Lecture 7: Channel coding theorem for discrete-time continuous memoryless channel

Size: px
Start display at page:

Download "Lecture 7: Channel coding theorem for discrete-time continuous memoryless channel"

Transcription

1 Lecture 7: Chael codig theorem for discrete-time cotiuous memoryless chael Lectured by Dr. Saif K. Mohammed Scribed by Mirsad Čirkić Iformatio Theory for Wireless Commuicatio ITWC Sprig 202 Let us first defie, for the radom sequeces X = [X,...,X ] ad Y = [Y...,Y ] ad their correspodig sequece realizatios x = [x,...,x ] ad y = [y...,y ] where x k,y k R, the followig probability desity fuctios pdfs: f X x = k= f Xx k as the iput pdf, f Y X y x = k= f Y Xy k x k as the memoryless chael trasitio pdf, ad f Y y as the output pdf. Each elemet X k or just X without the idex k are idepedet ad idetically distributed i.i.d. Further, due to the i.i.d. property of X ad the specified memoryless property imposed o the chael trasitio pdf, we have f Y y = k= f Yy k. Defie the so called ad the mutual iformatio quatity Let IX;Y fx,y x,y f X,Y x,ylog dxdy f X xf Y y x,y defie the mutual iformatio betwee the radom variables X ad Y. Further, let g : R R be the capacity cost fuctio mappig. The, we defie,n,λ code with a capacity cost S R as a system {u,a,...,u N,A N u i = [u i,... u i, ] R, A i R, A i A j = i j k= gu i,k S, i λ N N i= λ i, λ M max i=,...,n λ i, λ i P Y / A i X = u i, ad λ M λ. Theorem. Radom Codig Theorem We defie the capacity with cost costrait S as CS max IX;Y f X s.t. f X xgx S. x 2 This documet is a property of Commuicatio Systems Divisio, Departmet of Electrical Egieerig, Liköpig Uiversity, Swede. Copyright must be obtaied by writig to saif@isy.liu.se, erik.larsso@isy.liu.se prior to usage.

2 2 The theorem states that, For ay rate R which satisfies 0 R < CS, there exists a sequece of,2 R,λ codes for =,2,... such that λ 0 as. I what follows, a proof is preseted ad for that reaso, we eed to defie A ǫ {x,y : logf Xx hx < ǫ, logf Yy hy < ǫ, logf Y,Xy,x hy,x < ǫ, where hx x f Xxlogf X xdx. Further, we eed to itroduce the followig two lemmas. Lemma. f Xx X MC Y f Y Xy x P X,Y A ǫ > ǫ for sufficietly large VolA ǫ x,y A ǫ dxdy < 2hY,X+ǫ VolA ǫ > ǫ2 hy,x ǫ for sufficietly large We omit the explicit proofs sice they become trivial from the discrete case proofs i previous lectures. Lemma 2. Kow as the Packig Lemma For idepedet X ad Y, i.e., f Xx X f Xx X MC Y f Y Xy x the followig iequalities hold for sufficietly large, ǫ2 IX;Y+3ǫ < P X,Y A ǫ < 2 IX;Y 3ǫ. P X,Y A ǫ = x,y A ǫ f X xf Y y d xdy f X,Y x,y From the defiitio of A ǫ, we have 2 hx+ǫ < f X x < 2 hx ǫ, 2 hy+ǫ < f Y y < 2 hy ǫ. This gives us the upper boud P X,Y A ǫ < 2 hx+hy 2ǫ x,y A ǫ < 2 hx+hy 2ǫ 2 hy,x+ǫ lemma = 2 IX;Y 3ǫ, d xdy

3 ad aalogously the lower boud P X,Y A ǫ > 2 IX:Y+3ǫ, for sufficietly large. The proof of Theorem. relies o Shao s radom codig argumet, which utilizes the fact that if the error probability averaged over all possible codes goes to zero as, the there must exist at least oe code that provides a error probability smaller tha the average. Radom Code Geeratio: Choose a arbitrary ǫ > 0 Choose a pdf f X x s.t. x f Xxgxdx = S ǫ < S Geerate u i,k for all i =,...,N ad k =,..., idepedetly usig f X x. 2 Ecodig: Let us label the possible codewords u,...,u N as messages w =,...,N. Whe the trasmitter wats to commuicate message k, it will trasmit u k. 3 Decodig: Let us use the followig typical set decoder for the code C that, for a give chael 3 output y, estimates the trasmitted message as or be i error if i, if y A i C ad y / A j C j i ŵ C y = ad gu i,k k= S 0, otherwise i.e. decodig error, where A i C {y R ui,y A ǫ. The average error probability λu,...,u N N N i= λ iu,...,u N ad the error probability λ i u,...,u N P ŵy i X = ui are both determiistic for a particular realizatio of the code book C = u,...,u N. Each realizatio u i is draw from the iput pdf f X x, ad this is doe idepedetly over i. If we defie C = X,...,X i,...,x N, where X i are i.i.d. with the pdf f X, we ca say that f C x,...,x N = N i= f Xx i ad that the code book C is draw from f C x,...,x N. Now, the expectatio of λ take over C, i.e., the whole esemble of codes is { N E C { λc = EC λ i C = N E C {λ i X,...,X N = E C {λ X,...,X N, N N i= i= where the last equality utilizes the fact that the expectatio value is ivariat to ay reorderig of X,...,X N due to the i.i.d. property of X i over i. Before we cotiue further, let us itroduce a compact otatio A 0 C for the set {y gu,k k= S, which may seem strage sice the coditio does ot deped o y. Essetially, the set A 0 C will either cotai the whole y-space if the trasmitted codeword u fulfills the costrait o g, or it will be the ull set whe the

4 4 costrait is ot met. Hece, E C {λ C = f C C f Y X y u dy dc R N y;ŵ Cy = f C C f Y X y u dy dc R N A C A 2C A NC A 0C f C C f Y X y u dydc R N A C T N + f C C f Y X y u dydc i=2 R N A ic {{ + f C C f Y X y u dydc. R N A 0C T 0 We ca cotiue from this poit o by evaluatig the itegrals T 0,T,T 2,...,T N separately. Startig with T 0, ote that the coditio defiig the set A 0 does ot deped o y, which gives T 0 = C R N ; f gu,k C C f Y X y u dydc k= S R = f X u du < ǫ, u R ; k= gu,k S for sufficietly large where the last iequality follows from the weak law of large umbers. That is, k= gu,k E X {gx = S ǫ i probability as. Cotiuig with T, T = f C C f Y X y u dydc R N y;u,y/ A ǫ = f X u f Y X y u dydu R y;u,y/ A ǫ = f Y,X y,u dydu = P X,Y / A ǫ X = u < ǫ, A ǫ for sufficietly large where the last iequality follows from lemma. Lastly T i for i = 2,...,N, T i = f C C f Y X y u dydc R N y;u i,y A ǫ = f X u i f Y ydydu i R y;u i,y A ǫ = f X u i f Y ydydu i 2 IY;X 3ǫ, A ǫ were the last iequality follows from lemma 2. These upper bouds result i E C { λc < 2ǫ+N2 IY;X 3ǫ < 2ǫ+2 R 2 IY;X 3ǫ = 2ǫ+2 IY;X R 3ǫ, where R logn large such that E C { λc < 3ǫ. T i 0 represets the code rate. For R < IY;X 3ǫ, we ca choose sufficietly

5 5 SiceE C { λc < 3ǫ, followig Shao s radom codig argumet, there exists a code,2 R, that has a average error probability that is smaller tha 3ǫ. I essece, we will oly pick a code book that will yield a small average error probability, which also meas that oly those codewords that satisfy the capacity cost costrait will be icluded. Note that the decodig regios A i ca be made disjoit without icreasig the upper boud o the average error probability. So far, we have ot said aythig about the maximum error probability, which is the quatity of iterest i order to commuicate with a certai level of reliability. Nevertheless, give a upper boud o the average error probability, say 3ǫ, the best N/2 codewords smallest error probabilities have a maximum error probability that is smaller tha 6ǫ. If it were ot true, the the average error probability would ot be smaller tha 3ǫ due to the cotributio of the worst N/2 codewords each havig a error probability greater tha 6ǫ, i.e., N N 2 6ǫ = 3ǫ 3ǫ. Usig this fact, we ca costruct a ew code cosistig oly of the N/2 best codewords, which would the reduce the ew rate R to R = logn/2 = R. We ca coclude ow that sice S ǫ < S, it follows that R < IX;Y < CS. However by choosig ǫ > 0 to be arbitrarily small ad sufficietly large, we ca achieve ay rate less tha CS. Capacity cost of the discrete-time cotiuous memoryless AWGN chael with a average iput power costrait: Cosider the discrete-time memoryless additive white Gaussia oise chael AWGN, i.e., Y = X+N, with X R as the iput, Y R as the output ad N R as the AWGN with variace σ 2. Further, let us cosider a average power costrait o the iput, i.e. E[X 2 ] S. The capacity cost for this chael ca be computed usig 2, with the cost fuctio gx = x 2. CS = max IX;Y = max hy hy X f X :E X{X 2 S f X :E X{X 2 S hn = max hy f X :E X{X 2 S 2 log2πeσ2 = max Var{Y:E X{X 2 S 2 log = 2 log + S σ 2. Var{Y where the maximum is achieved whe X is Gaussia distributed with mea 0 ad variace S. Later i Lecture 9, we will see that 2 log + S σ 2 is ideed the capacity of this chael. σ 2

Lecture 27. Capacity of additive Gaussian noise channel and the sphere packing bound

Lecture 27. Capacity of additive Gaussian noise channel and the sphere packing bound Lecture 7 Ageda for the lecture Gaussia chael with average power costraits Capacity of additive Gaussia oise chael ad the sphere packig boud 7. Additive Gaussia oise chael Up to this poit, we have bee

More information

The Maximum-Likelihood Decoding Performance of Error-Correcting Codes

The Maximum-Likelihood Decoding Performance of Error-Correcting Codes The Maximum-Lielihood Decodig Performace of Error-Correctig Codes Hery D. Pfister ECE Departmet Texas A&M Uiversity August 27th, 2007 (rev. 0) November 2st, 203 (rev. ) Performace of Codes. Notatio X,

More information

Lecture 6: Source coding, Typicality, and Noisy channels and capacity

Lecture 6: Source coding, Typicality, and Noisy channels and capacity 15-859: Iformatio Theory ad Applicatios i TCS CMU: Sprig 2013 Lecture 6: Source codig, Typicality, ad Noisy chaels ad capacity Jauary 31, 2013 Lecturer: Mahdi Cheraghchi Scribe: Togbo Huag 1 Recap Uiversal

More information

Lecture 14: Graph Entropy

Lecture 14: Graph Entropy 15-859: Iformatio Theory ad Applicatios i TCS Sprig 2013 Lecture 14: Graph Etropy March 19, 2013 Lecturer: Mahdi Cheraghchi Scribe: Euiwoog Lee 1 Recap Bergma s boud o the permaet Shearer s Lemma Number

More information

Infinite Sequences and Series

Infinite Sequences and Series Chapter 6 Ifiite Sequeces ad Series 6.1 Ifiite Sequeces 6.1.1 Elemetary Cocepts Simply speakig, a sequece is a ordered list of umbers writte: {a 1, a 2, a 3,...a, a +1,...} where the elemets a i represet

More information

Lecture 15: Strong, Conditional, & Joint Typicality

Lecture 15: Strong, Conditional, & Joint Typicality EE376A/STATS376A Iformatio Theory Lecture 15-02/27/2018 Lecture 15: Strog, Coditioal, & Joit Typicality Lecturer: Tsachy Weissma Scribe: Nimit Sohoi, William McCloskey, Halwest Mohammad I this lecture,

More information

Lecture 11: Channel Coding Theorem: Converse Part

Lecture 11: Channel Coding Theorem: Converse Part EE376A/STATS376A Iformatio Theory Lecture - 02/3/208 Lecture : Chael Codig Theorem: Coverse Part Lecturer: Tsachy Weissma Scribe: Erdem Bıyık I this lecture, we will cotiue our discussio o chael codig

More information

Information Theory Tutorial Communication over Channels with memory. Chi Zhang Department of Electrical Engineering University of Notre Dame

Information Theory Tutorial Communication over Channels with memory. Chi Zhang Department of Electrical Engineering University of Notre Dame Iformatio Theory Tutorial Commuicatio over Chaels with memory Chi Zhag Departmet of Electrical Egieerig Uiversity of Notre Dame Abstract A geeral capacity formula C = sup I(; Y ), which is correct for

More information

Lecture 19: Convergence

Lecture 19: Convergence Lecture 19: Covergece Asymptotic approach I statistical aalysis or iferece, a key to the success of fidig a good procedure is beig able to fid some momets ad/or distributios of various statistics. I may

More information

Symmetric Two-User Gaussian Interference Channel with Common Messages

Symmetric Two-User Gaussian Interference Channel with Common Messages Symmetric Two-User Gaussia Iterferece Chael with Commo Messages Qua Geg CSL ad Dept. of ECE UIUC, IL 680 Email: geg5@illiois.edu Tie Liu Dept. of Electrical ad Computer Egieerig Texas A&M Uiversity, TX

More information

Entropies & Information Theory

Entropies & Information Theory Etropies & Iformatio Theory LECTURE I Nilajaa Datta Uiversity of Cambridge,U.K. For more details: see lecture otes (Lecture 1- Lecture 5) o http://www.qi.damtp.cam.ac.uk/ode/223 Quatum Iformatio Theory

More information

ECE 564/645 - Digital Communication Systems (Spring 2014) Final Exam Friday, May 2nd, 8:00-10:00am, Marston 220

ECE 564/645 - Digital Communication Systems (Spring 2014) Final Exam Friday, May 2nd, 8:00-10:00am, Marston 220 ECE 564/645 - Digital Commuicatio Systems (Sprig 014) Fial Exam Friday, May d, 8:00-10:00am, Marsto 0 Overview The exam cosists of four (or five) problems for 100 (or 10) poits. The poits for each part

More information

Information Theory and Coding

Information Theory and Coding Sol. Iformatio Theory ad Codig. The capacity of a bad-limited additive white Gaussia (AWGN) chael is give by C = Wlog 2 ( + σ 2 W ) bits per secod(bps), where W is the chael badwidth, is the average power

More information

Sequences and Series of Functions

Sequences and Series of Functions Chapter 6 Sequeces ad Series of Fuctios 6.1. Covergece of a Sequece of Fuctios Poitwise Covergece. Defiitio 6.1. Let, for each N, fuctio f : A R be defied. If, for each x A, the sequece (f (x)) coverges

More information

Maximum Likelihood Estimation and Complexity Regularization

Maximum Likelihood Estimation and Complexity Regularization ECE90 Sprig 004 Statistical Regularizatio ad Learig Theory Lecture: 4 Maximum Likelihood Estimatio ad Complexity Regularizatio Lecturer: Rob Nowak Scribe: Pam Limpiti Review : Maximum Likelihood Estimatio

More information

Analytic Continuation

Analytic Continuation Aalytic Cotiuatio The stadard example of this is give by Example Let h (z) = 1 + z + z 2 + z 3 +... kow to coverge oly for z < 1. I fact h (z) = 1/ (1 z) for such z. Yet H (z) = 1/ (1 z) is defied for

More information

On Random Line Segments in the Unit Square

On Random Line Segments in the Unit Square O Radom Lie Segmets i the Uit Square Thomas A. Courtade Departmet of Electrical Egieerig Uiversity of Califoria Los Ageles, Califoria 90095 Email: tacourta@ee.ucla.edu I. INTRODUCTION Let Q = [0, 1] [0,

More information

Probability 2 - Notes 10. Lemma. If X is a random variable and g(x) 0 for all x in the support of f X, then P(g(X) 1) E[g(X)].

Probability 2 - Notes 10. Lemma. If X is a random variable and g(x) 0 for all x in the support of f X, then P(g(X) 1) E[g(X)]. Probability 2 - Notes 0 Some Useful Iequalities. Lemma. If X is a radom variable ad g(x 0 for all x i the support of f X, the P(g(X E[g(X]. Proof. (cotiuous case P(g(X Corollaries x:g(x f X (xdx x:g(x

More information

Convergence of random variables. (telegram style notes) P.J.C. Spreij

Convergence of random variables. (telegram style notes) P.J.C. Spreij Covergece of radom variables (telegram style otes).j.c. Spreij this versio: September 6, 2005 Itroductio As we kow, radom variables are by defiitio measurable fuctios o some uderlyig measurable space

More information

Approximations and more PMFs and PDFs

Approximations and more PMFs and PDFs Approximatios ad more PMFs ad PDFs Saad Meimeh 1 Approximatio of biomial with Poisso Cosider the biomial distributio ( b(k,,p = p k (1 p k, k λ: k Assume that is large, ad p is small, but p λ at the limit.

More information

Lecture 6 Simple alternatives and the Neyman-Pearson lemma

Lecture 6 Simple alternatives and the Neyman-Pearson lemma STATS 00: Itroductio to Statistical Iferece Autum 06 Lecture 6 Simple alteratives ad the Neyma-Pearso lemma Last lecture, we discussed a umber of ways to costruct test statistics for testig a simple ull

More information

EECS564 Estimation, Filtering, and Detection Hwk 2 Solns. Winter p θ (z) = (2θz + 1 θ), 0 z 1

EECS564 Estimation, Filtering, and Detection Hwk 2 Solns. Winter p θ (z) = (2θz + 1 θ), 0 z 1 EECS564 Estimatio, Filterig, ad Detectio Hwk 2 Sols. Witer 25 4. Let Z be a sigle observatio havig desity fuctio where. p (z) = (2z + ), z (a) Assumig that is a oradom parameter, fid ad plot the maximum

More information

First Year Quantitative Comp Exam Spring, Part I - 203A. f X (x) = 0 otherwise

First Year Quantitative Comp Exam Spring, Part I - 203A. f X (x) = 0 otherwise First Year Quatitative Comp Exam Sprig, 2012 Istructio: There are three parts. Aswer every questio i every part. Questio I-1 Part I - 203A A radom variable X is distributed with the margial desity: >

More information

Lecture 01: the Central Limit Theorem. 1 Central Limit Theorem for i.i.d. random variables

Lecture 01: the Central Limit Theorem. 1 Central Limit Theorem for i.i.d. random variables CSCI-B609: A Theorist s Toolkit, Fall 06 Aug 3 Lecture 0: the Cetral Limit Theorem Lecturer: Yua Zhou Scribe: Yua Xie & Yua Zhou Cetral Limit Theorem for iid radom variables Let us say that we wat to aalyze

More information

ECE 901 Lecture 14: Maximum Likelihood Estimation and Complexity Regularization

ECE 901 Lecture 14: Maximum Likelihood Estimation and Complexity Regularization ECE 90 Lecture 4: Maximum Likelihood Estimatio ad Complexity Regularizatio R Nowak 5/7/009 Review : Maximum Likelihood Estimatio We have iid observatios draw from a ukow distributio Y i iid p θ, i,, where

More information

Frequentist Inference

Frequentist Inference Frequetist Iferece The topics of the ext three sectios are useful applicatios of the Cetral Limit Theorem. Without kowig aythig about the uderlyig distributio of a sequece of radom variables {X i }, for

More information

The natural exponential function

The natural exponential function The atural expoetial fuctio Attila Máté Brookly College of the City Uiversity of New York December, 205 Cotets The atural expoetial fuctio for real x. Beroulli s iequality.....................................2

More information

6.3 Testing Series With Positive Terms

6.3 Testing Series With Positive Terms 6.3. TESTING SERIES WITH POSITIVE TERMS 307 6.3 Testig Series With Positive Terms 6.3. Review of what is kow up to ow I theory, testig a series a i for covergece amouts to fidig the i= sequece of partial

More information

Problem Set 4 Due Oct, 12

Problem Set 4 Due Oct, 12 EE226: Radom Processes i Systems Lecturer: Jea C. Walrad Problem Set 4 Due Oct, 12 Fall 06 GSI: Assae Gueye This problem set essetially reviews detectio theory ad hypothesis testig ad some basic otios

More information

Distribution of Random Samples & Limit theorems

Distribution of Random Samples & Limit theorems STAT/MATH 395 A - PROBABILITY II UW Witer Quarter 2017 Néhémy Lim Distributio of Radom Samples & Limit theorems 1 Distributio of i.i.d. Samples Motivatig example. Assume that the goal of a study is to

More information

A Proof of Birkhoff s Ergodic Theorem

A Proof of Birkhoff s Ergodic Theorem A Proof of Birkhoff s Ergodic Theorem Joseph Hora September 2, 205 Itroductio I Fall 203, I was learig the basics of ergodic theory, ad I came across this theorem. Oe of my supervisors, Athoy Quas, showed

More information

Lecture 2. The Lovász Local Lemma

Lecture 2. The Lovász Local Lemma Staford Uiversity Sprig 208 Math 233A: No-costructive methods i combiatorics Istructor: Ja Vodrák Lecture date: Jauary 0, 208 Origial scribe: Apoorva Khare Lecture 2. The Lovász Local Lemma 2. Itroductio

More information

Lecture 11: Pseudorandom functions

Lecture 11: Pseudorandom functions COM S 6830 Cryptography Oct 1, 2009 Istructor: Rafael Pass 1 Recap Lecture 11: Pseudoradom fuctios Scribe: Stefao Ermo Defiitio 1 (Ge, Ec, Dec) is a sigle message secure ecryptio scheme if for all uppt

More information

Channel coding, linear block codes, Hamming and cyclic codes Lecture - 8

Channel coding, linear block codes, Hamming and cyclic codes Lecture - 8 Digital Commuicatio Chael codig, liear block codes, Hammig ad cyclic codes Lecture - 8 Ir. Muhamad Asial, MSc., PhD Ceter for Iformatio ad Commuicatio Egieerig Research (CICER) Electrical Egieerig Departmet

More information

Asymptotic Coupling and Its Applications in Information Theory

Asymptotic Coupling and Its Applications in Information Theory Asymptotic Couplig ad Its Applicatios i Iformatio Theory Vicet Y. F. Ta Joit Work with Lei Yu Departmet of Electrical ad Computer Egieerig, Departmet of Mathematics, Natioal Uiversity of Sigapore IMS-APRM

More information

Exponential Functions and Taylor Series

Exponential Functions and Taylor Series MATH 4530: Aalysis Oe Expoetial Fuctios ad Taylor Series James K. Peterso Departmet of Biological Scieces ad Departmet of Mathematical Scieces Clemso Uiversity March 29, 2017 MATH 4530: Aalysis Oe Outlie

More information

(A sequence also can be thought of as the list of function values attained for a function f :ℵ X, where f (n) = x n for n 1.) x 1 x N +k x N +4 x 3

(A sequence also can be thought of as the list of function values attained for a function f :ℵ X, where f (n) = x n for n 1.) x 1 x N +k x N +4 x 3 MATH 337 Sequeces Dr. Neal, WKU Let X be a metric space with distace fuctio d. We shall defie the geeral cocept of sequece ad limit i a metric space, the apply the results i particular to some special

More information

Stochastic Simulation

Stochastic Simulation Stochastic Simulatio 1 Itroductio Readig Assigmet: Read Chapter 1 of text. We shall itroduce may of the key issues to be discussed i this course via a couple of model problems. Model Problem 1 (Jackso

More information

6.895 Essential Coding Theory October 20, Lecture 11. This lecture is focused in comparisons of the following properties/parameters of a code:

6.895 Essential Coding Theory October 20, Lecture 11. This lecture is focused in comparisons of the following properties/parameters of a code: 6.895 Essetial Codig Theory October 0, 004 Lecture 11 Lecturer: Madhu Suda Scribe: Aastasios Sidiropoulos 1 Overview This lecture is focused i comparisos of the followig properties/parameters of a code:

More information

7.1 Convergence of sequences of random variables

7.1 Convergence of sequences of random variables Chapter 7 Limit Theorems Throughout this sectio we will assume a probability space (, F, P), i which is defied a ifiite sequece of radom variables (X ) ad a radom variable X. The fact that for every ifiite

More information

STAT Homework 1 - Solutions

STAT Homework 1 - Solutions STAT-36700 Homework 1 - Solutios Fall 018 September 11, 018 This cotais solutios for Homework 1. Please ote that we have icluded several additioal commets ad approaches to the problems to give you better

More information

Chapter 6 Infinite Series

Chapter 6 Infinite Series Chapter 6 Ifiite Series I the previous chapter we cosidered itegrals which were improper i the sese that the iterval of itegratio was ubouded. I this chapter we are goig to discuss a topic which is somewhat

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 19 11/17/2008 LAWS OF LARGE NUMBERS II THE STRONG LAW OF LARGE NUMBERS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 19 11/17/2008 LAWS OF LARGE NUMBERS II THE STRONG LAW OF LARGE NUMBERS MASSACHUSTTS INSTITUT OF TCHNOLOGY 6.436J/5.085J Fall 2008 Lecture 9 /7/2008 LAWS OF LARG NUMBRS II Cotets. The strog law of large umbers 2. The Cheroff boud TH STRONG LAW OF LARG NUMBRS While the weak

More information

Let us give one more example of MLE. Example 3. The uniform distribution U[0, θ] on the interval [0, θ] has p.d.f.

Let us give one more example of MLE. Example 3. The uniform distribution U[0, θ] on the interval [0, θ] has p.d.f. Lecture 5 Let us give oe more example of MLE. Example 3. The uiform distributio U[0, ] o the iterval [0, ] has p.d.f. { 1 f(x =, 0 x, 0, otherwise The likelihood fuctio ϕ( = f(x i = 1 I(X 1,..., X [0,

More information

LECTURE 8: ASYMPTOTICS I

LECTURE 8: ASYMPTOTICS I LECTURE 8: ASYMPTOTICS I We are iterested i the properties of estimators as. Cosider a sequece of radom variables {, X 1}. N. M. Kiefer, Corell Uiversity, Ecoomics 60 1 Defiitio: (Weak covergece) A sequece

More information

An Introduction to Randomized Algorithms

An Introduction to Randomized Algorithms A Itroductio to Radomized Algorithms The focus of this lecture is to study a radomized algorithm for quick sort, aalyze it usig probabilistic recurrece relatios, ad also provide more geeral tools for aalysis

More information

MATH 472 / SPRING 2013 ASSIGNMENT 2: DUE FEBRUARY 4 FINALIZED

MATH 472 / SPRING 2013 ASSIGNMENT 2: DUE FEBRUARY 4 FINALIZED MATH 47 / SPRING 013 ASSIGNMENT : DUE FEBRUARY 4 FINALIZED Please iclude a cover sheet that provides a complete setece aswer to each the followig three questios: (a) I your opiio, what were the mai ideas

More information

Econ 325 Notes on Point Estimator and Confidence Interval 1 By Hiro Kasahara

Econ 325 Notes on Point Estimator and Confidence Interval 1 By Hiro Kasahara Poit Estimator Eco 325 Notes o Poit Estimator ad Cofidece Iterval 1 By Hiro Kasahara Parameter, Estimator, ad Estimate The ormal probability desity fuctio is fully characterized by two costats: populatio

More information

arxiv: v1 [cs.it] 13 Jul 2012

arxiv: v1 [cs.it] 13 Jul 2012 O the Sum Capacity of the Discrete Memoryless Iterferece Chael with Oe-Sided Weak Iterferece ad Mixed Iterferece Fagfag Zhu ad Biao Che Syracuse Uiversity Departmet of EECS Syracuse, NY 3244 Email: fazhu{biche}@syr.edu

More information

Cooperative Communication Fundamentals & Coding Techniques

Cooperative Communication Fundamentals & Coding Techniques 3 th ICACT Tutorial Cooperative commuicatio fudametals & codig techiques Cooperative Commuicatio Fudametals & Codig Techiques 0..4 Electroics ad Telecommuicatio Research Istitute Kiug Jug 3 th ICACT Tutorial

More information

Randomized Algorithms I, Spring 2018, Department of Computer Science, University of Helsinki Homework 1: Solutions (Discussed January 25, 2018)

Randomized Algorithms I, Spring 2018, Department of Computer Science, University of Helsinki Homework 1: Solutions (Discussed January 25, 2018) Radomized Algorithms I, Sprig 08, Departmet of Computer Sciece, Uiversity of Helsiki Homework : Solutios Discussed Jauary 5, 08). Exercise.: Cosider the followig balls-ad-bi game. We start with oe black

More information

Lecture 10 October Minimaxity and least favorable prior sequences

Lecture 10 October Minimaxity and least favorable prior sequences STATS 300A: Theory of Statistics Fall 205 Lecture 0 October 22 Lecturer: Lester Mackey Scribe: Brya He, Rahul Makhijai Warig: These otes may cotai factual ad/or typographic errors. 0. Miimaxity ad least

More information

Random Walks on Discrete and Continuous Circles. by Jeffrey S. Rosenthal School of Mathematics, University of Minnesota, Minneapolis, MN, U.S.A.

Random Walks on Discrete and Continuous Circles. by Jeffrey S. Rosenthal School of Mathematics, University of Minnesota, Minneapolis, MN, U.S.A. Radom Walks o Discrete ad Cotiuous Circles by Jeffrey S. Rosethal School of Mathematics, Uiversity of Miesota, Mieapolis, MN, U.S.A. 55455 (Appeared i Joural of Applied Probability 30 (1993), 780 789.)

More information

Glivenko-Cantelli Classes

Glivenko-Cantelli Classes CS28B/Stat24B (Sprig 2008 Statistical Learig Theory Lecture: 4 Gliveko-Catelli Classes Lecturer: Peter Bartlett Scribe: Michelle Besi Itroductio This lecture will cover Gliveko-Catelli (GC classes ad itroduce

More information

ACO Comprehensive Exam 9 October 2007 Student code A. 1. Graph Theory

ACO Comprehensive Exam 9 October 2007 Student code A. 1. Graph Theory 1. Graph Theory Prove that there exist o simple plaar triagulatio T ad two distict adjacet vertices x, y V (T ) such that x ad y are the oly vertices of T of odd degree. Do ot use the Four-Color Theorem.

More information

Lecture 7: MIMO Architectures Theoretical Foundations of Wireless Communications 1. Overview. CommTh/EES/KTH

Lecture 7: MIMO Architectures Theoretical Foundations of Wireless Communications 1. Overview. CommTh/EES/KTH : Theoretical Foudatios of Wireless Commuicatios 1 Thursday, May 19, 2016 12:30-15:30, Coferece Room SIP 1 Textbook: D. Tse ad P. Viswaath, Fudametals of Wireless Commuicatio 1 / 1 Overview Lecture 6:

More information

Non-Asymptotic Achievable Rates for Gaussian Energy-Harvesting Channels: Best-Effort and Save-and-Transmit

Non-Asymptotic Achievable Rates for Gaussian Energy-Harvesting Channels: Best-Effort and Save-and-Transmit 08 IEEE Iteratioal Symposium o Iformatio Theory ISIT No-Asymptotic Achievable Rates for Gaussia Eergy-Harvestig Chaels: Best-Effort ad Save-ad-Trasmit Silas L Fog Departmet of Electrical ad Computer Egieerig

More information

A New Achievability Scheme for the Relay Channel

A New Achievability Scheme for the Relay Channel A New Achievability Scheme for the Relay Chael Wei Kag Seur Ulukus Departmet of Electrical ad Computer Egieerig Uiversity of Marylad, College Park, MD 20742 wkag@umd.edu ulukus@umd.edu October 4, 2007

More information

Non-Asymptotic Achievable Rates for Gaussian Energy-Harvesting Channels: Best-Effort and Save-and-Transmit

Non-Asymptotic Achievable Rates for Gaussian Energy-Harvesting Channels: Best-Effort and Save-and-Transmit No-Asymptotic Achievable Rates for Gaussia Eergy-Harvestig Chaels: Best-Effort ad Save-ad-Trasmit Silas L. Fog, Jig Yag, ad Ayli Yeer arxiv:805.089v [cs.it] 30 May 08 Abstract A additive white Gaussia

More information

SUCCESSIVE INTERFERENCE CANCELLATION DECODING FOR THE K -USER CYCLIC INTERFERENCE CHANNEL

SUCCESSIVE INTERFERENCE CANCELLATION DECODING FOR THE K -USER CYCLIC INTERFERENCE CHANNEL Joural of Theoretical ad Applied Iformatio Techology 31 st December 212 Vol 46 No2 25-212 JATIT & LLS All rights reserved ISSN: 1992-8645 wwwatitorg E-ISSN: 1817-3195 SCCESSIVE INTERFERENCE CANCELLATION

More information

MIDTERM 3 CALCULUS 2. Monday, December 3, :15 PM to 6:45 PM. Name PRACTICE EXAM SOLUTIONS

MIDTERM 3 CALCULUS 2. Monday, December 3, :15 PM to 6:45 PM. Name PRACTICE EXAM SOLUTIONS MIDTERM 3 CALCULUS MATH 300 FALL 08 Moday, December 3, 08 5:5 PM to 6:45 PM Name PRACTICE EXAM S Please aswer all of the questios, ad show your work. You must explai your aswers to get credit. You will

More information

Element sampling: Part 2

Element sampling: Part 2 Chapter 4 Elemet samplig: Part 2 4.1 Itroductio We ow cosider uequal probability samplig desigs which is very popular i practice. I the uequal probability samplig, we ca improve the efficiecy of the resultig

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 21 11/27/2013

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 21 11/27/2013 MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 21 11/27/2013 Fuctioal Law of Large Numbers. Costructio of the Wieer Measure Cotet. 1. Additioal techical results o weak covergece

More information

If a subset E of R contains no open interval, is it of zero measure? For instance, is the set of irrationals in [0, 1] is of measure zero?

If a subset E of R contains no open interval, is it of zero measure? For instance, is the set of irrationals in [0, 1] is of measure zero? 2 Lebesgue Measure I Chapter 1 we defied the cocept of a set of measure zero, ad we have observed that every coutable set is of measure zero. Here are some atural questios: If a subset E of R cotais a

More information

Consider the n-dimensional additive white Gaussian noise (AWGN) channel

Consider the n-dimensional additive white Gaussian noise (AWGN) channel 8. Lattice codes (by O. Ordetlich) Cosider the -dimesioal additive white Gaussia oise (AWGN) chael Y = X + Z where Z N (0, I ) is statistically idepedet of the iput X. Our goal is to commuicate reliably

More information

Lecture 23: Minimal sufficiency

Lecture 23: Minimal sufficiency Lecture 23: Miimal sufficiecy Maximal reductio without loss of iformatio There are may sufficiet statistics for a give problem. I fact, X (the whole data set) is sufficiet. If T is a sufficiet statistic

More information

THE interference channel problem describes a setup where multiple pairs of transmitters and receivers share a communication

THE interference channel problem describes a setup where multiple pairs of transmitters and receivers share a communication Trade-off betwee Commuicatio ad Cooperatio i the Iterferece Chael Farhad Shirai EECS Departmet Uiversity of Michiga A Arbor,USA Email: fshirai@umich.edu S. Sadeep Pradha EECS Departmet Uiversity of Michiga

More information

7.1 Convergence of sequences of random variables

7.1 Convergence of sequences of random variables Chapter 7 Limit theorems Throughout this sectio we will assume a probability space (Ω, F, P), i which is defied a ifiite sequece of radom variables (X ) ad a radom variable X. The fact that for every ifiite

More information

Hybrid Coding for Gaussian Broadcast Channels with Gaussian Sources

Hybrid Coding for Gaussian Broadcast Channels with Gaussian Sources Hybrid Codig for Gaussia Broadcast Chaels with Gaussia Sources Rajiv Soudararaja Departmet of Electrical & Computer Egieerig Uiversity of Texas at Austi Austi, TX 7871, USA Email: rajivs@mailutexasedu

More information

Sequences. Notation. Convergence of a Sequence

Sequences. Notation. Convergence of a Sequence Sequeces A sequece is essetially just a list. Defiitio (Sequece of Real Numbers). A sequece of real umbers is a fuctio Z (, ) R for some real umber. Do t let the descriptio of the domai cofuse you; it

More information

Solution. 1 Solutions of Homework 1. Sangchul Lee. October 27, Problem 1.1

Solution. 1 Solutions of Homework 1. Sangchul Lee. October 27, Problem 1.1 Solutio Sagchul Lee October 7, 017 1 Solutios of Homework 1 Problem 1.1 Let Ω,F,P) be a probability space. Show that if {A : N} F such that A := lim A exists, the PA) = lim PA ). Proof. Usig the cotiuity

More information

Entropy and Ergodic Theory Lecture 5: Joint typicality and conditional AEP

Entropy and Ergodic Theory Lecture 5: Joint typicality and conditional AEP Etropy ad Ergodic Theory Lecture 5: Joit typicality ad coditioal AEP 1 Notatio: from RVs back to distributios Let (Ω, F, P) be a probability space, ad let X ad Y be A- ad B-valued discrete RVs, respectively.

More information

Notes 5 : More on the a.s. convergence of sums

Notes 5 : More on the a.s. convergence of sums Notes 5 : More o the a.s. covergece of sums Math 733-734: Theory of Probability Lecturer: Sebastie Roch Refereces: Dur0, Sectios.5; Wil9, Sectio 4.7, Shi96, Sectio IV.4, Dur0, Sectio.. Radom series. Three-series

More information

Discrete Mathematics for CS Spring 2008 David Wagner Note 22

Discrete Mathematics for CS Spring 2008 David Wagner Note 22 CS 70 Discrete Mathematics for CS Sprig 2008 David Wager Note 22 I.I.D. Radom Variables Estimatig the bias of a coi Questio: We wat to estimate the proportio p of Democrats i the US populatio, by takig

More information

SDS 321: Introduction to Probability and Statistics

SDS 321: Introduction to Probability and Statistics SDS 321: Itroductio to Probability ad Statistics Lecture 23: Cotiuous radom variables- Iequalities, CLT Puramrita Sarkar Departmet of Statistics ad Data Sciece The Uiversity of Texas at Austi www.cs.cmu.edu/

More information

Lecture Notes for Analysis Class

Lecture Notes for Analysis Class Lecture Notes for Aalysis Class Topological Spaces A topology for a set X is a collectio T of subsets of X such that: (a) X ad the empty set are i T (b) Uios of elemets of T are i T (c) Fiite itersectios

More information

Seunghee Ye Ma 8: Week 5 Oct 28

Seunghee Ye Ma 8: Week 5 Oct 28 Week 5 Summary I Sectio, we go over the Mea Value Theorem ad its applicatios. I Sectio 2, we will recap what we have covered so far this term. Topics Page Mea Value Theorem. Applicatios of the Mea Value

More information

Lecture 12: November 13, 2018

Lecture 12: November 13, 2018 Mathematical Toolkit Autum 2018 Lecturer: Madhur Tulsiai Lecture 12: November 13, 2018 1 Radomized polyomial idetity testig We will use our kowledge of coditioal probability to prove the followig lemma,

More information

Lecture 19. sup y 1,..., yn B d n

Lecture 19. sup y 1,..., yn B d n STAT 06A: Polyomials of adom Variables Lecture date: Nov Lecture 19 Grothedieck s Iequality Scribe: Be Hough The scribes are based o a guest lecture by ya O Doell. I this lecture we prove Grothedieck s

More information

Advanced Stochastic Processes.

Advanced Stochastic Processes. Advaced Stochastic Processes. David Gamarik LECTURE 2 Radom variables ad measurable fuctios. Strog Law of Large Numbers (SLLN). Scary stuff cotiued... Outlie of Lecture Radom variables ad measurable fuctios.

More information

Machine Learning Theory (CS 6783)

Machine Learning Theory (CS 6783) Machie Learig Theory (CS 6783) Lecture 2 : Learig Frameworks, Examples Settig up learig problems. X : istace space or iput space Examples: Computer Visio: Raw M N image vectorized X = 0, 255 M N, SIFT

More information

Lecture 15: Density estimation

Lecture 15: Density estimation Lecture 15: Desity estimatio Why do we estimate a desity? Suppose that X 1,...,X are i.i.d. radom variables from F ad that F is ukow but has a Lebesgue p.d.f. f. Estimatio of F ca be doe by estimatig f.

More information

Lecture 4: Unique-SAT, Parity-SAT, and Approximate Counting

Lecture 4: Unique-SAT, Parity-SAT, and Approximate Counting Advaced Complexity Theory Sprig 206 Lecture 4: Uique-SAT, Parity-SAT, ad Approximate Coutig Prof. Daa Moshkovitz Scribe: Aoymous Studet Scribe Date: Fall 202 Overview I this lecture we begi talkig about

More information

bounds and in which F (n k) n q s.t. HG T = 0.

bounds and in which F (n k) n q s.t. HG T = 0. 6. Liear codes. Chael capacity Recall that last time we showed the followig achievability bouds: Shao s: P e P [i(x; Y ) log M + τ] + exp{ τ} M DT: P e E [ exp { (i( X; Y ) log ) + }] Feistei s: P e,max

More information

1 Introduction to reducing variance in Monte Carlo simulations

1 Introduction to reducing variance in Monte Carlo simulations Copyright c 010 by Karl Sigma 1 Itroductio to reducig variace i Mote Carlo simulatios 11 Review of cofidece itervals for estimatig a mea I statistics, we estimate a ukow mea µ = E(X) of a distributio by

More information

It is always the case that unions, intersections, complements, and set differences are preserved by the inverse image of a function.

It is always the case that unions, intersections, complements, and set differences are preserved by the inverse image of a function. MATH 532 Measurable Fuctios Dr. Neal, WKU Throughout, let ( X, F, µ) be a measure space ad let (!, F, P ) deote the special case of a probability space. We shall ow begi to study real-valued fuctios defied

More information

On the Capacity of Symmetric Gaussian Interference Channels with Feedback

On the Capacity of Symmetric Gaussian Interference Channels with Feedback O the Capacity of Symmetric Gaussia Iterferece Chaels with Feedback La V Truog Iformatio Techology Specializatio Departmet ITS FPT Uiversity, Haoi, Vietam E-mail: latv@fpteduv Hirosuke Yamamoto Dept of

More information

Lecture 1: Basic problems of coding theory

Lecture 1: Basic problems of coding theory Lecture 1: Basic problems of codig theory Error-Correctig Codes (Sprig 016) Rutgers Uiversity Swastik Kopparty Scribes: Abhishek Bhrushudi & Aditya Potukuchi Admiistrivia was discussed at the begiig of

More information

Notes for Lecture 11

Notes for Lecture 11 U.C. Berkeley CS78: Computatioal Complexity Hadout N Professor Luca Trevisa 3/4/008 Notes for Lecture Eigevalues, Expasio, ad Radom Walks As usual by ow, let G = (V, E) be a udirected d-regular graph with

More information

Detailed proofs of Propositions 3.1 and 3.2

Detailed proofs of Propositions 3.1 and 3.2 Detailed proofs of Propositios 3. ad 3. Proof of Propositio 3. NB: itegratio sets are geerally omitted for itegrals defied over a uit hypercube [0, s with ay s d. We first give four lemmas. The proof of

More information

This section is optional.

This section is optional. 4 Momet Geeratig Fuctios* This sectio is optioal. The momet geeratig fuctio g : R R of a radom variable X is defied as g(t) = E[e tx ]. Propositio 1. We have g () (0) = E[X ] for = 1, 2,... Proof. Therefore

More information

Solutions to Tutorial 3 (Week 4)

Solutions to Tutorial 3 (Week 4) The Uiversity of Sydey School of Mathematics ad Statistics Solutios to Tutorial Week 4 MATH2962: Real ad Complex Aalysis Advaced Semester 1, 2017 Web Page: http://www.maths.usyd.edu.au/u/ug/im/math2962/

More information

Topic 9: Sampling Distributions of Estimators

Topic 9: Sampling Distributions of Estimators Topic 9: Samplig Distributios of Estimators Course 003, 2016 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

More information

18.657: Mathematics of Machine Learning

18.657: Mathematics of Machine Learning 8.657: Mathematics of Machie Learig Lecturer: Philippe Rigollet Lecture 4 Scribe: Cheg Mao Sep., 05 I this lecture, we cotiue to discuss the effect of oise o the rate of the excess risk E(h) = R(h) R(h

More information

Shannon s noiseless coding theorem

Shannon s noiseless coding theorem 18.310 lecture otes May 4, 2015 Shao s oiseless codig theorem Lecturer: Michel Goemas I these otes we discuss Shao s oiseless codig theorem, which is oe of the foudig results of the field of iformatio

More information

Resampling Methods. X (1/2), i.e., Pr (X i m) = 1/2. We order the data: X (1) X (2) X (n). Define the sample median: ( n.

Resampling Methods. X (1/2), i.e., Pr (X i m) = 1/2. We order the data: X (1) X (2) X (n). Define the sample median: ( n. Jauary 1, 2019 Resamplig Methods Motivatio We have so may estimators with the property θ θ d N 0, σ 2 We ca also write θ a N θ, σ 2 /, where a meas approximately distributed as Oce we have a cosistet estimator

More information

Lesson 10: Limits and Continuity

Lesson 10: Limits and Continuity www.scimsacademy.com Lesso 10: Limits ad Cotiuity SCIMS Academy 1 Limit of a fuctio The cocept of limit of a fuctio is cetral to all other cocepts i calculus (like cotiuity, derivative, defiite itegrals

More information

PROBLEM SET 5 SOLUTIONS 126 = , 37 = , 15 = , 7 = 7 1.

PROBLEM SET 5 SOLUTIONS 126 = , 37 = , 15 = , 7 = 7 1. Math 7 Sprig 06 PROBLEM SET 5 SOLUTIONS Notatios. Give a real umber x, we will defie sequeces (a k ), (x k ), (p k ), (q k ) as i lecture.. (a) (5 pts) Fid the simple cotiued fractio represetatios of 6

More information

Estimation of the Mean and the ACVF

Estimation of the Mean and the ACVF Chapter 5 Estimatio of the Mea ad the ACVF A statioary process {X t } is characterized by its mea ad its autocovariace fuctio γ ), ad so by the autocorrelatio fuctio ρ ) I this chapter we preset the estimators

More information