This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

Size: px
Start display at page:

Download "This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and"

Transcription

1 Ths artcle appeared a joral pblshed by Elsever. The attached copy s frshed to the athor for teral o-commercal research ad edcato se, cldg for strcto at the athors sttto ad sharg wth colleages. Other ses, cldg reprodcto ad dstrbto, or sellg or lcesg copes, or postg to persoal, stttoal or thrd party webstes are prohbted. I most cases athors are permtted to post ther verso of the artcle e.g. Word or Tex form) to ther persoal webste or stttoal repostory. Athors reqrg frther formato regardg Elsever s archvg ad mascrpt polces are ecoraged to vst:

2 Appled Nmercal Mathematcs 59 9) Cotets lsts avalable at SceceDrect Appled Nmercal Mathematcs A aalyss of the fte-dfferece method for oe-dmesoal Kle Gordo eqato o boded doma Hode Ha, Zhwe Zhag Departmet of Mathematcal Sceces, Tsgha Uversty, Bejg 184, PR Cha artcle fo abstract Artcle hstory: Receved 4 September 7 Receved revsed form 1 October 8 Accepted 4 October 8 Avalable ole 6 November 8 Keywords: Artfcal Bodary Codto ABC) Uboded doma Eergy method Fast algorthm Dscrete Artfcal Bodary Codto DABC) The mercal solto of the oe-dmesoal Kle Gordo eqato o a boded doma s aalyzed ths paper. Two artfcal bodary codtos are obtaed to redce the orgal problem to a tal bodary vale problem o a boded comptatoal doma, whch s dscretzed by a explct dfferece scheme. The stablty ad covergece of the scheme are aalyzed by the eergy method. A fast algorthm s obtaed to redce the comptatoal cost ad a dscrete artfcal bodary codto DABC) s derved by the Z-trasform approach. Fally, we llstrate the effcecy of the proposed method by several mercal examples. 8 IMACS. Pblshed by Elsever B.V. All rghts reserved. 1. Itrodcto The Kle Gordo eqato arses relatvstc qatm mechacs ad feld theory, whch s of great mportace for the hgh eergy physcsts [15], ad s sed to model may dfferet pheomea, cldg the propagato of dslocatos crystals ad the behavor of elemetary partcles. The oe-dmesoal Kle Gordo eqato s gve by the followg partal dfferetal eqato: h h c m c 4 = f x, t), x R 1, t >, 1.1) where = x, t) represets the wave desty at posto x ad tme t, h s the Plack costat, c ad m are partcle velocty ad partcle mass, respectvely. There are a lot of stdes o the mercal solto of tal ad tal-bodary problems of the lear or olear Kle Gordo eqato. For example, Khalfa ad Elgamal [] developed a mercal scheme based o a fte elemet method for the olear Kle Gordo eqato wth Drchlet bodary codto o a boded doma, whch shows the overflow solto as expected. Dca [6] aalyzed three fte dfferece approxmatos of the tal olear Kle Gordo eqato, showed they are drectly related to symplectc mappgs ad tested the schemes o the travelg wave ad perodc breather problems over log tme tervals. However, whe we wsh to solve the Kle Gordo mercally o a boded doma, these methods wll face essetal dffcltes. Sce the bodedess of the physcal doma or problem, the stadard fte elemet method or fte dfferece method ca t be sed drectly. Ths work was spported by The NSFC Project. No * Correspodg athor. E-mal addresses: hha@math.tsgha.ed.c H. Ha), zhagzhwe@mals.tsgha.ed.c Z. Zhag) /$3. 8 IMACS. Pblshed by Elsever B.V. All rghts reserved. do:1.116/j.apm.8.1.5

3 H. Ha, Z. Zhag / Appled Nmercal Mathematcs 59 9) The artfcal bodary codto ABC) method s a powerfl approach to redce the problems o the boded doma to a boded comptatoal doma. I the well-kow paper of Egqst ad Majda [1], absorbg bodary codtos sg Padé approxmato of a psedo-dfferetal operator o a le-type bodary for the wave eqato are derved. Hgdo [,1] developed radato bodary codtos for the mercal modelg of dspersve waves. By specfyg the wavember ad freqecy parameters, the bodary codtos based o compostos of smple frst-order dfferetal operators was got. Hs formlas ca be appled wthot modfcato to hgher-dmesoal problem. Low-order local ABCs may have low accracy, whereas hgh-order local ABCs are sally hard to mplemet becase they typcally volve hgh-order dervatves [13]. The local ABCs may geerate some ophyscal reflecto at the artfcal bodary ad the well-posedess of the resltg trcated tal-bodary problem s stll ope geeral. Nolocal artfcal bodary codtos have the potetal of beg more accrate tha the local oes. Ha ad Zheg [19] obtaed three kds of exact oreflectg bodary codtos for exteror problems of wave eqatos two ad three-dmesoal space by a approach based o Dhamel s prcple. X. Atoe ad C. Besse [] obtaed a oreflectg bodary codtos for the oe-dmesoal Schrödger eqato. X. Atoe, C. Besse ad V. Moysset [3] also geeralzed ther approach to smlate the two-dmesoal Schrödger eqato sg oreflectg bodary codtos. Ha ad Hag [16], Ha, Y ad Hag [18] derved the exact oreflectg bodary codtos for two- ad three-dmesoal Schrödger eqatos. Ha ad Y [17] also derved the exact oreflectg bodary codtos for two- ad three-dmesoal Kle Gordo eqatos. Geerally speakg, the exact bodary codtos reqre more comptatoal cost. I order to overcome ths dsadvatage, a fast algorthm s gve or paper. The orgazato of ths artcle s the followg: I Secto we trodce two artfcal bodares ad fd the artfcal bodary codtos, the redce the orgal problem to a eqvalet problem o the boded comptatoal doma. I Secto 3, a fte-dfferece scheme for the redced problem s gve ad ts stablty ad covergece are aalyzed. A fast algorthm s obtaed Secto 4 to redce the comptatoal cost. I Secto 5, a dscrete artfcal bodary codto DABC) s derved by the Z -trasform approach. Some mercal reslts wll be gve Secto 6 to demostrate the accracy ad effcecy of the proposed methods.. The artfcal bodary codto I ths secto, we stdy the mercal approxmato of a dspersve wave solto x, t), to the eqato wth a sorce term o a boded doma. More precsely, we cosder the followg lear Kle Gordo eqato o R 1 [, T ]: a b = f x, t), x R 1, t [, T ],.1) t= = ϕ x), x R 1,.) t t= = ϕ 1 x), x R 1..3) Here a, b are two real costats. Assme ϕ x), ϕ 1 x) ad f x, t) satsfyg: Sppϕ x) [x l, x r ],Sppϕ 1 x) [x l, x r ] ad Spp f x, t) [x l, x r ] [, T ]. For smplcty of the dedcto, we take x l =adx r = 1. I order to redce the problem.1).3) to a boded comptatoal doma, we trodce two artfcal bodares, Σ r = x, t) x = 1, t T, Σ l = x, t) x =, t T, whch dvde R 1 [, T ] to three parts, D l = x, t) x, t T, D = x, t) x 1, t T, D r = x, t) 1 x, t T. The boded doma D s or comptatoal doma. Cosder the restrcto of x, t) o the boded doma D r. x, t) satsfes, a b =, x, t) D r, Σr = 1, t) g 1 t), t= =, x 1, t t= =, x 1..4).5).6).7)

4 157 H. Ha, Z. Zhag / Appled Nmercal Mathematcs 59 9) Sce 1, t) s kow, the problem.4).7) s complete, whch caot be solved depedetly. If Σr = 1, t) g 1 t) s gve, the problem above has a qe solto. Let Ux, s) = L x, t) ) = e st x, t) dt, Re s >, deotes the Laplace trasform of the kow solto x, t). By.4).7) t satsfes, s Ux, s) a U xx x, s) b Ux, s) =, 1 < x <,.8) U1, s) = Gs) L g 1 t) ) = e st g 1 t) dt,.9) Ux, s) <, x..1) Eq..8) s a secod-order lear ODE wth costat coeffcet, ts geeral solto s gve by ) ) s b Ux, s) = c 1 s) exp s b x 1) c s) exp x 1). a a The codto.1) mples c s), ad we obta ) s b Ux, s) = c 1 s) exp x 1),.11) a here the roots wth postve real parts are take. The partal dervatve wth respect to x yelds, ) Ux, s) s b = s b c 1 s) exp x 1)..1) a a Combg.11) ad.1) o the artfcal bodary Σ r,wearrveat U1, s) s b = 1 U1, s) = a s U1, s) b U1, s) )..13) a s b By the table of Laplace trasform see page 118 of [14]), we obta ) L 1 = J bt), s b L s U1, s) b U1, s) ) = 1, t) b 1, t). The, by the covolto theorem of Laplace trasforms, from.13) we obta: 1, t) = 1 a = 1 1, t) b a a = 1 a [ J bt bτ ] 1, τ ) ) τ b 1, τ ) dτ 1, t) b a J 1, τ ) t bt bτ ) dτ b a [ J bt bτ ) J bt bτ ) ] 1, τ ) dτ. J bt bτ )1, τ ) dτ We get the artfcal bodary codto of the problem.1).3) o Σ r. Smlarly we ca get the artfcal bodary codto o Σ l,wtht [, T ]. Hece, we ca redce the tal bodary vale problem o the comptatoal doma D. a b = f x, t), x, t) [, 1] [, T ],.14) t= = ϕ x), t t= = ϕ 1 x), x [, 1],.15) 1, t), t) 1, t) a = b, t) a = b [ J bt bτ ) J bt bτ ) ] 1, τ ) dτ,.16) [ J bt bτ ) J bt bτ ) ], τ ) dτ..17)

5 H. Ha, Z. Zhag / Appled Nmercal Mathematcs 59 9) Let Jx) = J x) J x), where Jx) s a specal fcto. By some basc recrso formlas of Bessel fctos see page 4 of [1]), we have Jx) := J x) J x) = J x) J 1 x)) 1 = J x) J x) ). The artfcal bodary codtos.16),.17) wll have two smple forms: 1, t) 1, t) t a = b Jbt bτ )1, τ ) dτ,.18), t), t) t a = b Jbt bτ ), τ ) dτ..19) Moreover, let Fx) deotes the prmtve of Jx): Fx) = x Js) ds = ) k ) k1 x ) k ) k3 x x. k!k!k ) k!k )!k 3) k= k= Itegratg by parts Eqs..18) ad.19), we obta ather two eqvalet forms of bodary codtos. The ew forms wll brg some coveece for the proof of stablty ad covergece. 1, t), t) 1, t) t a = b, t) t a = b Fbt bτ ) 1, τ ) dτ..) τ Fbt bτ ), τ ) dτ..1) τ Next, we dscss the qeess ad stablty estmate of the redced problem.14).17). Mltply Eq..1) by ad tegrate wth respect to x [, 1] for fxed t, T ], sg the bodary codto.16),.17), we get d 1 1 [ ) ), t), t) a b 1, t) x, t)] dx a B 1, t) ), t) a B, t) ) dt Here 1 = B νt) ) = 1 a, t) f x, t) dx. dνt) dt b a [ J bt bτ ) J bt bτ ) ] ντ ) dτ. We trodce two axlary fctos W 1) x, t) ad W ) x, t), whch satsfy the followg problems, respectvely:.) ad W 1) tt a W 1) xx b W 1) =, x, t) D r, W 1) Σr = 1, t), t T, W 1) t= =, 1 < x <, W 1) t t= =, 1 < x < W ) tt a W ) xx b W ) =, x, t) D l, W ) Σl =, t), t T, W ) t= =, < x <, W ) t t= =, < x <.

6 157 H. Ha, Z. Zhag / Appled Nmercal Mathematcs 59 9) Throgh a smlar aalyss, we obta, ad 1, t) a B 1, t) ) = d 1 dt, t) a B, t) ) = d 1 dt 1 [ W 1) ) x, t) W 1) ) a x, t) b W 1) x, t) ) ] dx,.3) We trodce Et) ad Ft) as followg, Et) = 1 Ft) = [ ) ), t), t) a b x, t)] dx [ W ) ) x, t) W ) ) a x, t) b W ) x, t) ) ] dx..4) [ W 1) ) x, t) W 1) ) a x, t) b W 1) x, t) ) ] dx [ W ) ) x, t) W ) a x, t) f x, t) ) dx. Combg.).6) ad sg Cachy Schwarz eqalty, we obta, ) b W ) x, t) ) ] dx,.5).6) d Et) Et) Ft), t T. dt Usg the Growall eqalty from eqalty.7) ad otcg that,.7) E) = 1 1 [ ϕ1 x) ) a ϕ 1 x)) b ϕ x) ) ] dx. we get the stablty estmate for the solto of the redced problem.14).17): 1 [ ) ), t), t) a b x, t)] dx 1 [ ϕ1 x) ) a ϕ 1 x)) b ϕ x) ) t ] dx 1 The, we obta the followg stablty estmate of the redced problem.14).17). e t τ f x, τ ) ) dxdτ..8) Theorem.1. The redced problem.14).17) has at most oe solto x, t) o the boded comptatoal doma D,ad x, t) cotosly depeds o the tal vale ϕ x), ϕ 1 x), ad fx, t). From Theorem.1, we kow that the redced problem.14).17) s eqvalet to the orgal problem.1).3). Namely, the solto of the redced problem.14).17) s the restrcto of the solto of orgal problem.1).3) o the boded doma D,vceversa. 3. Aalyss of the dfferece scheme I ths secto, we cosder the fte dfferece approxmato of the redced problem.14).17) o the boded doma D.WedvdethedomaD by a set of les parallel to the x- ad t-axes to form a grd. We wrte h = 1/I ad τ = T /N for the le spacgs, where I ad N are two postve tegers. The crossg pots Ω τ are called the grd pots, h Ω τ h = x, t ) x =, =, 1,...,I; t = τ, =, 1,...,T /τ.

7 H. Ha, Z. Zhag / Appled Nmercal Mathematcs 59 9) Sppose U = I, s a grd fcto o Ω τ. For the smplcty, assme the costats a = b = 1. Itrodce h the followg otatos [4]: / = 1 ) /, = 1 ), δ x / = 1 h δ x = 1 h ), δt / = 1 ), τ 1 ), δ t = 1 τ δ x = 1 h 1 1 ), δ t = 1 ), 1 τ ). We deote the vale of the solto x, t) at the grd pot x, t ) by U follows from.14),.15),.1),.) that: ad f = f x, t ). Usg the Taylor expaso, t δt U δx U U = f R, 1 I 1, 1, 3.1) U = φ h), I, 3.) U 1 = U τ φ 1 h) S 1, I, 3.3) δ t U 1/ I δ x U / = δt U m I m=1 δ t U 1/ δ x U 1/ = δt U m m=1 m)τ m)τ If the solto x, t) s smooth eogh, there exsts a costat C, sch that R C h τ ), S 1 Cτ, P Ch τ ), Q Ch τ ). I Fτ s) ds P I,, 3.4) Fτ s) ds Q,. 3.5) Omttg the trcato errors 3.1) 3.5), we costrct a fte dfferece scheme of the redced problem.14).17): δt δx = f, 1 I 1, 1, 3.6) = φ h), I, 3.7) 1 = τ φ 1 h), I, 3.8) δ t 1/ I δ x / = δ t 1/ δ x 1/ = Fτ s) ds,, 3.9) δt m I m=1 m)τ δt m Fτ s) ds,. 3.1) m=1 m)τ Ths s a explct scheme wth global bodary codtos. I the followg, we cosder the stablty ad covergece of the scheme. Mltplyg 3.6) by hδt ad smmg p for from 1 to I 1, we obta =1 hδ t δ t δ x After some calclato, we get =1 hδ t δ t = h τ =1 ) = =1 δt 1/ hδ t f. 3.11) ) δt / ). 3.1) Usg the smmato by parts formla ad the bodary codto 3.9) 3.1), we have hδt δ x = h τ =1 = h τ = = δ x 1 1/ δ x 1/ h τ = δ x 1 1/ δ x 1/ h τ = δ x 1/ δ x 1/ δ x 1/ δ t δ x / δ t I δ x 1/ δ x 1/

8 1574 H. Ha, Z. Zhag / Appled Nmercal Mathematcs 59 9) δt δ t 1/ δ t I I 1 I I 3. Notce that, I = δt δ t 1/ Smlarly, = δt δt I A IB. δ t 1/ I δt m m=1 m)τ δt m m=1 m)τ δt m m=1 m)τ m=1 δ t m I Fτ s) ds Fτ s) ds m)τ Fτ s) ds Fτ s) ds δt δt 1/ δt 3.13) I 3 I A 3 IB 3. Usg the lear terpolato to costrct a cotos fcto ũ1, t), whch satsfes ũ t 1, t) = δt m, t [mτ τ,mτ ). Accordg to the stablty estmate of the cotos case Secto, we obta I A = δ t δ t δt m m=1 m)τ It s easy to check, I B = δ t δt 1/ δt 1 = By the same techqe, we obta that I A 3 I B 3 = δ t I δt 1/ I δt I = 1 Fτ s) ds δt 1/ The thrd term the left of Eq. 3.11) s easy, =1 hδ t = h τ =1 1 h τ We trodce a axlary qatty Ẽ, Ẽ s h δ t 1/ = s h δ t 1/ =1 ) =1 ) =1 δt 1/ δt 1/. 3.14) ) δt / ). s also oegatve, ad δt 1/ I =1 1/) hτ δt 1/ 4 = s h δ t 1/ hs 4 = I αh δt 1/ = =1 ) 1 s τ ) h 4 δt 1 1/ δ t 1/ ) = ) δt / ) I ) ) s h δ t 1/ I ) s h δ t 1/ I =1 ) ) δx 1/ 1/ δt 1/ = δx 1/ 1/ ) =1 ) = ) = δ x 1 1/ δ x 1/ h δx 1/ 1/ ) s h δ t 1/ ) I s h 1/ ) =1 1/ =1 ) h 4 ) =1 = 1 δx 1 1/ δ x 1/ δt 1/ ) >, 3.16) ) )

9 H. Ha, Z. Zhag / Appled Nmercal Mathematcs 59 9) where s = τ h, 1), α s = m, 1 s τ ) >. 4 The rght had of Eq. 3.11) s boded by: =1 hδ t f = h =1 f δt 1/ 1 s τ ) h 8 δ t / ) =1 δt / ) δt 1/ ) h 1 s τ /4 =1 f ). 3.17) Assme s τ 4 < 1, accordg to the defto of Ẽ, we obta the eqalty Ẽ 1 s τ ) h δt / ). 4 =1 3.18) Combg the expressos 3.1) 3.18), we get Ẽ Ẽ τ τ Ẽ Ẽ ) f, 1 s τ /4 Ẽ 1 τ / τ Ẽ f. 1 τ / 1 τ /)1 s τ /4) Whe τ 3,wehave Ẽ 1 3τ ) Ẽ τ f. 1 τ /)1 s τ /4) By dscrete Growall eqalty see page 11 of [3]), we arrve at Ẽ Ẽ 1 3τ ) τ f k1 1 τ /)1 s τ 1 3τ ) k /4) k= k=1 e 3 τ τ Ẽ f k. 1 τ /)1 s τ 3.19) /4) From 3.16) ad 3.19), we obta the stablty theory of the scheme 3.6) 3.1). k=1 Theorem 3.1 stablty of the scheme). Sppose s the solto of dfferece scheme 3.6) 3.1), s= τ /h, 1) ad α = m s, 1 s τ 4 )>.Let I E = αh δt 1/ ) δx 1/ 1/ = = ) =1 1/ deotes the eergy orm at th tme. We have the followg estmate, E Ẽ e 3 τ τ Ẽ 1 τ /)1 s τ /4) Where, f k = =1 h f k ). ) f k. k=1 Sce the dfferece scheme 3.6) 3.1) s a system of lear algebrac eqato at each tme level, t s easy to obta, Lemma 3.1. The dfferece scheme 3.6) 3.1) has a qe solto. Next, we tr to aalyze the covergece of the dfferece scheme. Let e = U x, t ). Sbtractg 3.1) 3.5) from 3.6) 3.1), we ca obta the error eqato: deotes the error o the grd pot

10 1576 H. Ha, Z. Zhag / Appled Nmercal Mathematcs 59 9) δt e δx e e = r, 1 I 1, 1, 3.) e =, I, 3.1) e 1 = s 1, I, 3.) δ t e 1/ I δ x e / = δ t e 1/ δ x e 1/ = m=1 δ t em I m)τ δt em m=1 m)τ Fτ s) ds p I,, 3.3) Fτ s) ds q,. 3.4) Where there exsts a costat c, sch that r c h τ ), s 1 cτ, p I ch τ ), q ch τ ). 3.5) Usg the same techqe the proof of Theorem 3.1, we ca obta the followg covergece theory. Theorem 3. covergece of the scheme). Let E deotes the eergy orm of the error at th tme level, s = τ /h, 1),adα = s/. I E = αh δt 1/ = ) = δx 1/ 1/ we have the estmate, E e 3 τ τ k= q Ẽ ) 1 τ / αh p αh ad k=1 It follows from 3.1), 3.) ad 3.5) that, Ẽ = s h δ t e 1/ ) =1 = O Ihτ ) = O τ ), k= q ) αh p αh k=1 I ) =1 δt e 1/ ) I ) ) s h δ t e 1/ I hr ) O1). α =1 =1 1/ ) ) hr ). α = δ x e 1 1/ δ xe 1/ h Hece, the eergy orm of the absolte error E have oe order covergece. 4. The fast algorthm The artfcal bodary codtos eed to compte the covolto terms, whch are very expesve for mercal comptato. We recall the bodary codto.18) ad take a = b = 1, 1, t) 1, t) = Jt τ )1, τ ) dτ. Where the specal fcto Jt τ ) ca be defed by the seres: =1 e 1 e Jt τ ) = 1 J t τ ) J t τ ) = 1 ) l1 t τ )l l 1)!l )!l3 1 α l t τ ) l. l= l= 4.1) The coeffcets α l decay a rate of Ol! l ) ),sowejstchoosethefrst K 1K s a postve eve mber) terms 4.1) to approxmate the specal fcto Jt τ ). The we obta a approxmate bodary codto of the orgal bodary codto.18):

11 1, t) 1, t) = = K l= H. Ha, Z. Zhag / Appled Nmercal Mathematcs 59 9) K / K / l= l= P l t) α l t τ ) l α l l1) j= 1, τ ) dτ 1 C j l1) ) j t j τ l1) j 1, τ ) dτ 1, τ ) dτ 1 1, τ ) dτ τ l 1, τ ) dτ, 4.) here P l t), l =, 1,,...,K are gve polyomals of tme t. The advatage of ths algorthm s that we jst eed to deal wth a seres of tegratos τ l 1, τ ) dτ, l =, 1,,...,K, stead of the covolto term. Sce t τ l 1, τ ) dτ = τ l 1, τ ) dτ τ l 1, τ ) dτ, l =, 1,,...,K. t I practcal comptato, at the th tme level we jst eed to save the prevos tegrato vale, ad do oe step tegral calcls. Or mercal example shows that ths algorthm s very effcecy. 5. Dscrete artfcal bodary codtos I ths secto we dscss how to get the dscrete artfcal BCs DABC) for the Kle Gordo eqato. Ths approach was trodced by A. Arold [4] for Schrödger eqato, ad M. Ehrhardt [8] for parabolc eqato. After that Arold ad Ehrhardt sed ths approach to fd the dscrete artfcal BCs for other eqatos [5,11,5]. [5] deals wth a geeralzed Schrödger eqato appearg acostcs. [5] deals wth a parabolc eqato. [11] deals wth a Schrödger Posso system. A Prceto grop also adapted ths approach to systems of wave eqatos for materals wth cracks [7]. Istead of dscretzg the aalytc ABC lke 3.9) ad 3.1), we costrct DABCs of the flly dscretzed whole-space problem. Recosder the orgal tal vale problem.1),.), for smplcty assmg a = b = 1 aga. We mmc the dervato of the aalytc ABC Secto o a dscrete level. Frst choose two tegers I ad N, ad choose T as a fxed comptatoal tme. Let h deotes spatal mesh, τ deotes tme mesh, respectvely. h = 1/I, τ = T /N. Wth the form grd pots x, t ) x =, Z, t = τ, N ad the approxmatos x, t ) ad f f x, t ), the dscretzed Kle Gordo eqato o the boded doma, ) [, T ] reads: ) 1 α 1 ) τ = τ f, =, ±1, ±,..., = 1,,..., 5.1) = φ x ), 1 = τ φ 1 x ), =, ±1, ±,..., 5.) wth ) τ α =. h Assme ϕ x), ϕ 1 x), ad f x, t) have the same compact spport as Secto, we get =, 1 =, = I, I 1, I,..., =,,,..., f =, = I, I 1, I,..., =,,,..., =, 1,... We try to fd the bodary codto o Σ h I1 ad Σh, Σ h I1 = x I1, t ) =, 1,..., Σ h = x, t ) =, 1,.... Frst cosder the restrcto of the problem 5.1), 5.) for I, whch satsfes the followg dfferece eqato. 1 ) α 1 ) τ =, = I 1, I,..., = 1,,..., 5.3) = φ x ), 1 = τ φ 1 x ), = I 1, I, ) Sce I =, 3,... are kow o the bodary Γ h I1, the problem 5.3), 5.4) s complete, whch caot be solved depedetly. Assme I =, 3,... are gve, the the dfferece eqato above has a qe solto. Ths problem s defed o the half-fte doma. To solve t, we se the Z -trasform method see page 117 of [14]):

12 1578 H. Ha, Z. Zhag / Appled Nmercal Mathematcs 59 9) Let Z = U z) := z, z C, z > R, = where R deotes the covergece rads of ths Laret seres. Z s called the Z -trasform of the seqece for each fxed dex. Accordg to the tal codto ad defalt =, we have Z 1 = zu z), Z 1 = z U z). The dfferece eqato 5.3) becomes zu z) U z) 1 z U z) α U 1 z) U z) U z) ) τ U z) =, = I 1, I,... The U = I, I 1, I,..., satsfy the followg problem αu 1 βz)u z) αu =, = I 1, I,..., 5.5) U z),, 5.6) where βz) = z 1 z c, c = τ τ h ). Eq. 5.5) s a homogeeos d order dfferece eqato wth costat coeffcets, of whch the solto has the form: U z) = λz) ) I UI z), = I, I 1, I, ) The λz) satsfes αλ z) βz)λz) α =. 5.8) By Eq. 5.8) ad the assmptos 5.6), 5.7), we get: λz) = βz) β z) 4α = z 1/z c z r 1 z r r 3 /z 1/z α α = z 1/z c z 1 r 1 /z r /z r 3 /z 3 1/z 4 α z 1/z c zsz), 5.9) α where r 1 = r 3 = c, r = c 4α are three costats. Frst, we try to fd the Laret expaso of Sz). Observe that S z) satsfes, S z) = r 1/z r /z 3 3r 3 /z 4 4/z 5, Sz) hece S z) 1 r 1 z r z r 3 z 1 ) = r 1 3 z 4 z r z 3r 3 3 z 4 ) Sz). 4 z 5 5.1) Next, we assme that Sz) = 1 1 a z ad S z) = 1 a z, sg the formla 5.1) we ca obta a recrso relato of a for 5, wth a = 1 3 )r1 a 6 )r a 9 )r 3 a 3 1 )a 4, a 1 = r 1, a = r a 1r 1 4, a 3 = r 3 a r 1, a 4 = 1 a 1r 3 8 a r 4 5a 3r 1 8. Accordg to 5.9), we obta the Laret seres of λz) = = λ z : λ = c a 1 α, λ 1 = 1 a α, λ = a 1,. α From Fg. 1 we ca see that the absolte vale of λ decle very qckly. The method of comptg the Laret coeffcets throgh a ODE was frst gve Secto of Chapter 1 [1]. Now, we get the verse trasform of λz) Z λz) =λ.

13 H. Ha, Z. Zhag / Appled Nmercal Mathematcs 59 9) Fg. 1. The decay tedecy of the coeffcet λ,hereh =.1, τ =.5. Accordg to the formla 5.7) ad the covolto theorem for Z -trasforms, we get I1 = k= λ k k I, =, 3,... Ths s the DABC o the bodary Σ h I1, we are tryg to fd. Smlarly, we ca get the DABC o the bodary Σh as followg = k= λ k k, =, 3,... I practcal, we ca make some tables for the coeffcets λ before startg the mercal comptatos. Usg or DABCs, the mercal solto o the comptatoal doma D exactly eqals the restrcto of the dscrete whole-space solto o the comptatoal doma. Therefore, ths scheme prevets ay mercal reflectos at the bodary. Remark 5.1. Accordg to or calclato, these coeffcets λ are exact, the mercal error of the DABC method s jst eqal to the dscretzato error of 5.1), 5.) o the boded doma R 1 [, T ]. Hece the DABC method has the secod order covergece. Remark 5.. Oe ca also compte explct solto to homogeeos d order dfferece eqato wth costat coeffcets, see [9]. So wth oly very mor chages, we ca also deal wth the Kle Gordo eqato wth tal data that s ot spported wth the comptatoal doma. 6. Nmercal tests To show the effectveess of dfferet bodary codtos, ABC, DABC ad the fast algorthm FAST) are gve ths paper. We preset some mercal examples ths secto. I Example 1, we cosder the Kle Gordo eqato wthot sorce term, the exact solto s gve, ad the mercal soltos are compared wth the exact solto. The secod example s the Kle Gordo eqato wth sorce term, smltaeosly we compare the comptatoal tme of the dfferet schemes for Example. We also test the relato betwee the mercal accracy of the fast algorthm ad the optmal strategy of choosg K, especally, we test the log tme performace of the fast algorthm FAST). Example 1. We cosder the Kle Gordo eqato wthot sorce term: =, x R1, t,

14 158 H. Ha, Z. Zhag / Appled Nmercal Mathematcs 59 9) Table 1 Comptatoal errors ad covergece rate of the dfferece schemes for Example 1 t =.5 s). Mesh sze ABC FAST DABC 1/ 1.834E E.4531E 1/4 4.83E E E /8 1.3E E E /16.943E E E Table Comptatoal errors ad covergece rate of the dfferece schemes for Example 1 t = 1. s). Mesh sze ABC FAST DABC 1/ 8.834E E E 1/4.15E E E / E E E / E E E Table 3 Comptatoal errors ad covergece rate of the dfferece schemes for Example t = 1. s). Mesh sze ABC FAST DABC 1/ 8.77E E E 1/4.447E.9.659E E.4 1/ E E E / E E E s5π x), x 1, t= =, x > 1, t t= =, x R 1 whch has the exact solto: x, t) = 1 φ x t) φ x t) t xt x t φ ξ) J 1 t x ξ) ) t x ξ) dξ, where φ x) = t=. The solto represets two waves propagatg to the left ad rght respectvely wth ampltdes gradally decreasg. To evalate the qalty of mercal solto, we defe a error fcto as Et) = m, t) exa, t) L. exa, t) L The relatve error ad covergece rates of Example 1 are show Table 1 t =.5 s) ad Table t = 1. s).itcabe observed that the errors decay wth a early-optmal covergece rate of 4 whe the mesh s refed by a factor. Whe the comptato tme t =, all the orgal wave wll propagate ot the comptatoal doma. Example. Secodly, we cosder the same Kle Gordo eqato wth sorce term, whch wll physcally effect the wave propagatos. = 1 cos5t) s3π x), x R1, t, s5π x), x 1, t= =, x > 1, t t= =, x R 1. I ths example, the exact solto s gve o a very fe mesh h = 1 64, τ = h ). The relatve error ad covergece rates of Example are show Table 3 t = 1. s) ad Table 4 t = 1.5 s). It ca be observed that the errors decay wth a early-optmal covergece rate of 4 whe the mesh s refed by a factor. Fg. shows the wave ampltdes of dfferece schemes at fxed tmes, left oe s for Example 1 t = 1. s) ad rght oe s for Example t = 1.5 s). Compared wth the left oe, we ca fd that the exteral force ca geerate ew wave, whe the orgal wave propagate ot the comptatoal doma.

15 H. Ha, Z. Zhag / Appled Nmercal Mathematcs 59 9) Table 4 Comptatoal errors ad covergece rate of the dfferece schemes for Example t = 1.5 s). Mesh sze ABC FAST DABC 1/ E E.887E 1/ E E E /8 9.49E E E /16.187E E E 3.33 Table 5 Comptatoal tme of dfferet scheme for Example t = 1. s). h mesh sze) ABC DABC FAST 1/ / / / / / Table 6 The relato betwee comptatoal accracy ad K, for fxed mesh sze h = 1/3. Termal tme K Tme cost secods) Error T = 1 K = e 9 T = K = e 9 T = 3 K = e T = 4 K = e1 T = 5 K = e 9 T = 6 K = e T = 7 K = e 9 T = 8 K = e T = 9 K = e 9 T = 1 K = e 9 T = 1 K = e 9 T = 16 K = e 9 T = K = e 9 Fg.. Wave ampltdes of dfferet schemes at fxed tmes, left s for Example 1 t = 1. s),rghtsforexamplet = 1.5 s). Table 5 shows comptatoal tme of dfferece scheme for Example t = 1. s). The ABC method s very expesve for mercal comptato, whe the mesh s very fe. The FAST algorthm mproves the effcecy dramatcally, ad the DABC method s very fast too. Table 6 shows the relato betwee comptatoal accracy of the fast algorthm ad the optmal strategy of choosg K, here the Error fcto s defed by ErrorT ) = m, T ) exa, T ) L. I Eq. 4.) of Secto 4, we trcate the power seres expaso of the specal fcto Jt τ ) to obta a fast algorthm.

16 158 H. Ha, Z. Zhag / Appled Nmercal Mathematcs 59 9) Fg. 3. The relatoshp betwee the choosg of K ad the accracy of the reslt for Example wth the fxed tme t = 5, h = 1/16. Fg. 4. The decay rate of the error L orm choosg dfferet K for Example wth the fxed tme t = 5. From left to rght, K =,, 4, 6, 8, 1, h = 1/16. Nmercal tests dcate that the mercal accracy of the fast algorthm hghly depeds o the comptatoal tme t ad the choosg of trcato term mber K. Whe the comptatoal tme s ot very log compared wth the spatal doma [, 1], oly sg few terms wth K small) ca get a very hgh accracy. For log tme comptato, order to get the same accracy, we mst crease the term mber K accordgly. Fg. 3 shows the relato betwee comptatoal accracy ad the dfferet mber K. For the fxed tme t = 5, we ca see that whe K 4, the mercal solto s almost the same wth the exact solto. Fg. 4 shows the covergece rate betwee the mercal solto ad the exact solto for dfferet K. Fg. 5 shows the log tme propagato of the Kle Gordo eqato. 7. Coclso I ths paper, we aalyze the fte dfferece method for the oe-dmesoal Kle Gordo eqato o the boded doma. Two artfcal bodary codtos are obtaed to redce the orgal problem to a tal bodary vale problem o a boded comptatoal doma, whch s dscretzed by a explct dfferece scheme. The stablty ad covergece of the scheme are aalyzed by the eergy method. A fast algorthm s obtaed to redce the comptatoal cost ad a

17 H. Ha, Z. Zhag / Appled Nmercal Mathematcs 59 9) Fg. 5. Log tme t = s) comptato of Example. dscrete artfcal bodary codto DABC) s derved by the Z -trasform approach. Fally, we llstrate the effcecy of the proposed method by several mercal examples. The artfcal bodary codto for the mlt-dmesoal ad olear Kle Gordo eqato wll be cosdered as or frther work. Refereces [1] L.C. Adrews, Specal Fctos of Mathematcs for Egeers, McGraw-Hll Ic., New York, 199. [] X. Atoe, C. Besse, Ucodtoally stable dscretzato schemes of o-reflectg bodary codtos for the oe-dmesoal Schrödger eqato, J. Compt. Phys ) [3] X. Atoe, C. Besse, V. Moysset, Nmercal Schemes for the smlato of the two-dmesoal Schrödger eqato sg o-reflectg bodary codtos, Math. Compt ) 4) [4] A. Arold, Nmercally absorbg bodary codtos for qatm evolto eqatos, VLSI Desg ) [5] A. Arold, M. Ehrhardt, Dscrete trasparet bodary codtos for wde agle parabolc eqatos derwater acostcs, J. Compt. Phys ) [6] D.B. Dca, Symplectc fte dfferece approxmatos of the olear Kle Gordo eqato, SIAM J. Nmer. Aal ) [7] W. E, Z.Y. Hag, A dyamc atomstc-cotm method for the smlato of crystalle materals, J. Compt. Phys. 18 ) [8] M. Ehrhardt, Dscrete trasparet bodary codtos for parabolc eqatos, : Proceedgs of the GAMM 96 Coferece, ZAMM ) [9] M. Ehrhardt, Dscrete trasparet bodary codtos for Schrödger-type eqatos for o-compactly spported tal data, Appl. Nmer. Math. 58 8) [1] M. Ehrhardt, Dscrete artfcal bodary codtos, Ph.D. Thess, TU Berl, 1. [11] M. Ehrhardt, A. Zsowsky, Fast calclato of eergy ad mass preservg soltos of Schrödger Posso systems o boded domas, J. Compt. Appl. Math ) 1 8. [1] B. Egqst, A. Majda, Absorbg bodary codtos for the mercal smlato of waves, Math. Compt ) [13] D. Gvol, Hgh-order oreflectg bodary codtos wthot hgh-order dervatves, J. Compt. Phys. 17 1) [14] I.S. Gradshtey, M. Ryzhk, Table of Itegrals, Seres ad Prodcts, Academc Press, New York, 4. [15] W. Greer, Relatvstc Qatm Mechacs-Wave Eqatos, thrd ed., Sprger, Berl,. [16] H. Ha, Z. Hag, Exact artfcal bodary codtos for the Schrödger eqatos R, Comm. Math. Sc. 4) [17] H. Ha, D. Y, Absorbg bodary codtos for the mlt-dmesoal Kle Gordo eqato, Comm. Math. Sc. 5 7) [18] H. Ha, D. Y, Z. Hag, Nmercal soltos of Schrödger eqatos R 3, Nmer. Methods Partal Dfferetal Eqatos 3 7) [19] H. Ha, C.X. Zheg, Exact oreflectg bodary codtos for exteror problems of the hyperbolc eqato, Chese J. Compt. Phys. 5) [] R.L. Hgdo, Ratoal bodary codto for dspersve waves, SIAM J. Nmer. Aal ) [1] R.L. Hgdo, Absorbg bodary codtos for dfferece approxmato to the mltdmesoal wave eqato, Math. Compt ) [] M.E. Khalfa, M. Elgamal, A mercal solto to Kle Gordo eqato wth Drchlet bodary codto, Appl. Math. Compt. 16 5) [3] B.G. Pachpatte, Ieqaltes for Fte Dfferece Eqatos, Moographs ad Textbooks Pre ad Appled Mathematcs, Marcel Dekker Ic., New York,. [4] X.N. W, Z.Z. S, Covergece of dfferece scheme for heat eqato boded domas sg artfcal bodary codtos, Appl. Nmer. Math. 5 4) [5] A. Zsowsky, M. Ehrhardt, Dscrete trasparet bodary codtos for parabolc systems, Math. Compt. Model. 43 6)

Discrete Adomian Decomposition Method for. Solving Burger s-huxley Equation

Discrete Adomian Decomposition Method for. Solving Burger s-huxley Equation It. J. Cotemp. Math. Sceces, Vol. 8, 03, o. 3, 63-63 HIKARI Ltd, www.m-har.com http://dx.do.org/0.988/jcms.03.3570 Dscrete Adoma Decomposto Method for Solvg Brger s-hxley Eqato Abdlghafor M. Al-Rozbaya

More information

u(x, t) = u 0 (x ct). This Riemann invariant u is constant along characteristics λ with x = x 0 +ct (u(x, t) = u 0 (x 0 )):

u(x, t) = u 0 (x ct). This Riemann invariant u is constant along characteristics λ with x = x 0 +ct (u(x, t) = u 0 (x 0 )): x, t, h x The Frst-Order Wave Eqato The frst-order wave advecto eqato s c > 0 t + c x = 0, x, t = 0 = 0x. The solto propagates the tal data 0 to the rght wth speed c: x, t = 0 x ct. Ths Rema varat s costat

More information

u(x, t) = u 0 (x ct). This Riemann invariant u is constant along characteristics λ with x = x 0 +ct (u(x, t) = u 0 (x 0 )):

u(x, t) = u 0 (x ct). This Riemann invariant u is constant along characteristics λ with x = x 0 +ct (u(x, t) = u 0 (x 0 )): x, t ), h x The Frst-Order Wave Eqato The frst-order wave advecto) eqato s c > 0) t + c x = 0, x, t = 0) = 0x). The solto propagates the tal data 0 to the rght wth speed c: x, t) = 0 x ct). Ths Rema varat

More information

An Expansion of the Derivation of the Spline Smoothing Theory Alan Kaylor Cline

An Expansion of the Derivation of the Spline Smoothing Theory Alan Kaylor Cline A Epaso of the Derato of the Sple Smoothg heory Ala Kaylor Cle he classc paper "Smoothg by Sple Fctos", Nmersche Mathematk 0, 77-83 967) by Chrsta Resch showed that atral cbc sples were the soltos to a

More information

B-spline curves. 1. Properties of the B-spline curve. control of the curve shape as opposed to global control by using a special set of blending

B-spline curves. 1. Properties of the B-spline curve. control of the curve shape as opposed to global control by using a special set of blending B-sple crve Copyrght@, YZU Optmal Desg Laboratory. All rghts reserved. Last pdated: Yeh-Lag Hs (--9). ote: Ths s the corse materal for ME Geometrc modelg ad compter graphcs, Ya Ze Uversty. art of ths materal

More information

Beam Warming Second-Order Upwind Method

Beam Warming Second-Order Upwind Method Beam Warmg Secod-Order Upwd Method Petr Valeta Jauary 6, 015 Ths documet s a part of the assessmet work for the subject 1DRP Dfferetal Equatos o Computer lectured o FNSPE CTU Prague. Abstract Ths documet

More information

Motion Estimation Based on Unit Quaternion Decomposition of the Rotation Matrix

Motion Estimation Based on Unit Quaternion Decomposition of the Rotation Matrix Moto Estmato Based o Ut Qatero Decomposto of the Rotato Matrx Hag Y Ya Baozog (Isttte of Iformato Scece orther Jaotog Uversty Bejg 00044 PR Cha Abstract Based o the t qatero decomposto of rotato matrx

More information

Journal of Mathematical Analysis and Applications

Journal of Mathematical Analysis and Applications J. Math. Aal. Appl. 365 200) 358 362 Cotets lsts avalable at SceceDrect Joural of Mathematcal Aalyss ad Applcatos www.elsever.com/locate/maa Asymptotc behavor of termedate pots the dfferetal mea value

More information

Cubic Nonpolynomial Spline Approach to the Solution of a Second Order Two-Point Boundary Value Problem

Cubic Nonpolynomial Spline Approach to the Solution of a Second Order Two-Point Boundary Value Problem Joural of Amerca Scece ;6( Cubc Nopolyomal Sple Approach to the Soluto of a Secod Order Two-Pot Boudary Value Problem W.K. Zahra, F.A. Abd El-Salam, A.A. El-Sabbagh ad Z.A. ZAk * Departmet of Egeerg athematcs

More information

Processing of Information with Uncertain Boundaries Fuzzy Sets and Vague Sets

Processing of Information with Uncertain Boundaries Fuzzy Sets and Vague Sets Processg of Iformato wth Ucerta odares Fzzy Sets ad Vage Sets JIUCHENG XU JUNYI SHEN School of Electroc ad Iformato Egeerg X'a Jaotog Uversty X'a 70049 PRCHIN bstract: - I the paper we aalyze the relatoshps

More information

DISTURBANCE TERMS. is a scalar and x i

DISTURBANCE TERMS. is a scalar and x i DISTURBANCE TERMS I a feld of research desg, we ofte have the qesto abot whether there s a relatoshp betwee a observed varable (sa, ) ad the other observed varables (sa, x ). To aswer the qesto, we ma

More information

PGE 310: Formulation and Solution in Geosystems Engineering. Dr. Balhoff. Interpolation

PGE 310: Formulation and Solution in Geosystems Engineering. Dr. Balhoff. Interpolation PGE 30: Formulato ad Soluto Geosystems Egeerg Dr. Balhoff Iterpolato Numercal Methods wth MATLAB, Recktewald, Chapter 0 ad Numercal Methods for Egeers, Chapra ad Caale, 5 th Ed., Part Fve, Chapter 8 ad

More information

2.160 System Identification, Estimation, and Learning Lecture Notes No. 17 April 24, 2006

2.160 System Identification, Estimation, and Learning Lecture Notes No. 17 April 24, 2006 .6 System Idetfcato, Estmato, ad Learg Lectre Notes No. 7 Aprl 4, 6. Iformatve Expermets. Persstece of Exctato Iformatve data sets are closely related to Persstece of Exctato, a mportat cocept sed adaptve

More information

On the convergence of derivatives of Bernstein approximation

On the convergence of derivatives of Bernstein approximation O the covergece of dervatves of Berste approxmato Mchael S. Floater Abstract: By dfferetatg a remader formula of Stacu, we derve both a error boud ad a asymptotc formula for the dervatves of Berste approxmato.

More information

N-dimensional Auto-Bäcklund Transformation and Exact Solutions to n-dimensional Burgers System

N-dimensional Auto-Bäcklund Transformation and Exact Solutions to n-dimensional Burgers System N-dmesoal Ato-Bäckld Trasformato ad Eact Soltos to -dmesoal Brgers System Mglag Wag Jlag Zhag * & Xagzheg L. School of Mathematcs & Statstcs Hea Uversty of Scece & Techology Loyag 4703 PR Cha. School of

More information

The Finite Volume Method for Solving Systems. of Non-linear Initial-Boundary. Value Problems for PDE's

The Finite Volume Method for Solving Systems. of Non-linear Initial-Boundary. Value Problems for PDE's Appled Matematcal Sceces, Vol. 7, 13, o. 35, 1737-1755 HIKARI Ltd, www.m-ar.com Te Fte Volme Metod for Solvg Systems of No-lear Ital-Bodary Vale Problems for PDE's 1 Ema Al Hssa ad Zaab Moammed Alwa 1

More information

NumericalSimulationofWaveEquation

NumericalSimulationofWaveEquation Global Joral of Scece Froter Research: A Physcs ad Space Scece Volme 4 Isse 7 Verso. Year 4 Type : Doble Bld Peer Revewed Iteratoal Research Joral Pblsher: Global Jorals Ic. (USA Ole ISSN: 49-466 & Prt

More information

Lecture 12 APPROXIMATION OF FIRST ORDER DERIVATIVES

Lecture 12 APPROXIMATION OF FIRST ORDER DERIVATIVES FDM: Appromato of Frst Order Dervatves Lecture APPROXIMATION OF FIRST ORDER DERIVATIVES. INTRODUCTION Covectve term coservato equatos volve frst order dervatves. The smplest possble approach for dscretzato

More information

Non-uniform Turán-type problems

Non-uniform Turán-type problems Joural of Combatoral Theory, Seres A 111 2005 106 110 wwwelsevercomlocatecta No-uform Turá-type problems DhruvMubay 1, Y Zhao 2 Departmet of Mathematcs, Statstcs, ad Computer Scece, Uversty of Illos at

More information

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution:

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution: Chapter 4 Exercses Samplg Theory Exercse (Smple radom samplg: Let there be two correlated radom varables X ad A sample of sze s draw from a populato by smple radom samplg wthout replacemet The observed

More information

International Journal of Scientific & Engineering Research, Volume 5, Issue 9, September ISSN

International Journal of Scientific & Engineering Research, Volume 5, Issue 9, September ISSN Iteratoal Joral o Scetc & Egeerg Research, Volme 5, Isse 9, September-4 5 ISSN 9-558 Nmercal Implemetato o BD va Method o Les or Tme Depedet Nolear Brgers Eqato VjthaMkda, Ashsh Awasth Departmet o Mathematcs,

More information

Q-analogue of a Linear Transformation Preserving Log-concavity

Q-analogue of a Linear Transformation Preserving Log-concavity Iteratoal Joural of Algebra, Vol. 1, 2007, o. 2, 87-94 Q-aalogue of a Lear Trasformato Preservg Log-cocavty Daozhog Luo Departmet of Mathematcs, Huaqao Uversty Quazhou, Fua 362021, P. R. Cha ldzblue@163.com

More information

Alternating Direction Implicit Method

Alternating Direction Implicit Method Alteratg Drecto Implct Method Whle dealg wth Ellptc Eqatos the Implct form the mber of eqatos to be solved are N M whch are qte large mber. Thogh the coeffcet matrx has may zeros bt t s ot a baded system.

More information

EVALUATION OF FUNCTIONAL INTEGRALS BY MEANS OF A SERIES AND THE METHOD OF BOREL TRANSFORM

EVALUATION OF FUNCTIONAL INTEGRALS BY MEANS OF A SERIES AND THE METHOD OF BOREL TRANSFORM EVALUATION OF FUNCTIONAL INTEGRALS BY MEANS OF A SERIES AND THE METHOD OF BOREL TRANSFORM Jose Javer Garca Moreta Ph. D research studet at the UPV/EHU (Uversty of Basque coutry) Departmet of Theoretcal

More information

Meromorphic Solutions of Nonlinear Difference Equations

Meromorphic Solutions of Nonlinear Difference Equations Mathematcal Comptato Je 014 Volme 3 Isse PP.49-54 Meromorphc Soltos of Nolear Dfferece Eatos Xogyg L # Bh Wag College of Ecoomcs Ja Uversty Gagzho Gagdog 51063 P.R.Cha #Emal: lxogyg818@163.com Abstract

More information

Finite difference methods An introduction. Jean Virieux Professeur UJF with the help of Virginie Durand

Finite difference methods An introduction. Jean Virieux Professeur UJF with the help of Virginie Durand Fte dfferece methods A trodcto Jea Vre Professer JF 01-013 wth the help of Vrge Drad A global vso Dfferetal Calcls (Newto, 1687 & Lebz 1684) Fd soltos of a dfferetal eqato (DE) of a dyamc system. Chaos

More information

d dt d d dt dt Also recall that by Taylor series, / 2 (enables use of sin instead of cos-see p.27 of A&F) dsin

d dt d d dt dt Also recall that by Taylor series, / 2 (enables use of sin instead of cos-see p.27 of A&F) dsin Learzato of the Swg Equato We wll cover sectos.5.-.6 ad begg of Secto 3.3 these otes. 1. Sgle mache-fte bus case Cosder a sgle mache coected to a fte bus, as show Fg. 1 below. E y1 V=1./_ Fg. 1 The admttace

More information

A Remark on the Uniform Convergence of Some Sequences of Functions

A Remark on the Uniform Convergence of Some Sequences of Functions Advaces Pure Mathematcs 05 5 57-533 Publshed Ole July 05 ScRes. http://www.scrp.org/joural/apm http://dx.do.org/0.436/apm.05.59048 A Remark o the Uform Covergece of Some Sequeces of Fuctos Guy Degla Isttut

More information

Discretization Methods in Fluid Dynamics

Discretization Methods in Fluid Dynamics Corse : Fld Mechacs ad Eergy Coverso Dscretzato Methods Fld Dyamcs Mayak Behl B-tech. 3 rd Year Departmet of Chemcal Egeerg Ida Isttte of Techology Delh Spervsor: Dr. G.Bswas Ida Isttte of Techology Kapr

More information

Functions of Random Variables

Functions of Random Variables Fuctos of Radom Varables Chapter Fve Fuctos of Radom Varables 5. Itroducto A geeral egeerg aalyss model s show Fg. 5.. The model output (respose) cotas the performaces of a system or product, such as weght,

More information

Introduction to local (nonparametric) density estimation. methods

Introduction to local (nonparametric) density estimation. methods Itroducto to local (oparametrc) desty estmato methods A slecture by Yu Lu for ECE 66 Sprg 014 1. Itroducto Ths slecture troduces two local desty estmato methods whch are Parze desty estmato ad k-earest

More information

Lecture 2: The Simple Regression Model

Lecture 2: The Simple Regression Model Lectre Notes o Advaced coometrcs Lectre : The Smple Regresso Model Takash Yamao Fall Semester 5 I ths lectre we revew the smple bvarate lear regresso model. We focs o statstcal assmptos to obta based estmators.

More information

L5 Polynomial / Spline Curves

L5 Polynomial / Spline Curves L5 Polyomal / Sple Curves Cotets Coc sectos Polyomal Curves Hermte Curves Bezer Curves B-Sples No-Uform Ratoal B-Sples (NURBS) Mapulato ad Represetato of Curves Types of Curve Equatos Implct: Descrbe a

More information

Analysis of Lagrange Interpolation Formula

Analysis of Lagrange Interpolation Formula P IJISET - Iteratoal Joural of Iovatve Scece, Egeerg & Techology, Vol. Issue, December 4. www.jset.com ISS 348 7968 Aalyss of Lagrage Iterpolato Formula Vjay Dahya PDepartmet of MathematcsMaharaja Surajmal

More information

On the construction of symmetric nonnegative matrix with prescribed Ritz values

On the construction of symmetric nonnegative matrix with prescribed Ritz values Joural of Lear ad Topologcal Algebra Vol. 3, No., 14, 61-66 O the costructo of symmetrc oegatve matrx wth prescrbed Rtz values A. M. Nazar a, E. Afshar b a Departmet of Mathematcs, Arak Uversty, P.O. Box

More information

Fundamentals of Regression Analysis

Fundamentals of Regression Analysis Fdametals of Regresso Aalyss Regresso aalyss s cocered wth the stdy of the depedece of oe varable, the depedet varable, o oe or more other varables, the explaatory varables, wth a vew of estmatg ad/or

More information

5 Short Proofs of Simplified Stirling s Approximation

5 Short Proofs of Simplified Stirling s Approximation 5 Short Proofs of Smplfed Strlg s Approxmato Ofr Gorodetsky, drtymaths.wordpress.com Jue, 20 0 Itroducto Strlg s approxmato s the followg (somewhat surprsg) approxmato of the factoral,, usg elemetary fuctos:

More information

Chapter 5 Properties of a Random Sample

Chapter 5 Properties of a Random Sample Lecture 6 o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for the prevous lecture Cocepts: t-dstrbuto, F-dstrbuto Theorems: Dstrbutos of sample mea ad sample varace, relatoshp betwee sample mea ad sample

More information

Derivation of 3-Point Block Method Formula for Solving First Order Stiff Ordinary Differential Equations

Derivation of 3-Point Block Method Formula for Solving First Order Stiff Ordinary Differential Equations Dervato of -Pot Block Method Formula for Solvg Frst Order Stff Ordary Dfferetal Equatos Kharul Hamd Kharul Auar, Kharl Iskadar Othma, Zara Bb Ibrahm Abstract Dervato of pot block method formula wth costat

More information

v 1 -periodic 2-exponents of SU(2 e ) and SU(2 e + 1)

v 1 -periodic 2-exponents of SU(2 e ) and SU(2 e + 1) Joural of Pure ad Appled Algebra 216 (2012) 1268 1272 Cotets lsts avalable at ScVerse SceceDrect Joural of Pure ad Appled Algebra joural homepage: www.elsever.com/locate/jpaa v 1 -perodc 2-expoets of SU(2

More information

Numerical Simulations of the Complex Modied Korteweg-de Vries Equation. Thiab R. Taha. The University of Georgia. Abstract

Numerical Simulations of the Complex Modied Korteweg-de Vries Equation. Thiab R. Taha. The University of Georgia. Abstract Numercal Smulatos of the Complex Moded Korteweg-de Vres Equato Thab R. Taha Computer Scece Departmet The Uversty of Georga Athes, GA 002 USA Tel 0-542-2911 e-mal thab@cs.uga.edu Abstract I ths paper mplemetatos

More information

Open and Closed Networks of M/M/m Type Queues (Jackson s Theorem for Open and Closed Networks) Copyright 2015, Sanjay K. Bose 1

Open and Closed Networks of M/M/m Type Queues (Jackson s Theorem for Open and Closed Networks) Copyright 2015, Sanjay K. Bose 1 Ope ad Closed Networks of //m Type Qees Jackso s Theorem for Ope ad Closed Networks Copyrght 05, Saay. Bose p osso Rate λp osso rocess Average Rate λ p osso Rate λp N p p N osso Rate λp N Splttg a osso

More information

MOLECULAR VIBRATIONS

MOLECULAR VIBRATIONS MOLECULAR VIBRATIONS Here we wsh to vestgate molecular vbratos ad draw a smlarty betwee the theory of molecular vbratos ad Hückel theory. 1. Smple Harmoc Oscllator Recall that the eergy of a oe-dmesoal

More information

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class)

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class) Assgmet 5/MATH 7/Wter 00 Due: Frday, February 9 class (!) (aswers wll be posted rght after class) As usual, there are peces of text, before the questos [], [], themselves. Recall: For the quadratc form

More information

Strong Convergence of Weighted Averaged Approximants of Asymptotically Nonexpansive Mappings in Banach Spaces without Uniform Convexity

Strong Convergence of Weighted Averaged Approximants of Asymptotically Nonexpansive Mappings in Banach Spaces without Uniform Convexity BULLETIN of the MALAYSIAN MATHEMATICAL SCIENCES SOCIETY Bull. Malays. Math. Sc. Soc. () 7 (004), 5 35 Strog Covergece of Weghted Averaged Appromats of Asymptotcally Noepasve Mappgs Baach Spaces wthout

More information

( ) ( ) ( ( )) ( ) ( ) ( ) ( ) ( ) = ( ) ( ) + ( ) ( ) = ( ( )) ( ) + ( ( )) ( ) Review. Second Derivatives for f : y R. Let A be an m n matrix.

( ) ( ) ( ( )) ( ) ( ) ( ) ( ) ( ) = ( ) ( ) + ( ) ( ) = ( ( )) ( ) + ( ( )) ( ) Review. Second Derivatives for f : y R. Let A be an m n matrix. Revew + v, + y = v, + v, + y, + y, Cato! v, + y, + v, + y geeral Let A be a atr Let f,g : Ω R ( ) ( ) R y R Ω R h( ) f ( ) g ( ) ( ) ( ) ( ( )) ( ) dh = f dg + g df A, y y A Ay = = r= c= =, : Ω R he Proof

More information

ANALYSIS ON THE NATURE OF THE BASIC EQUATIONS IN SYNERGETIC INTER-REPRESENTATION NETWORK

ANALYSIS ON THE NATURE OF THE BASIC EQUATIONS IN SYNERGETIC INTER-REPRESENTATION NETWORK Far East Joural of Appled Mathematcs Volume, Number, 2008, Pages Ths paper s avalable ole at http://www.pphm.com 2008 Pushpa Publshg House ANALYSIS ON THE NATURE OF THE ASI EQUATIONS IN SYNERGETI INTER-REPRESENTATION

More information

18.413: Error Correcting Codes Lab March 2, Lecture 8

18.413: Error Correcting Codes Lab March 2, Lecture 8 18.413: Error Correctg Codes Lab March 2, 2004 Lecturer: Dael A. Spelma Lecture 8 8.1 Vector Spaces A set C {0, 1} s a vector space f for x all C ad y C, x + y C, where we take addto to be compoet wse

More information

Laboratory I.10 It All Adds Up

Laboratory I.10 It All Adds Up Laboratory I. It All Adds Up Goals The studet wll work wth Rema sums ad evaluate them usg Derve. The studet wll see applcatos of tegrals as accumulatos of chages. The studet wll revew curve fttg sklls.

More information

C.11 Bang-bang Control

C.11 Bang-bang Control Itroucto to Cotrol heory Iclug Optmal Cotrol Nguye a e -.5 C. Bag-bag Cotrol. Itroucto hs chapter eals wth the cotrol wth restrctos: s boue a mght well be possble to have scotutes. o llustrate some of

More information

Lower and upper bound for parametric Useful R-norm information measure

Lower and upper bound for parametric Useful R-norm information measure Iteratoal Joral of Statstcs ad Aled Mathematcs 206; (3): 6-20 ISS: 2456-452 Maths 206; (3): 6-20 206 Stats & Maths wwwmathsjoralcom eceved: 04-07-206 Acceted: 05-08-206 haesh Garg Satsh Kmar ower ad er

More information

DIFFERENTIAL GEOMETRIC APPROACH TO HAMILTONIAN MECHANICS

DIFFERENTIAL GEOMETRIC APPROACH TO HAMILTONIAN MECHANICS DIFFERENTIAL GEOMETRIC APPROACH TO HAMILTONIAN MECHANICS Course Project: Classcal Mechacs (PHY 40) Suja Dabholkar (Y430) Sul Yeshwath (Y444). Itroducto Hamltoa mechacs s geometry phase space. It deals

More information

Chapter 4 Multiple Random Variables

Chapter 4 Multiple Random Variables Revew for the prevous lecture: Theorems ad Examples: How to obta the pmf (pdf) of U = g (, Y) ad V = g (, Y) Chapter 4 Multple Radom Varables Chapter 44 Herarchcal Models ad Mxture Dstrbutos Examples:

More information

The Mathematical Appendix

The Mathematical Appendix The Mathematcal Appedx Defto A: If ( Λ, Ω, where ( λ λ λ whch the probablty dstrbutos,,..., Defto A. uppose that ( Λ,,..., s a expermet type, the σ-algebra o λ λ λ are defed s deoted by ( (,,...,, σ Ω.

More information

ENGI 4421 Propagation of Error Page 8-01

ENGI 4421 Propagation of Error Page 8-01 ENGI 441 Propagato of Error Page 8-01 Propagato of Error [Navd Chapter 3; ot Devore] Ay realstc measuremet procedure cotas error. Ay calculatos based o that measuremet wll therefore also cota a error.

More information

Research Article Gauss-Lobatto Formulae and Extremal Problems

Research Article Gauss-Lobatto Formulae and Extremal Problems Hdaw Publshg Corporato Joural of Iequaltes ad Applcatos Volume 2008 Artcle ID 624989 0 pages do:055/2008/624989 Research Artcle Gauss-Lobatto Formulae ad Extremal Problems wth Polyomals Aa Mara Acu ad

More information

EECE 301 Signals & Systems

EECE 301 Signals & Systems EECE 01 Sgals & Systems Prof. Mark Fowler Note Set #9 Computg D-T Covoluto Readg Assgmet: Secto. of Kame ad Heck 1/ Course Flow Dagram The arrows here show coceptual flow betwee deas. Note the parallel

More information

Lecture 9: Tolerant Testing

Lecture 9: Tolerant Testing Lecture 9: Tolerat Testg Dael Kae Scrbe: Sakeerth Rao Aprl 4, 07 Abstract I ths lecture we prove a quas lear lower boud o the umber of samples eeded to do tolerat testg for L dstace. Tolerat Testg We have

More information

MA/CSSE 473 Day 27. Dynamic programming

MA/CSSE 473 Day 27. Dynamic programming MA/CSSE 473 Day 7 Dyamc Programmg Bomal Coeffcets Warshall's algorthm (Optmal BSTs) Studet questos? Dyamc programmg Used for problems wth recursve solutos ad overlappg subproblems Typcally, we save (memoze)

More information

02/15/04 INTERESTING FINITE AND INFINITE PRODUCTS FROM SIMPLE ALGEBRAIC IDENTITIES

02/15/04 INTERESTING FINITE AND INFINITE PRODUCTS FROM SIMPLE ALGEBRAIC IDENTITIES 0/5/04 ITERESTIG FIITE AD IFIITE PRODUCTS FROM SIMPLE ALGEBRAIC IDETITIES Thomas J Osler Mathematcs Departmet Rowa Uversty Glassboro J 0808 Osler@rowaedu Itroducto The dfferece of two squares, y = + y

More information

Lecture 3 Probability review (cont d)

Lecture 3 Probability review (cont d) STATS 00: Itroducto to Statstcal Iferece Autum 06 Lecture 3 Probablty revew (cot d) 3. Jot dstrbutos If radom varables X,..., X k are depedet, the ther dstrbuto may be specfed by specfyg the dvdual dstrbuto

More information

Lecture 02: Bounding tail distributions of a random variable

Lecture 02: Bounding tail distributions of a random variable CSCI-B609: A Theorst s Toolkt, Fall 206 Aug 25 Lecture 02: Boudg tal dstrbutos of a radom varable Lecturer: Yua Zhou Scrbe: Yua Xe & Yua Zhou Let us cosder the ubased co flps aga. I.e. let the outcome

More information

The Primitive Idempotents in

The Primitive Idempotents in Iteratoal Joural of Algebra, Vol, 00, o 5, 3 - The Prmtve Idempotets FC - I Kulvr gh Departmet of Mathematcs, H College r Jwa Nagar (rsa)-5075, Ida kulvrsheora@yahoocom K Arora Departmet of Mathematcs,

More information

Research Article A New Iterative Method for Common Fixed Points of a Finite Family of Nonexpansive Mappings

Research Article A New Iterative Method for Common Fixed Points of a Finite Family of Nonexpansive Mappings Hdaw Publshg Corporato Iteratoal Joural of Mathematcs ad Mathematcal Sceces Volume 009, Artcle ID 391839, 9 pages do:10.1155/009/391839 Research Artcle A New Iteratve Method for Commo Fxed Pots of a Fte

More information

PTAS for Bin-Packing

PTAS for Bin-Packing CS 663: Patter Matchg Algorthms Scrbe: Che Jag /9/00. Itroducto PTAS for B-Packg The B-Packg problem s NP-hard. If we use approxmato algorthms, the B-Packg problem could be solved polyomal tme. For example,

More information

ECE 595, Section 10 Numerical Simulations Lecture 19: FEM for Electronic Transport. Prof. Peter Bermel February 22, 2013

ECE 595, Section 10 Numerical Simulations Lecture 19: FEM for Electronic Transport. Prof. Peter Bermel February 22, 2013 ECE 595, Secto 0 Numercal Smulatos Lecture 9: FEM for Electroc Trasport Prof. Peter Bermel February, 03 Outle Recap from Wedesday Physcs-based devce modelg Electroc trasport theory FEM electroc trasport

More information

Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand DIS 10b

Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand DIS 10b CS 70 Dscrete Mathematcs ad Probablty Theory Fall 206 Sesha ad Walrad DIS 0b. Wll I Get My Package? Seaky delvery guy of some compay s out delverg packages to customers. Not oly does he had a radom package

More information

The First Order Saddlepoint Approximation for. Reliability Analysis

The First Order Saddlepoint Approximation for. Reliability Analysis AIAA Joral, Vol. 4, No. 6, 004, pp. 99-07 The Frst Order Saddlepot Approxmato for Relablty Aalyss Xaopg D Uversty of Mssor Rolla, Rolla, MO 65409-0050 Ags Sdjato + Ford Motor Compay, Dearbor, MI 48-409

More information

C-1: Aerodynamics of Airfoils 1 C-2: Aerodynamics of Airfoils 2 C-3: Panel Methods C-4: Thin Airfoil Theory

C-1: Aerodynamics of Airfoils 1 C-2: Aerodynamics of Airfoils 2 C-3: Panel Methods C-4: Thin Airfoil Theory ROAD MAP... AE301 Aerodyamcs I UNIT C: 2-D Arfols C-1: Aerodyamcs of Arfols 1 C-2: Aerodyamcs of Arfols 2 C-3: Pael Methods C-4: Th Arfol Theory AE301 Aerodyamcs I Ut C-3: Lst of Subects Problem Solutos?

More information

Solving Constrained Flow-Shop Scheduling. Problems with Three Machines

Solving Constrained Flow-Shop Scheduling. Problems with Three Machines It J Cotemp Math Sceces, Vol 5, 2010, o 19, 921-929 Solvg Costraed Flow-Shop Schedulg Problems wth Three Maches P Pada ad P Rajedra Departmet of Mathematcs, School of Advaced Sceces, VIT Uversty, Vellore-632

More information

AN EULER-MC LAURIN FORMULA FOR INFINITE DIMENSIONAL SPACES

AN EULER-MC LAURIN FORMULA FOR INFINITE DIMENSIONAL SPACES AN EULER-MC LAURIN FORMULA FOR INFINITE DIMENSIONAL SPACES Jose Javer Garca Moreta Graduate Studet of Physcs ( Sold State ) at UPV/EHU Address: P.O 6 890 Portugalete, Vzcaya (Spa) Phoe: (00) 3 685 77 16

More information

ECE606: Solid State Devices Lecture 13 Solutions of the Continuity Eqs. Analytical & Numerical

ECE606: Solid State Devices Lecture 13 Solutions of the Continuity Eqs. Analytical & Numerical ECE66: Sold State Devces Lecture 13 Solutos of the Cotuty Eqs. Aalytcal & Numercal Gerhard Klmeck gekco@purdue.edu Outle Aalytcal Solutos to the Cotuty Equatos 1) Example problems ) Summary Numercal Solutos

More information

CHAPTER 4 RADICAL EXPRESSIONS

CHAPTER 4 RADICAL EXPRESSIONS 6 CHAPTER RADICAL EXPRESSIONS. The th Root of a Real Number A real umber a s called the th root of a real umber b f Thus, for example: s a square root of sce. s also a square root of sce ( ). s a cube

More information

A Study on Generalized Generalized Quasi hyperbolic Kac Moody algebra QHGGH of rank 10

A Study on Generalized Generalized Quasi hyperbolic Kac Moody algebra QHGGH of rank 10 Global Joural of Mathematcal Sceces: Theory ad Practcal. ISSN 974-3 Volume 9, Number 3 (7), pp. 43-4 Iteratoal Research Publcato House http://www.rphouse.com A Study o Geeralzed Geeralzed Quas (9) hyperbolc

More information

1 Lyapunov Stability Theory

1 Lyapunov Stability Theory Lyapuov Stablty heory I ths secto we cosder proofs of stablty of equlbra of autoomous systems. hs s stadard theory for olear systems, ad oe of the most mportat tools the aalyss of olear systems. It may

More information

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ " 1

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ  1 STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS Recall Assumpto E(Y x) η 0 + η x (lear codtoal mea fucto) Data (x, y ), (x 2, y 2 ),, (x, y ) Least squares estmator ˆ E (Y x) ˆ " 0 + ˆ " x, where ˆ

More information

Arithmetic Mean and Geometric Mean

Arithmetic Mean and Geometric Mean Acta Mathematca Ntresa Vol, No, p 43 48 ISSN 453-6083 Arthmetc Mea ad Geometrc Mea Mare Varga a * Peter Mchalča b a Departmet of Mathematcs, Faculty of Natural Sceces, Costate the Phlosopher Uversty Ntra,

More information

A tighter lower bound on the circuit size of the hardest Boolean functions

A tighter lower bound on the circuit size of the hardest Boolean functions Electroc Colloquum o Computatoal Complexty, Report No. 86 2011) A tghter lower boud o the crcut sze of the hardest Boolea fuctos Masak Yamamoto Abstract I [IPL2005], Fradse ad Mlterse mproved bouds o the

More information

. The set of these sums. be a partition of [ ab, ]. Consider the sum f( x) f( x 1)

. The set of these sums. be a partition of [ ab, ]. Consider the sum f( x) f( x 1) Chapter 7 Fuctos o Bouded Varato. Subject: Real Aalyss Level: M.Sc. Source: Syed Gul Shah (Charma, Departmet o Mathematcs, US Sargodha Collected & Composed by: Atq ur Rehma (atq@mathcty.org, http://www.mathcty.org

More information

CHAPTER 3 POSTERIOR DISTRIBUTIONS

CHAPTER 3 POSTERIOR DISTRIBUTIONS CHAPTER 3 POSTERIOR DISTRIBUTIONS If scece caot measure the degree of probablt volved, so much the worse for scece. The practcal ma wll stck to hs apprecatve methods utl t does, or wll accept the results

More information

ρ < 1 be five real numbers. The

ρ < 1 be five real numbers. The Lecture o BST 63: Statstcal Theory I Ku Zhag, /0/006 Revew for the prevous lecture Deftos: covarace, correlato Examples: How to calculate covarace ad correlato Theorems: propertes of correlato ad covarace

More information

Fourth Order Four-Stage Diagonally Implicit Runge-Kutta Method for Linear Ordinary Differential Equations ABSTRACT INTRODUCTION

Fourth Order Four-Stage Diagonally Implicit Runge-Kutta Method for Linear Ordinary Differential Equations ABSTRACT INTRODUCTION Malasa Joural of Mathematcal Sceces (): 95-05 (00) Fourth Order Four-Stage Dagoall Implct Ruge-Kutta Method for Lear Ordar Dfferetal Equatos Nur Izzat Che Jawas, Fudzah Ismal, Mohamed Sulema, 3 Azm Jaafar

More information

MEASURES OF DISPERSION

MEASURES OF DISPERSION MEASURES OF DISPERSION Measure of Cetral Tedecy: Measures of Cetral Tedecy ad Dsperso ) Mathematcal Average: a) Arthmetc mea (A.M.) b) Geometrc mea (G.M.) c) Harmoc mea (H.M.) ) Averages of Posto: a) Meda

More information

Lecture 07: Poles and Zeros

Lecture 07: Poles and Zeros Lecture 07: Poles ad Zeros Defto of poles ad zeros The trasfer fucto provdes a bass for determg mportat system respose characterstcs wthout solvg the complete dfferetal equato. As defed, the trasfer fucto

More information

F. Inequalities. HKAL Pure Mathematics. 進佳數學團隊 Dr. Herbert Lam 林康榮博士. [Solution] Example Basic properties

F. Inequalities. HKAL Pure Mathematics. 進佳數學團隊 Dr. Herbert Lam 林康榮博士. [Solution] Example Basic properties 進佳數學團隊 Dr. Herbert Lam 林康榮博士 HKAL Pure Mathematcs F. Ieualtes. Basc propertes Theorem Let a, b, c be real umbers. () If a b ad b c, the a c. () If a b ad c 0, the ac bc, but f a b ad c 0, the ac bc. Theorem

More information

Third handout: On the Gini Index

Third handout: On the Gini Index Thrd hadout: O the dex Corrado, a tala statstca, proposed (, 9, 96) to measure absolute equalt va the mea dfferece whch s defed as ( / ) where refers to the total umber of dvduals socet. Assume that. The

More information

THE PROBABILISTIC STABILITY FOR THE GAMMA FUNCTIONAL EQUATION

THE PROBABILISTIC STABILITY FOR THE GAMMA FUNCTIONAL EQUATION Joural of Scece ad Arts Year 12, No. 3(2), pp. 297-32, 212 ORIGINAL AER THE ROBABILISTIC STABILITY FOR THE GAMMA FUNCTIONAL EQUATION DOREL MIHET 1, CLAUDIA ZAHARIA 1 Mauscrpt receved: 3.6.212; Accepted

More information

Econometric Methods. Review of Estimation

Econometric Methods. Review of Estimation Ecoometrc Methods Revew of Estmato Estmatg the populato mea Radom samplg Pot ad terval estmators Lear estmators Ubased estmators Lear Ubased Estmators (LUEs) Effcecy (mmum varace) ad Best Lear Ubased Estmators

More information

X ε ) = 0, or equivalently, lim

X ε ) = 0, or equivalently, lim Revew for the prevous lecture Cocepts: order statstcs Theorems: Dstrbutos of order statstcs Examples: How to get the dstrbuto of order statstcs Chapter 5 Propertes of a Radom Sample Secto 55 Covergece

More information

Part 4b Asymptotic Results for MRR2 using PRESS. Recall that the PRESS statistic is a special type of cross validation procedure (see Allen (1971))

Part 4b Asymptotic Results for MRR2 using PRESS. Recall that the PRESS statistic is a special type of cross validation procedure (see Allen (1971)) art 4b Asymptotc Results for MRR usg RESS Recall that the RESS statstc s a specal type of cross valdato procedure (see Alle (97)) partcular to the regresso problem ad volves fdg Y $,, the estmate at the

More information

Numerical Analysis Formulae Booklet

Numerical Analysis Formulae Booklet Numercal Aalyss Formulae Booklet. Iteratve Scemes for Systems of Lear Algebrac Equatos:.... Taylor Seres... 3. Fte Dfferece Approxmatos... 3 4. Egevalues ad Egevectors of Matrces.... 3 5. Vector ad Matrx

More information

Chapter 9 Jordan Block Matrices

Chapter 9 Jordan Block Matrices Chapter 9 Jorda Block atrces I ths chapter we wll solve the followg problem. Gve a lear operator T fd a bass R of F such that the matrx R (T) s as smple as possble. f course smple s a matter of taste.

More information

Lecture 3. Sampling, sampling distributions, and parameter estimation

Lecture 3. Sampling, sampling distributions, and parameter estimation Lecture 3 Samplg, samplg dstrbutos, ad parameter estmato Samplg Defto Populato s defed as the collecto of all the possble observatos of terest. The collecto of observatos we take from the populato s called

More information

CHAPTER VI Statistical Analysis of Experimental Data

CHAPTER VI Statistical Analysis of Experimental Data Chapter VI Statstcal Aalyss of Expermetal Data CHAPTER VI Statstcal Aalyss of Expermetal Data Measuremets do ot lead to a uque value. Ths s a result of the multtude of errors (maly radom errors) that ca

More information

arxiv: v1 [math.st] 24 Oct 2016

arxiv: v1 [math.st] 24 Oct 2016 arxv:60.07554v [math.st] 24 Oct 206 Some Relatoshps ad Propertes of the Hypergeometrc Dstrbuto Peter H. Pesku, Departmet of Mathematcs ad Statstcs York Uversty, Toroto, Otaro M3J P3, Caada E-mal: pesku@pascal.math.yorku.ca

More information

CIS 800/002 The Algorithmic Foundations of Data Privacy October 13, Lecture 9. Database Update Algorithms: Multiplicative Weights

CIS 800/002 The Algorithmic Foundations of Data Privacy October 13, Lecture 9. Database Update Algorithms: Multiplicative Weights CIS 800/002 The Algorthmc Foudatos of Data Prvacy October 13, 2011 Lecturer: Aaro Roth Lecture 9 Scrbe: Aaro Roth Database Update Algorthms: Multplcatve Weghts We ll recall aga) some deftos from last tme:

More information

Summary of the lecture in Biostatistics

Summary of the lecture in Biostatistics Summary of the lecture Bostatstcs Probablty Desty Fucto For a cotuos radom varable, a probablty desty fucto s a fucto such that: 0 dx a b) b a dx A probablty desty fucto provdes a smple descrpto of the

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Postpoed exam: ECON430 Statstcs Date of exam: Jauary 0, 0 Tme for exam: 09:00 a.m. :00 oo The problem set covers 5 pages Resources allowed: All wrtte ad prted

More information

Monotonization of flux, entropy and numerical schemes for conservation laws

Monotonization of flux, entropy and numerical schemes for conservation laws J Math Aal Appl 35 009 47 439 wwwelsevercom/locate/jmaa Mootozato of flx, etropy ad mercal schemes for coservato laws Admrth a,, GD Veerappa Gowda a, Jérôme Jaffré b a TIFR Cetre, PO Box 134, Bagalore

More information

Analysis of Variance with Weibull Data

Analysis of Variance with Weibull Data Aalyss of Varace wth Webull Data Lahaa Watthaacheewaul Abstract I statstcal data aalyss by aalyss of varace, the usual basc assumptos are that the model s addtve ad the errors are radomly, depedetly, ad

More information