# a = mq + r where 0 r m 1.

Size: px
Start display at page:

Transcription

1 8. Euler ϕ-function We have already seen that Z m, the set of equivalence classes of the integers modulo m, is naturally a ring. Now we will start to derive some interesting consequences in number theory. It is clear that the equivalence classes are represented by the integers from zero to m 1, [0], [1], [2], [3],..., [m 1]. Indeed, if a is any integer we may divide m into a to get a quotient and a remainder, In this case a = mq + r where 0 r m 1. [a] = [r]. From the point of view of number theory it is very interesting to write down other sets of integers with the same properties. Definition 8.1. A set S of integers is called a complete residue system, modulo m, if every integer a Z is equivalent, modulo m, to exactly one element of S. We have already seen that { r Z 0 r m 1 } = { 0, 1, 2,..., m 2, m 1 } is a complete residue system. Sometimes it is convenient to shift so that 0 is in the centre of the system { r Z m/2 < r m/2 } = {..., 2, 1, 0, 1, 2,... }. For example if m = 5 we would take 2, 1, 0, 1 and 2 and if m = 8 we would take 3, 2, 1, 0, 1, 2, 3 and 4. Fortunately it is very easy to determine if a set S is a complete residue system: Lemma 8.2. Let S Z be a subset of the integers and let m be a non-negative integer. If any two of the following two conditions hold then so does the third, in which case S is a complete residue system. (1) S has m elements. (2) No two different elements of S are congruent. (3) Every integer is congruent to at least one element of S. Proof. We have already seen that S 0 = { r Z 0 r m 1 } = { 0, 1, 2,..., m 2, m 1 } is a complete residue system. Clearly S 0 has m elements. Note that there is a natural map f : S S 0, 1

2 which sends an element a of S to its residue modulo m. Note that (1) holds if and only if S and S 0 have the same number of elements; (2) holds if and only if f is injective and (3) holds if and only if f is surjective. It is then easy to see that any two of (1), (2) and (3) imply the third. We can use (8.2) to prove a nice: Theorem 8.3. Let m be a positive integer and let a 1, a 2,..., a m is a complete residue system, modulo m. Suppose that b and k Z and (k, m) = 1. Then ka 1 + b, ka 2 + b,..., ka m + b, is also a complete residue system, modulo m. Proof. Note that if ka i + b = ka j + b then a i = a j. Thus ka 1 + b, ka 2 + b,..., ka m + b, is a sequence of m distinct integers. We check that (2) of (8.2) also holds. Suppose that ka i + b ka j + b mod m. Then certainly ka i ka j mod m. As (k, m) = 1, it follows by (7.11) that a i a j mod m. We shall start dropping any reference to equivalence classes when we work in the ring Z m. This is purely a matter of notational convenience. The ring Z m has two operations, addition and multiplication. Note that 1 2 = = = = = , and so on, give all the elements of Z m under addition. The group Z m under addition is called cyclic and 1 is called a generator. It is more interesting to figure out what happens under multiplication. If p is a prime then the non-zero elements of Z p are a group under multiplication. We will see that it is always cyclic. 2

3 For example, suppose we take p = 7. We have Thus 2 2 = = 8 1 mod = = 2 1 = 2. If we keep going we will just get 1, 2 and 4 (there is a reason it is called cyclic). Thus 2 is not a generator. Now consider 3 instead of 2. We have 3 2 = 9 2 mod = 3 2 = = 3 6 = = 5 and 3 6 = 1. Thus the non-zero elements of Z 7 is a cyclic group with generator 3 (but not 2). For general m, the non-zero elements of Z m do not form a group under multiplication. We have already seen that the product of two elements might be zero, so that the set of non-zero elements is not closed under multiplication. Definition 8.4. Let m > 1 be an integer. U m is the set of units of Z m. It is not hard to check that U m is a group under multiplication. Definition 8.5. The Euler ϕ-function ϕ: N N just sends m to the cardinality of U m. If p is a prime then every non-zero element of Z p is a unit, so that ϕ(p) = p 1. Lemma 8.6. Let m > 1 and a Z be integers. Then [a] is a unit if and only if (a, m) = 1. Proof. If (a, m) = 1 then we can find integers λ and µ such that In this case Thus [λ] is the inverse of [a]. 1 = λa + µm. 1 = [1] = [λa + µm] = [λ][a] + [µ][m] = [λ][a]. 3

4 Conversely, suppose that [a] is a unit. Then we can find an integer b such that [a][b] = 1. It follows that ab 1 mod m, that is, ab 1 is divisible by m. Thus ab 1 = km, for some integer k. Rearranging, we get Thus (a, m) = 1. 1 = ( b)a + km. Lemma 8.7. If m is a natural number then ϕ(m) is the number of integers a from 0 to m 1 coprime to m. Proof. The elements of Z m are represented by the integers a from 0 to m 1 and [a] is a unit if and only if it is coprime to m. This gives an easy way to compute the Euler ϕ-function, at least for small values of m. Suppose m = 6. Of the integers 0, 1, 2, 3, 4 and 5, only 1 and 5 are coprime to 6. Thus ϕ(6) = 2. Definition 8.8. A set S of integers is called a reduced residue system, modulo m, if every integer coprime to m is equivalent to exactly one element of m. Lemma 8.9. Let S Z be a subset of the integers and let m be a non-negative integer. If any two of the following two hold conditions then so does the third, in which case S is a reduced residue system. (1) S has ϕ(m) elements. (2) No two different elements of S are congruent. (3) Every is congruent to at least one element of S. Proof. A simple variation of the proof of (8.2) Theorem Let m be a positive integer and let a 1, a 2,..., a ϕ(m) is a reduced residue system, modulo m. If k Z is the coprime to m then ka 1, ka 2,..., ka ϕ(m) is also a reduced residue system, modulo m. Proof. Similar, and simpler, than the proof of (8.3). Definition We say that a function f : N N is multiplicative if f(mn) = f(m)f(n), whenever m and n coprime. Theorem ϕ is multiplicative. 4

5 Proof. Suppose that m = 1. Then mn = 1 n = n so that φ(m)φ(n) = φ(1)φ(n) = φ(n) = φ(1 n) = φ(mn). Thus the result holds if m = 1. Similarly the result holds if n = 1. Thus we may assume that m and n > 1. Consider the array m 1 m m + 1 m m + (m 1) (n 1)m (n 1)m + 1 (n 1)m (n 1)m + (m 1). The last entry is nm 1 and so this is a complete residue system, modulo mn. Therefore ϕ(mn) is the number of elements of the array comprime to mn. Pick a column and suppose the first entry is a. The other entries in that column are m + a, 2m + a,..., (n 1)m + a and so every entry in that column is congruent to a modulo m. So if a is not coprime to m then no entry in that column is coprime to m, let alone mn. Thus we can focus on those columns whose first entry a is coprime to a. The first row is a complete residue system modulo m, so that ϕ(m) elements of the first row are coprime to m. Thus there are only ϕ(m) columns we need to focus on. On the other hand, the entries in this column are the numbers m 1 + a, m 2 + a, m 3 + a, and so they are a complete residue system modulo n, by (8.3). Thus ϕ(n) elements of this column are coprime to n. Thus ϕ(m)ϕ(n) elements of the array are coprime to both m and n. But as m and n are coprime, it follows that an integer l is coprime to mn if and only if it is coprime to m and n. Thus ϕ(m)ϕ(n) elements of the array are coprime to mn. Multiplicative functions are relatively easy to compute; if n = p e 1 1 p e p en n is the prime factorisation of n and f is multiplicative then Therefore it suffices to compute where p is a prime. f(n) = f(p e 1 1 )f(p e 2 2 )... f(p en n ). f(p e ), 5

6 Lemma If p is a prime then ϕ(p e ) = p e p e 1. Proof. Consider the numbers from to 1 to p e. These are a complete residue system. Now a is coprime to p e if and only if it is coprime to p. In other words, a is not coprime to p e if and only if it is a multiple of p. Of the numbers from 1 to p e, exactly p e p = pe 1. are multiples of p. Therefore the remaining numbers are coprime to p e. p e p e 1 Theorem If n = p e 1 1 p e p en n is the prime factorisation of n then ϕ(n) = (p e 1 1 p e )(p e 2 2 p e )... (p en n p en 1 n ). Question How many units are there in the ring Z 1656? In other words, what is the cardinality of U 1656? This is the same as ϕ(1656). We first factor We have 1656 = = = = = ϕ(1656) = ϕ( ) = ϕ(2 3 )ϕ(3 2 )ϕ(23) = ( )(3 2 3)(23 1) = = =

### LECTURE 4: CHINESE REMAINDER THEOREM AND MULTIPLICATIVE FUNCTIONS

LECTURE 4: CHINESE REMAINDER THEOREM AND MULTIPLICATIVE FUNCTIONS 1. The Chinese Remainder Theorem We now seek to analyse the solubility of congruences by reinterpreting their solutions modulo a composite

### Lecture 4: Number theory

Lecture 4: Number theory Rajat Mittal IIT Kanpur In the next few classes we will talk about the basics of number theory. Number theory studies the properties of natural numbers and is considered one of

### CHAPTER 6. Prime Numbers. Definition and Fundamental Results

CHAPTER 6 Prime Numbers Part VI of PJE. Definition and Fundamental Results 6.1. Definition. (PJE definition 23.1.1) An integer p is prime if p > 1 and the only positive divisors of p are 1 and p. If n

### Summary Slides for MATH 342 June 25, 2018

Summary Slides for MATH 342 June 25, 2018 Summary slides based on Elementary Number Theory and its applications by Kenneth Rosen and The Theory of Numbers by Ivan Niven, Herbert Zuckerman, and Hugh Montgomery.

### Theory of Numbers Problems

Theory of Numbers Problems Antonios-Alexandros Robotis Robotis October 2018 1 First Set 1. Find values of x and y so that 71x 50y = 1. 2. Prove that if n is odd, then n 2 1 is divisible by 8. 3. Define

### 2 More on Congruences

2 More on Congruences 2.1 Fermat s Theorem and Euler s Theorem definition 2.1 Let m be a positive integer. A set S = {x 0,x 1,,x m 1 x i Z} is called a complete residue system if x i x j (mod m) whenever

### The Chinese Remainder Theorem

Chapter 5 The Chinese Remainder Theorem 5.1 Coprime moduli Theorem 5.1. Suppose m, n N, and gcd(m, n) = 1. Given any remainders r mod m and s mod n we can find N such that N r mod m and N s mod n. Moreover,

### Lecture notes: Algorithms for integers, polynomials (Thorsten Theobald)

Lecture notes: Algorithms for integers, polynomials (Thorsten Theobald) 1 Euclid s Algorithm Euclid s Algorithm for computing the greatest common divisor belongs to the oldest known computing procedures

### A Guide to Arithmetic

A Guide to Arithmetic Robin Chapman August 5, 1994 These notes give a very brief resumé of my number theory course. Proofs and examples are omitted. Any suggestions for improvements will be gratefully

### An integer p is prime if p > 1 and p has exactly two positive divisors, 1 and p.

Chapter 6 Prime Numbers Part VI of PJE. Definition and Fundamental Results Definition. (PJE definition 23.1.1) An integer p is prime if p > 1 and p has exactly two positive divisors, 1 and p. If n > 1

### Chapter 5. Modular arithmetic. 5.1 The modular ring

Chapter 5 Modular arithmetic 5.1 The modular ring Definition 5.1. Suppose n N and x, y Z. Then we say that x, y are equivalent modulo n, and we write x y mod n if n x y. It is evident that equivalence

### A Readable Introduction to Real Mathematics

Solutions to selected problems in the book A Readable Introduction to Real Mathematics D. Rosenthal, D. Rosenthal, P. Rosenthal Chapter 7: The Euclidean Algorithm and Applications 1. Find the greatest

### Part V. Chapter 19. Congruence of integers

Part V. Chapter 19. Congruence of integers Congruence modulo m Let m be a positive integer. Definition. Integers a and b are congruent modulo m if and only if a b is divisible by m. For example, 1. 277

### Part IA Numbers and Sets

Part IA Numbers and Sets Theorems Based on lectures by A. G. Thomason Notes taken by Dexter Chua Michaelmas 2014 These notes are not endorsed by the lecturers, and I have modified them (often significantly)

### The Chinese Remainder Theorem

The Chinese Remainder Theorem R. C. Daileda February 19, 2018 1 The Chinese Remainder Theorem We begin with an example. Example 1. Consider the system of simultaneous congruences x 3 (mod 5), x 2 (mod

### CPSC 467b: Cryptography and Computer Security

CPSC 467b: Cryptography and Computer Security Michael J. Fischer Lecture 8 February 1, 2012 CPSC 467b, Lecture 8 1/42 Number Theory Needed for RSA Z n : The integers mod n Modular arithmetic GCD Relatively

### Monoids. Definition: A binary operation on a set M is a function : M M M. Examples:

Monoids Definition: A binary operation on a set M is a function : M M M. If : M M M, we say that is well defined on M or equivalently, that M is closed under the operation. Examples: Definition: A monoid

### I216e Discrete Math (for Review)

I216e Discrete Math (for Review) Nov 22nd, 2017 To check your understanding. Proofs of do not appear in the exam. 1 Monoid Let (G, ) be a monoid. Proposition 1 Uniquness of Identity An idenity e is unique,

### ax b mod m. has a solution if and only if d b. In this case, there is one solution, call it x 0, to the equation and there are d solutions x m d

10. Linear congruences In general we are going to be interested in the problem of solving polynomial equations modulo an integer m. Following Gauss, we can work in the ring Z m and find all solutions to

### The group (Z/nZ) February 17, In these notes we figure out the structure of the unit group (Z/nZ) where n > 1 is an integer.

The group (Z/nZ) February 17, 2016 1 Introduction In these notes we figure out the structure of the unit group (Z/nZ) where n > 1 is an integer. If we factor n = p e 1 1 pe, where the p i s are distinct

### Number Theory and Algebra: A Brief Introduction

Number Theory and Algebra: A Brief Introduction Indian Statistical Institute Kolkata May 15, 2017 Elementary Number Theory: Modular Arithmetic Definition Let n be a positive integer and a and b two integers.

### Math 314 Course Notes: Brief description

Brief description These are notes for Math 34, an introductory course in elementary number theory Students are advised to go through all sections in detail and attempt all problems These notes will be

### Know the Well-ordering principle: Any set of positive integers which has at least one element contains a smallest element.

The first exam will be on Monday, June 8, 202. The syllabus will be sections. and.2 in Lax, and the number theory handout found on the class web site, plus the handout on the method of successive squaring

### Math 120 HW 9 Solutions

Math 120 HW 9 Solutions June 8, 2018 Question 1 Write down a ring homomorphism (no proof required) f from R = Z[ 11] = {a + b 11 a, b Z} to S = Z/35Z. The main difficulty is to find an element x Z/35Z

### The number of ways to choose r elements (without replacement) from an n-element set is. = r r!(n r)!.

The first exam will be on Friday, September 23, 2011. The syllabus will be sections 0.1 through 0.4 and 0.6 in Nagpaul and Jain, and the corresponding parts of the number theory handout found on the class

### Discrete Mathematics with Applications MATH236

Discrete Mathematics with Applications MATH236 Dr. Hung P. Tong-Viet School of Mathematics, Statistics and Computer Science University of KwaZulu-Natal Pietermaritzburg Campus Semester 1, 2013 Tong-Viet

### PREPARATION NOTES FOR NUMBER THEORY PRACTICE WED. OCT. 3,2012

PREPARATION NOTES FOR NUMBER THEORY PRACTICE WED. OCT. 3,2012 0.1. Basic Num. Th. Techniques/Theorems/Terms. Modular arithmetic, Chinese Remainder Theorem, Little Fermat, Euler, Wilson, totient, Euclidean

### CPSC 467b: Cryptography and Computer Security

CPSC 467b: Cryptography and Computer Security Michael J. Fischer Lecture 9 February 14, 2013 CPSC 467b, Lecture 9 1/42 Integer Division (cont.) Relatively prime numbers, Z n, and φ(n) Computing in Z n

### Smol Results on the Möbius Function

Karen Ge August 3, 207 Introduction We will address how Möbius function relates to other arithmetic functions, multiplicative number theory, the primitive complex roots of unity, and the Riemann zeta function.

### MODEL ANSWERS TO THE FIRST HOMEWORK

MODEL ANSWERS TO THE FIRST HOMEWORK 1. Chapter 4, 1: 2. Suppose that F is a field and that a and b are in F. Suppose that a b = 0, and that b 0. Let c be the inverse of b. Multiplying the equation above

### Homework #2 solutions Due: June 15, 2012

All of the following exercises are based on the material in the handout on integers found on the class website. 1. Find d = gcd(475, 385) and express it as a linear combination of 475 and 385. That is

### A Few Primality Testing Algorithms

A Few Primality Testing Algorithms Donald Brower April 2, 2006 0.1 Introduction These notes will cover a few primality testing algorithms. There are many such, some prove that a number is prime, others

### D-MATH Algebra II FS18 Prof. Marc Burger. Solution 26. Cyclotomic extensions.

D-MAH Algebra II FS18 Prof. Marc Burger Solution 26 Cyclotomic extensions. In the following, ϕ : Z 1 Z 0 is the Euler function ϕ(n = card ((Z/nZ. For each integer n 1, we consider the n-th cyclotomic polynomial

### = 1 2x. x 2 a ) 0 (mod p n ), (x 2 + 2a + a2. x a ) 2

8. p-adic numbers 8.1. Motivation: Solving x 2 a (mod p n ). Take an odd prime p, and ( an) integer a coprime to p. Then, as we know, x 2 a (mod p) has a solution x Z iff = 1. In this case we can suppose

### Congruence Classes. Number Theory Essentials. Modular Arithmetic Systems

Cryptography Introduction to Number Theory 1 Preview Integers Prime Numbers Modular Arithmetic Totient Function Euler's Theorem Fermat's Little Theorem Euclid's Algorithm 2 Introduction to Number Theory

### Number Theory and Group Theoryfor Public-Key Cryptography

Number Theory and Group Theory for Public-Key Cryptography TDA352, DIT250 Wissam Aoudi Chalmers University of Technology November 21, 2017 Wissam Aoudi Number Theory and Group Theoryfor Public-Key Cryptography

### Part II. Number Theory. Year

Part II Year 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2017 Paper 3, Section I 1G 70 Explain what is meant by an Euler pseudoprime and a strong pseudoprime. Show that 65 is an Euler

### I Foundations Of Divisibility And Congruence 1

Contents I Foundations Of Divisibility And Congruence 1 1 Divisibility 3 1.1 Definitions............................. 3 1.2 Properties Of Divisibility..................... 5 1.3 Some Basic Combinatorial

### Basic elements of number theory

Cryptography Basic elements of number theory Marius Zimand 1 Divisibility, prime numbers By default all the variables, such as a, b, k, etc., denote integer numbers. Divisibility a 0 divides b if b = a

### Basic elements of number theory

Cryptography Basic elements of number theory Marius Zimand By default all the variables, such as a, b, k, etc., denote integer numbers. Divisibility a 0 divides b if b = a k for some integer k. Notation

### Elementary Number Theory Review. Franz Luef

Elementary Number Theory Review Principle of Induction Principle of Induction Suppose we have a sequence of mathematical statements P(1), P(2),... such that (a) P(1) is true. (b) If P(k) is true, then

### All variables a, b, n, etc are integers unless otherwise stated. Each part of a problem is worth 5 points.

Math 152, Problem Set 2 solutions (2018-01-24) All variables a, b, n, etc are integers unless otherwise stated. Each part of a problem is worth 5 points. 1. Let us look at the following equation: x 5 1

### Congruences and Residue Class Rings

Congruences and Residue Class Rings (Chapter 2 of J. A. Buchmann, Introduction to Cryptography, 2nd Ed., 2004) Shoichi Hirose Faculty of Engineering, University of Fukui S. Hirose (U. Fukui) Congruences

### Math 324, Fall 2011 Assignment 6 Solutions

Math 324, Fall 2011 Assignment 6 Solutions Exercise 1. (a) Find all positive integers n such that φ(n) = 12. (b) Show that there is no positive integer n such that φ(n) = 14. (c) Let be a positive integer.

### A SURVEY OF PRIMALITY TESTS

A SURVEY OF PRIMALITY TESTS STEFAN LANCE Abstract. In this paper, we show how modular arithmetic and Euler s totient function are applied to elementary number theory. In particular, we use only arithmetic

### NOTES ON FINITE FIELDS

NOTES ON FINITE FIELDS AARON LANDESMAN CONTENTS 1. Introduction to finite fields 2 2. Definition and constructions of fields 3 2.1. The definition of a field 3 2.2. Constructing field extensions by adjoining

### 5 Group theory. 5.1 Binary operations

5 Group theory This section is an introduction to abstract algebra. This is a very useful and important subject for those of you who will continue to study pure mathematics. 5.1 Binary operations 5.1.1

### Objective Type Questions

DISTANCE EDUCATION, UNIVERSITY OF CALICUT NUMBER THEORY AND LINEARALGEBRA Objective Type Questions Shyama M.P. Assistant Professor Department of Mathematics Malabar Christian College, Calicut 7/3/2014

### NUMBER SYSTEMS. Number theory is the study of the integers. We denote the set of integers by Z:

NUMBER SYSTEMS Number theory is the study of the integers. We denote the set of integers by Z: Z = {..., 3, 2, 1, 0, 1, 2, 3,... }. The integers have two operations defined on them, addition and multiplication,

### Theory of RSA. Hiroshi Toyoizumi 1. December 8,

Theory of RSA Hiroshi Toyoizumi 1 December 8, 2005 1 E-mail: toyoizumi@waseda.jp 2 Introduction This is brief introduction of number theory related to the so-called RSA cryptography. This handout is based

### MODEL ANSWERS TO HWK #10

MODEL ANSWERS TO HWK #10 1. (i) As x + 4 has degree one, either it divides x 3 6x + 7 or these two polynomials are coprime. But if x + 4 divides x 3 6x + 7 then x = 4 is a root of x 3 6x + 7, which it

### Name (please print) Mathematics Final Examination December 14, 2005 I. (4)

Mathematics 513-00 Final Examination December 14, 005 I Use a direct argument to prove the following implication: The product of two odd integers is odd Let m and n be two odd integers Since they are odd,

### Notes on Primitive Roots Dan Klain

Notes on Primitive Roots Dan Klain last updated March 22, 2013 Comments and corrections are welcome These supplementary notes summarize the presentation on primitive roots given in class, which differed

### Chapter 1 : The language of mathematics.

MAT 200, Logic, Language and Proof, Fall 2015 Summary Chapter 1 : The language of mathematics. Definition. A proposition is a sentence which is either true or false. Truth table for the connective or :

### SOLUTIONS Math 345 Homework 6 10/11/2017. Exercise 23. (a) Solve the following congruences: (i) x (mod 12) Answer. We have

Exercise 23. (a) Solve the following congruences: (i) x 101 7 (mod 12) Answer. We have φ(12) = #{1, 5, 7, 11}. Since gcd(7, 12) = 1, we must have gcd(x, 12) = 1. So 1 12 x φ(12) = x 4. Therefore 7 12 x

### Primitive Lambda-Roots. Peter J. Cameron and D. A. Preece

Primitive Lambda-Roots Peter J. Cameron and D. A. Preece Version of January 2014 Preface The most important examples of finite commutative rings with identity are undoubtedly the rings Z/(n) of integers

### Automorphism Groups Definition. An automorphism of a group G is an isomorphism G G. The set of automorphisms of G is denoted Aut G.

Automorphism Groups 9-9-2012 Definition. An automorphism of a group G is an isomorphism G G. The set of automorphisms of G is denoted Aut G. Example. The identity map id : G G is an automorphism. Example.

### Discrete Logarithms. Let s begin by recalling the definitions and a theorem. Let m be a given modulus. Then the finite set

Discrete Logarithms Let s begin by recalling the definitions and a theorem. Let m be a given modulus. Then the finite set Z/mZ = {[0], [1],..., [m 1]} = {0, 1,..., m 1} of residue classes modulo m is called

### MATH 433 Applied Algebra Lecture 4: Modular arithmetic (continued). Linear congruences.

MATH 433 Applied Algebra Lecture 4: Modular arithmetic (continued). Linear congruences. Congruences Let n be a postive integer. The integers a and b are called congruent modulo n if they have the same

### Mathematics for Cryptography

Mathematics for Cryptography Douglas R. Stinson David R. Cheriton School of Computer Science University of Waterloo Waterloo, Ontario, N2L 3G1, Canada March 15, 2016 1 Groups and Modular Arithmetic 1.1

### Applied Cryptography and Computer Security CSE 664 Spring 2018

Applied Cryptography and Computer Security Lecture 12: Introduction to Number Theory II Department of Computer Science and Engineering University at Buffalo 1 Lecture Outline This time we ll finish the

### Signature: (In Ink) UNIVERSITY OF MANITOBA TEST 1 SOLUTIONS COURSE: MATH 2170 DATE & TIME: February 11, 2019, 16:30 17:15

PAGE: 1 of 7 I understand that cheating is a serious offence: Signature: (In Ink) PAGE: 2 of 7 1. Let a, b, m, be integers, m > 1. [1] (a) Define a b. Solution: a b iff for some d, ad = b. [1] (b) Define

### Math 109 HW 9 Solutions

Math 109 HW 9 Solutions Problems IV 18. Solve the linear diophantine equation 6m + 10n + 15p = 1 Solution: Let y = 10n + 15p. Since (10, 15) is 5, we must have that y = 5x for some integer x, and (as we

### Course 2BA1: Trinity 2006 Section 9: Introduction to Number Theory and Cryptography

Course 2BA1: Trinity 2006 Section 9: Introduction to Number Theory and Cryptography David R. Wilkins Copyright c David R. Wilkins 2006 Contents 9 Introduction to Number Theory and Cryptography 1 9.1 Subgroups

### 1 Structure of Finite Fields

T-79.5501 Cryptology Additional material September 27, 2005 1 Structure of Finite Fields This section contains complementary material to Section 5.2.3 of the text-book. It is not entirely self-contained

### Numbers and their divisors

Chapter 1 Numbers and their divisors 1.1 Some number theoretic functions Theorem 1.1 (Fundamental Theorem of Arithmetic). Every positive integer > 1 is uniquely the product of distinct prime powers: n

### MATH 2112/CSCI 2112, Discrete Structures I Winter 2007 Toby Kenney Homework Sheet 5 Hints & Model Solutions

MATH 11/CSCI 11, Discrete Structures I Winter 007 Toby Kenney Homework Sheet 5 Hints & Model Solutions Sheet 4 5 Define the repeat of a positive integer as the number obtained by writing it twice in a

### GRE Subject test preparation Spring 2016 Topic: Abstract Algebra, Linear Algebra, Number Theory.

GRE Subject test preparation Spring 2016 Topic: Abstract Algebra, Linear Algebra, Number Theory. Linear Algebra Standard matrix manipulation to compute the kernel, intersection of subspaces, column spaces,

### Euler s, Fermat s and Wilson s Theorems

Euler s, Fermat s and Wilson s Theorems R. C. Daileda February 17, 2018 1 Euler s Theorem Consider the following example. Example 1. Find the remainder when 3 103 is divided by 14. We begin by computing

### Number Theory. Modular Arithmetic

Number Theory The branch of mathematics that is important in IT security especially in cryptography. Deals only in integer numbers and the process can be done in a very fast manner. Modular Arithmetic

### Quizzes for Math 401

Quizzes for Math 401 QUIZ 1. a) Let a,b be integers such that λa+µb = 1 for some inetegrs λ,µ. Prove that gcd(a,b) = 1. b) Use Euclid s algorithm to compute gcd(803, 154) and find integers λ,µ such that

### MATH 25 CLASS 12 NOTES, OCT Contents 1. Simultaneous linear congruences 1 2. Simultaneous linear congruences 2

MATH 25 CLASS 12 NOTES, OCT 17 2011 Contents 1. Simultaneous linear congruences 1 2. Simultaneous linear congruences 2 1. Simultaneous linear congruences There is a story (probably apocryphal) about how

### 2.3 In modular arithmetic, all arithmetic operations are performed modulo some integer.

CHAPTER 2 INTRODUCTION TO NUMBER THEORY ANSWERS TO QUESTIONS 2.1 A nonzero b is a divisor of a if a = mb for some m, where a, b, and m are integers. That is, b is a divisor of a if there is no remainder

### CPSC 467: Cryptography and Computer Security

CPSC 467: Cryptography and Computer Security Michael J. Fischer Lecture 9 September 30, 2015 CPSC 467, Lecture 9 1/47 Fast Exponentiation Algorithms Number Theory Needed for RSA Elementary Number Theory

### ALGEBRA I (LECTURE NOTES 2017/2018) LECTURE 9 - CYCLIC GROUPS AND EULER S FUNCTION

ALGEBRA I (LECTURE NOTES 2017/2018) LECTURE 9 - CYCLIC GROUPS AND EULER S FUNCTION PAVEL RŮŽIČKA 9.1. Congruence modulo n. Let us have a closer look at a particular example of a congruence relation on

### Course 2316 Sample Paper 1

Course 2316 Sample Paper 1 Timothy Murphy April 19, 2015 Attempt 5 questions. All carry the same mark. 1. State and prove the Fundamental Theorem of Arithmetic (for N). Prove that there are an infinity

### Discrete Mathematics. Dr. J. Saxl. Michælmas These notes are maintained by Paul Metcalfe. Comments and corrections to

Discrete Mathematics Dr. J. Saxl Michælmas 1995 These notes are maintained by Paul Metcalfe. Comments and corrections to pdm23@cam.ac.u. Revision: 2.5 Date: 2004/07/26 07:20:10 The following people have

### K. Ireland, M. Rosen A Classical Introduction to Modern Number Theory, Springer.

Chapter 1 Number Theory and Algebra 1.1 Introduction Most of the concepts of discrete mathematics belong to the areas of combinatorics, number theory and algebra. In Chapter?? we studied the first area.

### Part IA. Numbers and Sets. Year

Part IA Year 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2017 19 Paper 4, Section I 1D (a) Show that for all positive integers z and n, either z 2n 0 (mod 3) or

### The primitive root theorem

The primitive root theorem Mar Steinberger First recall that if R is a ring, then a R is a unit if there exists b R with ab = ba = 1. The collection of all units in R is denoted R and forms a group under

### A BRIEF INTRODUCTION TO LOCAL FIELDS

A BRIEF INTRODUCTION TO LOCAL FIELDS TOM WESTON The purpose of these notes is to give a survey of the basic Galois theory of local fields and number fields. We cover much of the same material as [2, Chapters

### ABSTRACT NONSINGULAR CURVES

ABSTRACT NONSINGULAR CURVES Affine Varieties Notation. Let k be a field, such as the rational numbers Q or the complex numbers C. We call affine n-space the collection A n k of points P = a 1, a,..., a

### Section 10: Counting the Elements of a Finite Group

Section 10: Counting the Elements of a Finite Group Let G be a group and H a subgroup. Because the right cosets are the family of equivalence classes with respect to an equivalence relation on G, it follows

### Definitions. Notations. Injective, Surjective and Bijective. Divides. Cartesian Product. Relations. Equivalence Relations

Page 1 Definitions Tuesday, May 8, 2018 12:23 AM Notations " " means "equals, by definition" the set of all real numbers the set of integers Denote a function from a set to a set by Denote the image of

### ECEN 5022 Cryptography

Elementary Algebra and Number Theory University of Colorado Spring 2008 Divisibility, Primes Definition. N denotes the set {1, 2, 3,...} of natural numbers and Z denotes the set of integers {..., 2, 1,

### Math 118: Advanced Number Theory. Samit Dasgupta and Gary Kirby

Math 8: Advanced Number Theory Samit Dasgupta and Gary Kirby April, 05 Contents Basics of Number Theory. The Fundamental Theorem of Arithmetic......................... The Euclidean Algorithm and Unique

### Number Theory. Henry Liu, 6 July 2007

Number Theory Henry Liu, 6 July 007 1. Introduction In one sentence, number theory is the area of mathematics which studies the properties of integers. Some of the most studied subareas are the theories

### LECTURE NOTES IN CRYPTOGRAPHY

1 LECTURE NOTES IN CRYPTOGRAPHY Thomas Johansson 2005/2006 c Thomas Johansson 2006 2 Chapter 1 Abstract algebra and Number theory Before we start the treatment of cryptography we need to review some basic

### Math 324, Fall 2011 Assignment 7 Solutions. 1 (ab) γ = a γ b γ mod n.

Math 324, Fall 2011 Assignment 7 Solutions Exercise 1. (a) Suppose a and b are both relatively prime to the positive integer n. If gcd(ord n a, ord n b) = 1, show ord n (ab) = ord n a ord n b. (b) Let

### Section 11 Direct products and finitely generated abelian groups

Section 11 Direct products and finitely generated abelian groups Instructor: Yifan Yang Fall 2006 Outline Direct products Finitely generated abelian groups Cartesian product Definition The Cartesian product

### Number Theory Marathon. Mario Ynocente Castro, National University of Engineering, Peru

Number Theory Marathon Mario Ynocente Castro, National University of Engineering, Peru 1 2 Chapter 1 Problems 1. (IMO 1975) Let f(n) denote the sum of the digits of n. Find f(f(f(4444 4444 ))). 2. Prove

### Q 2.0.2: If it s 5:30pm now, what time will it be in 4753 hours? Q 2.0.3: Today is Wednesday. What day of the week will it be in one year from today?

2 Mod math Modular arithmetic is the math you do when you talk about time on a clock. For example, if it s 9 o clock right now, then it ll be 1 o clock in 4 hours. Clearly, 9 + 4 1 in general. But on a

### HOMEWORK 4 SOLUTIONS TO SELECTED PROBLEMS

HOMEWORK 4 SOLUTIONS TO SELECTED PROBLEMS 1. Chapter 3, Problem 18 (Graded) Let H and K be subgroups of G. Then e, the identity, must be in H and K, so it must be in H K. Thus, H K is nonempty, so we can

### How many units can a commutative ring have?

How many units can a commutative ring have? Sunil K. Chebolu and Keir Locridge Abstract. László Fuchs posed the following problem in 960, which remains open: classify the abelian groups occurring as the

### Notes on Systems of Linear Congruences

MATH 324 Summer 2012 Elementary Number Theory Notes on Systems of Linear Congruences In this note we will discuss systems of linear congruences where the moduli are all different. Definition. Given the

### Introduction to Number Theory 1. c Eli Biham - December 13, Introduction to Number Theory 1

Introduction to Number Theory 1 c Eli Biham - December 13, 2012 206 Introduction to Number Theory 1 Division Definition: Let a and b be integers. We say that a divides b, or a b if d s.t. b = ad. If b

### Number Theory. CSS322: Security and Cryptography. Sirindhorn International Institute of Technology Thammasat University CSS322. Number Theory.

CSS322: Security and Cryptography Sirindhorn International Institute of Technology Thammasat University Prepared by Steven Gordon on 29 December 2011 CSS322Y11S2L06, Steve/Courses/2011/S2/CSS322/Lectures/number.tex,

### Carmen s Core Concepts (Math 135)

Carmen s Core Concepts (Math 135) Carmen Bruni University of Waterloo Week 8 1 The following are equivalent (TFAE) 2 Inverses 3 More on Multiplicative Inverses 4 Linear Congruence Theorem 2 [LCT2] 5 Fermat