abstract. This paper is dedicated to preset a proof of the Spectral Theorem, ad to discuss how the Spectral Theorem is applied i combiatorics ad graph

More information

Chapter 5.4 Practice Problems

Chapter 5.4 Practice Problems EXPECTED SKILLS: Chapter 5.4 Practice Problems Uderstad ad kow how to evaluate the summatio (sigma) otatio. Be able to use the summatio operatio s basic properties ad formulas. (You do ot eed to memorize

More information

1 Covariance Estimation

1 Covariance Estimation Eco 75 Lecture 5 Covariace Estimatio ad Optimal Weightig Matrices I this lecture, we cosider estimatio of the asymptotic covariace matrix B B of the extremum estimator b : Covariace Estimatio Lemma 4.

More information

Alliance Partition Number in Graphs

Alliance Partition Number in Graphs Alliace Partitio Number i Graphs Lida Eroh Departmet of Mathematics Uiversity of Wiscosi Oshkosh, Oshkosh, WI email: eroh@uwoshedu, phoe: (90)44-7343 ad Ralucca Gera Departmet of Applied Mathematics Naval

More information

A note on log-concave random graphs

A note on log-concave random graphs A ote o log-cocave radom graphs Ala Frieze ad Tomasz Tocz Departmet of Mathematical Scieces, Caregie Mello Uiversity, Pittsburgh PA53, USA Jue, 08 Abstract We establish a threshold for the coectivity of

More information

Machine Learning for Data Science (CS 4786)

Machine Learning for Data Science (CS 4786) Machie Learig for Data Sciece CS 4786) Lecture & 3: Pricipal Compoet Aalysis The text i black outlies high level ideas. The text i blue provides simple mathematical details to derive or get to the algorithm

More information

Polynomial Functions and Their Graphs

Polynomial Functions and Their Graphs Polyomial Fuctios ad Their Graphs I this sectio we begi the study of fuctios defied by polyomial expressios. Polyomial ad ratioal fuctios are the most commo fuctios used to model data, ad are used extesively

More information

Chimica Inorganica 3

Chimica Inorganica 3 himica Iorgaica Irreducible Represetatios ad haracter Tables Rather tha usig geometrical operatios, it is ofte much more coveiet to employ a ew set of group elemets which are matrices ad to make the rule

More information

Design and Analysis of ALGORITHM (Topic 2)

Design and Analysis of ALGORITHM (Topic 2) DR. Gatot F. Hertoo, MSc. Desig ad Aalysis of ALGORITHM (Topic 2) Algorithms + Data Structures = Programs Lessos Leared 1 Our Machie Model: Assumptios Geeric Radom Access Machie (RAM) Executes operatios

More information

Random Walks on Discrete and Continuous Circles. by Jeffrey S. Rosenthal School of Mathematics, University of Minnesota, Minneapolis, MN, U.S.A.

Random Walks on Discrete and Continuous Circles. by Jeffrey S. Rosenthal School of Mathematics, University of Minnesota, Minneapolis, MN, U.S.A. Radom Walks o Discrete ad Cotiuous Circles by Jeffrey S. Rosethal School of Mathematics, Uiversity of Miesota, Mieapolis, MN, U.S.A. 55455 (Appeared i Joural of Applied Probability 30 (1993), 780 789.)

More information

Alternating Series. 1 n 0 2 n n THEOREM 9.14 Alternating Series Test Let a n > 0. The alternating series. 1 n a n.

Alternating Series. 1 n 0 2 n n THEOREM 9.14 Alternating Series Test Let a n > 0. The alternating series. 1 n a n. 0_0905.qxd //0 :7 PM Page SECTION 9.5 Alteratig Series Sectio 9.5 Alteratig Series Use the Alteratig Series Test to determie whether a ifiite series coverges. Use the Alteratig Series Remaider to approximate

More information

Chapter 3. Strong convergence. 3.1 Definition of almost sure convergence

Chapter 3. Strong convergence. 3.1 Definition of almost sure convergence Chapter 3 Strog covergece As poited out i the Chapter 2, there are multiple ways to defie the otio of covergece of a sequece of radom variables. That chapter defied covergece i probability, covergece i

More information

Comparison of Minimum Initial Capital with Investment and Non-investment Discrete Time Surplus Processes

Comparison of Minimum Initial Capital with Investment and Non-investment Discrete Time Surplus Processes The 22 d Aual Meetig i Mathematics (AMM 207) Departmet of Mathematics, Faculty of Sciece Chiag Mai Uiversity, Chiag Mai, Thailad Compariso of Miimum Iitial Capital with Ivestmet ad -ivestmet Discrete Time

More information

Linear regression. Daniel Hsu (COMS 4771) (y i x T i β)2 2πσ. 2 2σ 2. 1 n. (x T i β y i ) 2. 1 ˆβ arg min. β R n d

Linear regression. Daniel Hsu (COMS 4771) (y i x T i β)2 2πσ. 2 2σ 2. 1 n. (x T i β y i ) 2. 1 ˆβ arg min. β R n d Liear regressio Daiel Hsu (COMS 477) Maximum likelihood estimatio Oe of the simplest liear regressio models is the followig: (X, Y ),..., (X, Y ), (X, Y ) are iid radom pairs takig values i R d R, ad Y

More information

Kinetics of Complex Reactions

Kinetics of Complex Reactions Kietics of Complex Reactios by Flick Colema Departmet of Chemistry Wellesley College Wellesley MA 28 wcolema@wellesley.edu Copyright Flick Colema 996. All rights reserved. You are welcome to use this documet

More information

Design and Analysis of Algorithms

Design and Analysis of Algorithms Desig ad Aalysis of Algorithms CSE 53 Lecture 9 Media ad Order Statistics Juzhou Huag, Ph.D. Departmet of Computer Sciece ad Egieerig Dept. CSE, UT Arligto CSE53 Desig ad Aalysis of Algorithms Medias ad

More information