Natural Language Processing

Size: px
Start display at page:

Download "Natural Language Processing"

Transcription

1 Natural Language Processing Info 159/259 Lecture 7: Language models 2 (Sept 14, 2017) David Bamman, UC Berkeley

2 Language Model Vocabulary V is a finite set of discrete symbols (e.g., words, characters); V = V V + is the infinite set of sequences of symbols from V; each sequence ends with STOP x V +

3 Language Model Language modeling is the task of estimating P(w)

4 Language Model arma virumque cano arms man and I sing Arms, and the man I sing [Dryden] I sing of arms and a man When we have choices to make about different ways to say something, a language models gives us a formal way of operationalizing their fluency (in terms of how likely they are exist in the language)

5 Markov assumption bigram model (first-order markov) n i P (w i w i 1 ) P (STOP w n ) trigram model (second-order markov) n i P (w i w i 2,w i 1 ) P (STOP w n 1,w n )

6 Classification A mapping h from input data x (drawn from instance space X) to a label (or labels) y from some enumerable output space Y X = set of all documents Y = {english, mandarin, greek, } x = a single document y = ancient greek

7 Classification A mapping h from input data x (drawn from instance space X) to a label (or labels) y from some enumerable output space Y Y = {the, of, a, dog, iphone, } x = (context) y = word

8 Logistic regression P(y = 1 x, β) = 1 +exp 1 F i=1 x iβ i output space Y = {0, 1}

9 x = feature vector β = coefficients Feature Value Feature β the 0 and 0 bravest 0 love 0 loved 0 genius 0 not 0 fruit 1 BIAS 1 the 0.01 and 0.03 bravest 1.4 love 3.1 loved 1.2 genius 0.5 not -3.0 fruit -0.8 BIAS

10 P(Y = 1 X = x; β) = exp(x β) 1 +exp(x β) = exp(x β) exp(x 0)+exp(x β)

11 Logistic regression P(Y = y X = x; β) = exp(x β y ) y Y exp(x β y ) output space Y = {1,...,K}

12 x = feature vector β = coefficients Feature Value Feature β1 β2 β3 β4 β5 the 0 and 0 bravest 0 love 0 loved 0 genius 0 not 0 fruit 1 BIAS 1 the and bravest love loved genius not fruit BIAS

13 Language Model We can use multi class logistic regression for language modeling by treating the vocabulary as the output space Y = V

14 Unigram LM A unigram language model here would have just one feature: a bias term. Feature βthe βof βa βdog βiphone BIAS

15 Bigram LM Feature Value βthe βof βa βdog βiphone wi-1=the 1 wi-1=and 0 wi-1=brave 0 st wi-1=love 0 wi-1=loved 0 wi-1=geniu 0 s wi-1=not 0 wi-1=fruit 0 BIAS

16 P(w i = dog w i 1 = the) Feature Value βthe βof βa βdog βiphone wi-1=the 1 wi-1=and 0 wi-1=brave 0 st wi-1=love 0 wi-1=loved 0 wi-1=geniu 0 s wi-1=not 0 wi-1=fruit 0 BIAS

17 Trigram LM P(w i = dog w i 2 = and, w i 1 = the) Feature Value wi-2=the ^ wi-1=the 0 wi-2=and ^ wi-1=the 1 wi-2=bravest ^ wi-1=the 0 wi-2=love ^ wi-1=the 0 wi-2=loved ^ wi-1=the 0 wi-2=genius ^ wi-1=the 0 wi-2=not ^ wi-1=the 0 wi-2=fruit ^ wi-1=the 0 BIAS 1

18 Parameters How many parameters do we have with a log-linear trigram language model? How many do we have with a generative trigram LM?

19 Smoothing P(w i = dog w i 2 = and, w i 1 = the) Feature Value second-order features first-order features wi-2=the ^ wi-1=the 0 wi-2=and ^ wi-1=the 1 wi-2=bravest ^ wi-1=the 0 wi-2=love ^ wi-1=the 0 wi-1=the 1 wi-1=and 0 wi-1=bravest 0 wi-1=love 0 BIAS 1

20 L2 regularization N F (β) = log P(y i x i, β) η β 2 j i=1 j=1 we want this to be high but we want this to be small We can do this by changing the function we re trying to optimize by adding a penalty for having values of β that are high This is equivalent to saying that each β element is drawn from a Normal distribution centered on 0. η controls how much of a penalty to pay for coefficients that are far from 0 (optimize on development data) 20

21 L1 regularization N F (β) = log P(y i x i, β) η β j i=1 j=1 we want this to be high but we want this to be small L1 regularization encourages coefficients to be exactly 0. η again controls how much of a penalty to pay for coefficients that are far from 0 (optimize on development data) 21

22 Richer representations Log-linear models give us the flexibility of encoding richer representations of the context we are conditioning on. We can reason about any observations from the entire history and not just the local context.

23 JACKSONVILLE, Fla. Stressed and exhausted families across the Southeast were assessing the damage from Hurricane Irma on Tuesday, even as flooding from the storm continued to plague some areas, like Jacksonville, and the worst of its wallop was being revealed in others, like the Florida Keys. Officials in Florida, Georgia and South Carolina tried to prepare residents for the hardships of recovery from the

24 Hillary Clinton seemed to add Benghazi to her already-long list of culprits to blame for her upset loss to Donald

25

26 Hillary Clinton seemed to add Benghazi to her already-long list of culprits to blame for her upset loss to Donald feature classes example ngrams (wi-1, wi-2:wi-1, wi-3:wi-1) wi-2= to, wi= donald gappy ngrams spelling, capitalizaiton class/gazetteer membership w1= hillary and wi-1= donald wi-1 is capitalized and wi is capitalized wi-1 in list of names and wi in list of names 26

27 Classes bigram count bigram count black car 100 <COLOR> car 137 blue car 37 red car 0 Goldberg 2017

28 Tradeoffs Richer representations = more parameters, higher likelihood of overfitting Much slower to train than estimating the parameters of a generative model P(Y = y X = x; β) = exp(x β y ) y Y exp(x β y )

29 Neural LM Simple feed-forward multilayer perceptron (e.g., one hidden layer) input x = vector concatenation of a conditioning context of fixed size k 1 x =[v(w 1 );...; v(w k )] Bengio et al. 2003

30 1 v(w1) v(w1) x =[v(w 1 );...; v(w k )] v(w2) 1 v(w2) v(w3) 1 v(w3) w1 = tried w2 = to w3 = prepare w4 = residents v(w4) 1 one-hot encoding v(w4) distributed representation Bengio et al. 2003

31 W 1 R kd H W 2 R H V b 1 R H b 2 R V h = g(xw 1 + b 1 ) x =[v(w 1 );...; v(w k )] ŷ = softmax(hw 2 + b 2 ) Bengio et al. 2003

32 Softmax P(Y = y X = x; β) = exp(x β y ) y Y exp(x β y )

33 Neural LM conditioning context tried to prepare residents for the hardships of recovery from the y

34 Recurrent neural network RNN allow arbitarily-sized conditioning contexts; condition on the entire sequence history.

35 Recurrent neural network Goldberg 2017

36 Recurrent neural network Each time step has two inputs: x i (the observation at time step i); one-hot vector, feature vector or distributed representation. s i-1 (the output of the previous state); base case: s 0 = 0 vector

37 Recurrent neural network s i = R(x i, s i 1 ) R computes the output state as a function of the current input and previous state y i = O(s i ) O computes the output as a function of the current output state

38 Continuous bag of words s i = R(x i, s i 1 )=s i 1 + x i Each state is the sum of all previous inputs y i = O(s i )=s i Output is the identity

39 Simple RNN g = tanh or relu s i = R(x i, s i 1 )=g(s i 1 W s + x i W x + b) Different weight vectors W transform the previous state and current input before combining W s R H H W x R D H b R H y i = O(s i )=s i Elman 1990, Mikolov 2012

40 RNN LM The output state s i is an H- dimensional real vector; we can transfer that into a probability by passing it through an additional linear transformation followed by a softmax y i = O(s i )= (s i W o + b o ) Elman 1990, Mikolov 2012

41 Training RNNs Given this definition of an RNN: s i = R(x i,s i 1 )=g(s i 1 W s + x i W x + b) y i = O(s i )= (s i W o + b o ) We have five sets of parameters to learn: W s,w x,w o,b,b o

42 Training RNNs we tried to prepare residents At each time step, we make a prediction and incur a loss; we know the true y (the word we see in that position)

43 L( ) y1 W s L( ) y2 W s L( ) y3 W s L( ) y4 W s L( ) y5 W s we tried to prepare residents Training here is standard backpropagation, taking the derivative of the loss we incur at step t with respect to the parameters we want to update

44 Generation context1 context2 generated word As we sample, the words we generate form the new context we condition on START START The START The dog The dog walked dog walked in

45 Generation

46 Conditioned generation In a basic RNN, the input at each timestep is a representation of the word at that position s i = R(x i,s i 1 )=g(s i 1 W s + x i W x + b) But we can also condition on any arbitrary context (topic, author, date, metadata, dialect, etc.) s i = R(x i,s i 1 )=g(s i 1 W s + [x i ; c]w x + b)

47 we tried to prepare residents Each state i encodes information seen until time i and its structure is optimized to predict the next word

48 Character LM Vocabulary V is a finite set of discrete characters When the output space is small, you re putting a lot of the burden on the structure of the model Encode long-range dependencies (suffixes depend on prefixes, word boundaries etc.)

49 Character LM

50 Character LM

51 Character LM

52 Drawbacks Very expensive to train (especially for large vocabulary, though tricks exists cf. hierarchical softmax) Backpropagation through long histories leads to vanishing gradients (cf. LSTMs in a few weeks). But they consistently have some of the strongest performances in perplexity evaluations.

53 Mikolov 2010

54 Melis, Dyer and Blunsom 2017

55 Distributed representations Some of the greatest power 1 in neural network approaches is in the representation of words (and contexts) as lowdimensional vectors We ll talk much more about that on Tuesday.

Applied Natural Language Processing

Applied Natural Language Processing Applied Natural Language Processing Info 256 Lecture 20: Sequence labeling (April 9, 2019) David Bamman, UC Berkeley POS tagging NNP Labeling the tag that s correct for the context. IN JJ FW SYM IN JJ

More information

Natural Language Processing

Natural Language Processing Natural Language Processing Info 59/259 Lecture 4: Text classification 3 (Sept 5, 207) David Bamman, UC Berkeley . https://www.forbes.com/sites/kevinmurnane/206/04/0/what-is-deep-learning-and-how-is-it-useful

More information

Applied Natural Language Processing

Applied Natural Language Processing Applied Natural Language Processing Info 256 Lecture 5: Text classification (Feb 5, 2019) David Bamman, UC Berkeley Data Classification A mapping h from input data x (drawn from instance space X) to a

More information

NEURAL LANGUAGE MODELS

NEURAL LANGUAGE MODELS COMP90042 LECTURE 14 NEURAL LANGUAGE MODELS LANGUAGE MODELS Assign a probability to a sequence of words Framed as sliding a window over the sentence, predicting each word from finite context to left E.g.,

More information

From perceptrons to word embeddings. Simon Šuster University of Groningen

From perceptrons to word embeddings. Simon Šuster University of Groningen From perceptrons to word embeddings Simon Šuster University of Groningen Outline A basic computational unit Weighting some input to produce an output: classification Perceptron Classify tweets Written

More information

Part-of-Speech Tagging + Neural Networks 3: Word Embeddings CS 287

Part-of-Speech Tagging + Neural Networks 3: Word Embeddings CS 287 Part-of-Speech Tagging + Neural Networks 3: Word Embeddings CS 287 Review: Neural Networks One-layer multi-layer perceptron architecture, NN MLP1 (x) = g(xw 1 + b 1 )W 2 + b 2 xw + b; perceptron x is the

More information

Lecture 6: Neural Networks for Representing Word Meaning

Lecture 6: Neural Networks for Representing Word Meaning Lecture 6: Neural Networks for Representing Word Meaning Mirella Lapata School of Informatics University of Edinburgh mlap@inf.ed.ac.uk February 7, 2017 1 / 28 Logistic Regression Input is a feature vector,

More information

Conditional Language Modeling. Chris Dyer

Conditional Language Modeling. Chris Dyer Conditional Language Modeling Chris Dyer Unconditional LMs A language model assigns probabilities to sequences of words,. w =(w 1,w 2,...,w`) It is convenient to decompose this probability using the chain

More information

Natural Language Processing

Natural Language Processing Natural Language Processing Language models Based on slides from Michael Collins, Chris Manning and Richard Soccer Plan Problem definition Trigram models Evaluation Estimation Interpolation Discounting

More information

Sequence Modeling with Neural Networks

Sequence Modeling with Neural Networks Sequence Modeling with Neural Networks Harini Suresh y 0 y 1 y 2 s 0 s 1 s 2... x 0 x 1 x 2 hat is a sequence? This morning I took the dog for a walk. sentence medical signals speech waveform Successes

More information

Lecture 17: Neural Networks and Deep Learning

Lecture 17: Neural Networks and Deep Learning UVA CS 6316 / CS 4501-004 Machine Learning Fall 2016 Lecture 17: Neural Networks and Deep Learning Jack Lanchantin Dr. Yanjun Qi 1 Neurons 1-Layer Neural Network Multi-layer Neural Network Loss Functions

More information

Deep Learning Recurrent Networks 2/28/2018

Deep Learning Recurrent Networks 2/28/2018 Deep Learning Recurrent Networks /8/8 Recap: Recurrent networks can be incredibly effective Story so far Y(t+) Stock vector X(t) X(t+) X(t+) X(t+) X(t+) X(t+5) X(t+) X(t+7) Iterated structures are good

More information

Deconstructing Data Science

Deconstructing Data Science Deconstructing Data Science David Bamman, UC Berkeley Info 290 Lecture 9: Logistic regression Feb 22, 2016 Generative vs. Discriminative models Generative models specify a joint distribution over the labels

More information

CSC321 Lecture 5: Multilayer Perceptrons

CSC321 Lecture 5: Multilayer Perceptrons CSC321 Lecture 5: Multilayer Perceptrons Roger Grosse Roger Grosse CSC321 Lecture 5: Multilayer Perceptrons 1 / 21 Overview Recall the simple neuron-like unit: y output output bias i'th weight w 1 w2 w3

More information

Deep Learning Basics Lecture 10: Neural Language Models. Princeton University COS 495 Instructor: Yingyu Liang

Deep Learning Basics Lecture 10: Neural Language Models. Princeton University COS 495 Instructor: Yingyu Liang Deep Learning Basics Lecture 10: Neural Language Models Princeton University COS 495 Instructor: Yingyu Liang Natural language Processing (NLP) The processing of the human languages by computers One of

More information

Lecture 5 Neural models for NLP

Lecture 5 Neural models for NLP CS546: Machine Learning in NLP (Spring 2018) http://courses.engr.illinois.edu/cs546/ Lecture 5 Neural models for NLP Julia Hockenmaier juliahmr@illinois.edu 3324 Siebel Center Office hours: Tue/Thu 2pm-3pm

More information

Algorithms for NLP. Language Modeling III. Taylor Berg-Kirkpatrick CMU Slides: Dan Klein UC Berkeley

Algorithms for NLP. Language Modeling III. Taylor Berg-Kirkpatrick CMU Slides: Dan Klein UC Berkeley Algorithms for NLP Language Modeling III Taylor Berg-Kirkpatrick CMU Slides: Dan Klein UC Berkeley Announcements Office hours on website but no OH for Taylor until next week. Efficient Hashing Closed address

More information

word2vec Parameter Learning Explained

word2vec Parameter Learning Explained word2vec Parameter Learning Explained Xin Rong ronxin@umich.edu Abstract The word2vec model and application by Mikolov et al. have attracted a great amount of attention in recent two years. The vector

More information

Statistical Machine Learning (BE4M33SSU) Lecture 5: Artificial Neural Networks

Statistical Machine Learning (BE4M33SSU) Lecture 5: Artificial Neural Networks Statistical Machine Learning (BE4M33SSU) Lecture 5: Artificial Neural Networks Jan Drchal Czech Technical University in Prague Faculty of Electrical Engineering Department of Computer Science Topics covered

More information

Deconstructing Data Science

Deconstructing Data Science econstructing ata Science avid Bamman, UC Berkeley Info 290 Lecture 6: ecision trees & random forests Feb 2, 2016 Linear regression eep learning ecision trees Ordinal regression Probabilistic graphical

More information

Training the linear classifier

Training the linear classifier 215, Training the linear classifier A natural way to train the classifier is to minimize the number of classification errors on the training data, i.e. choosing w so that the training error is minimized.

More information

Structured Neural Networks (I)

Structured Neural Networks (I) Structured Neural Networks (I) CS 690N, Spring 208 Advanced Natural Language Processing http://peoplecsumassedu/~brenocon/anlp208/ Brendan O Connor College of Information and Computer Sciences University

More information

Machine Learning for Large-Scale Data Analysis and Decision Making A. Neural Networks Week #6

Machine Learning for Large-Scale Data Analysis and Decision Making A. Neural Networks Week #6 Machine Learning for Large-Scale Data Analysis and Decision Making 80-629-17A Neural Networks Week #6 Today Neural Networks A. Modeling B. Fitting C. Deep neural networks Today s material is (adapted)

More information

Neural Networks with Applications to Vision and Language. Feedforward Networks. Marco Kuhlmann

Neural Networks with Applications to Vision and Language. Feedforward Networks. Marco Kuhlmann Neural Networks with Applications to Vision and Language Feedforward Networks Marco Kuhlmann Feedforward networks Linear separability x 2 x 2 0 1 0 1 0 0 x 1 1 0 x 1 linearly separable not linearly separable

More information

Part-of-Speech Tagging + Neural Networks 2 CS 287

Part-of-Speech Tagging + Neural Networks 2 CS 287 Part-of-Speech Tagging + Neural Networks 2 CS 287 Review: Bilinear Model Bilinear model, ŷ = f ((x 0 W 0 )W 1 + b) x 0 R 1 d 0 start with one-hot. W 0 R d 0 d in, d 0 = F W 1 R d in d out, b R 1 d out

More information

Logistic Regression & Neural Networks

Logistic Regression & Neural Networks Logistic Regression & Neural Networks CMSC 723 / LING 723 / INST 725 Marine Carpuat Slides credit: Graham Neubig, Jacob Eisenstein Logistic Regression Perceptron & Probabilities What if we want a probability

More information

text classification 3: neural networks

text classification 3: neural networks text classification 3: neural networks CS 585, Fall 2018 Introduction to Natural Language Processing http://people.cs.umass.edu/~miyyer/cs585/ Mohit Iyyer College of Information and Computer Sciences University

More information

Natural Language Processing and Recurrent Neural Networks

Natural Language Processing and Recurrent Neural Networks Natural Language Processing and Recurrent Neural Networks Pranay Tarafdar October 19 th, 2018 Outline Introduction to NLP Word2vec RNN GRU LSTM Demo What is NLP? Natural Language? : Huge amount of information

More information

Need for Deep Networks Perceptron. Can only model linear functions. Kernel Machines. Non-linearity provided by kernels

Need for Deep Networks Perceptron. Can only model linear functions. Kernel Machines. Non-linearity provided by kernels Need for Deep Networks Perceptron Can only model linear functions Kernel Machines Non-linearity provided by kernels Need to design appropriate kernels (possibly selecting from a set, i.e. kernel learning)

More information

Natural Language Processing

Natural Language Processing Natural Language Processing Info 159/259 Lecture 15: Review (Oct 11, 2018) David Bamman, UC Berkeley Big ideas Classification Naive Bayes, Logistic regression, feedforward neural networks, CNN. Where does

More information

Neural Network Language Modeling

Neural Network Language Modeling Neural Network Language Modeling Instructor: Wei Xu Ohio State University CSE 5525 Many slides from Marek Rei, Philipp Koehn and Noah Smith Course Project Sign up your course project In-class presentation

More information

Neural Networks Language Models

Neural Networks Language Models Neural Networks Language Models Philipp Koehn 10 October 2017 N-Gram Backoff Language Model 1 Previously, we approximated... by applying the chain rule p(w ) = p(w 1, w 2,..., w n ) p(w ) = i p(w i w 1,...,

More information

Need for Deep Networks Perceptron. Can only model linear functions. Kernel Machines. Non-linearity provided by kernels

Need for Deep Networks Perceptron. Can only model linear functions. Kernel Machines. Non-linearity provided by kernels Need for Deep Networks Perceptron Can only model linear functions Kernel Machines Non-linearity provided by kernels Need to design appropriate kernels (possibly selecting from a set, i.e. kernel learning)

More information

Machine Learning: Chenhao Tan University of Colorado Boulder LECTURE 6

Machine Learning: Chenhao Tan University of Colorado Boulder LECTURE 6 Machine Learning: Chenhao Tan University of Colorado Boulder LECTURE 6 Slides adapted from Jordan Boyd-Graber, Chris Ketelsen Machine Learning: Chenhao Tan Boulder 1 of 39 HW1 turned in HW2 released Office

More information

arxiv: v3 [cs.cl] 30 Jan 2016

arxiv: v3 [cs.cl] 30 Jan 2016 word2vec Parameter Learning Explained Xin Rong ronxin@umich.edu arxiv:1411.2738v3 [cs.cl] 30 Jan 2016 Abstract The word2vec model and application by Mikolov et al. have attracted a great amount of attention

More information

Recurrent Neural Networks. deeplearning.ai. Why sequence models?

Recurrent Neural Networks. deeplearning.ai. Why sequence models? Recurrent Neural Networks deeplearning.ai Why sequence models? Examples of sequence data The quick brown fox jumped over the lazy dog. Speech recognition Music generation Sentiment classification There

More information

RECURRENT NETWORKS I. Philipp Krähenbühl

RECURRENT NETWORKS I. Philipp Krähenbühl RECURRENT NETWORKS I Philipp Krähenbühl RECAP: CLASSIFICATION conv 1 conv 2 conv 3 conv 4 1 2 tu RECAP: SEGMENTATION conv 1 conv 2 conv 3 conv 4 RECAP: DETECTION conv 1 conv 2 conv 3 conv 4 RECAP: GENERATION

More information

Language Modeling. Michael Collins, Columbia University

Language Modeling. Michael Collins, Columbia University Language Modeling Michael Collins, Columbia University Overview The language modeling problem Trigram models Evaluating language models: perplexity Estimation techniques: Linear interpolation Discounting

More information

Machine Learning (CS 567) Lecture 2

Machine Learning (CS 567) Lecture 2 Machine Learning (CS 567) Lecture 2 Time: T-Th 5:00pm - 6:20pm Location: GFS118 Instructor: Sofus A. Macskassy (macskass@usc.edu) Office: SAL 216 Office hours: by appointment Teaching assistant: Cheol

More information

Recurrent and Recursive Networks

Recurrent and Recursive Networks Neural Networks with Applications to Vision and Language Recurrent and Recursive Networks Marco Kuhlmann Introduction Applications of sequence modelling Map unsegmented connected handwriting to strings.

More information

Deep Learning for Natural Language Processing. Sidharth Mudgal April 4, 2017

Deep Learning for Natural Language Processing. Sidharth Mudgal April 4, 2017 Deep Learning for Natural Language Processing Sidharth Mudgal April 4, 2017 Table of contents 1. Intro 2. Word Vectors 3. Word2Vec 4. Char Level Word Embeddings 5. Application: Entity Matching 6. Conclusion

More information

Neural Networks. Intro to AI Bert Huang Virginia Tech

Neural Networks. Intro to AI Bert Huang Virginia Tech Neural Networks Intro to AI Bert Huang Virginia Tech Outline Biological inspiration for artificial neural networks Linear vs. nonlinear functions Learning with neural networks: back propagation https://en.wikipedia.org/wiki/neuron#/media/file:chemical_synapse_schema_cropped.jpg

More information

Foundations of Natural Language Processing Lecture 5 More smoothing and the Noisy Channel Model

Foundations of Natural Language Processing Lecture 5 More smoothing and the Noisy Channel Model Foundations of Natural Language Processing Lecture 5 More smoothing and the Noisy Channel Model Alex Lascarides (Slides based on those from Alex Lascarides, Sharon Goldwater and Philipop Koehn) 30 January

More information

Natural Language Processing

Natural Language Processing Natural Language Processing Info 159/259 Lecture 2: Text classification 1 (Aug 29, 2017) David Bamman, UC Berkeley Quizzes Take place in the first 10 minutes of class: start at 3:40, end at 3:50 We drop

More information

Better Conditional Language Modeling. Chris Dyer

Better Conditional Language Modeling. Chris Dyer Better Conditional Language Modeling Chris Dyer Conditional LMs A conditional language model assigns probabilities to sequences of words, w =(w 1,w 2,...,w`), given some conditioning context, x. As with

More information

Empirical Methods in Natural Language Processing Lecture 10a More smoothing and the Noisy Channel Model

Empirical Methods in Natural Language Processing Lecture 10a More smoothing and the Noisy Channel Model Empirical Methods in Natural Language Processing Lecture 10a More smoothing and the Noisy Channel Model (most slides from Sharon Goldwater; some adapted from Philipp Koehn) 5 October 2016 Nathan Schneider

More information

Ways to make neural networks generalize better

Ways to make neural networks generalize better Ways to make neural networks generalize better Seminar in Deep Learning University of Tartu 04 / 10 / 2014 Pihel Saatmann Topics Overview of ways to improve generalization Limiting the size of the weights

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 Outlines Overview Introduction Linear Algebra Probability Linear Regression

More information

CS224N: Natural Language Processing with Deep Learning Winter 2018 Midterm Exam

CS224N: Natural Language Processing with Deep Learning Winter 2018 Midterm Exam CS224N: Natural Language Processing with Deep Learning Winter 2018 Midterm Exam This examination consists of 17 printed sides, 5 questions, and 100 points. The exam accounts for 20% of your total grade.

More information

An overview of word2vec

An overview of word2vec An overview of word2vec Benjamin Wilson Berlin ML Meetup, July 8 2014 Benjamin Wilson word2vec Berlin ML Meetup 1 / 25 Outline 1 Introduction 2 Background & Significance 3 Architecture 4 CBOW word representations

More information

Feed-forward Network Functions

Feed-forward Network Functions Feed-forward Network Functions Sargur Srihari Topics 1. Extension of linear models 2. Feed-forward Network Functions 3. Weight-space symmetries 2 Recap of Linear Models Linear Models for Regression, Classification

More information

Lecture 12: Algorithms for HMMs

Lecture 12: Algorithms for HMMs Lecture 12: Algorithms for HMMs Nathan Schneider (some slides from Sharon Goldwater; thanks to Jonathan May for bug fixes) ENLP 26 February 2018 Recap: tagging POS tagging is a sequence labelling task.

More information

Neural Networks. Nicholas Ruozzi University of Texas at Dallas

Neural Networks. Nicholas Ruozzi University of Texas at Dallas Neural Networks Nicholas Ruozzi University of Texas at Dallas Handwritten Digit Recognition Given a collection of handwritten digits and their corresponding labels, we d like to be able to correctly classify

More information

Natural Language Understanding. Recap: probability, language models, and feedforward networks. Lecture 12: Recurrent Neural Networks and LSTMs

Natural Language Understanding. Recap: probability, language models, and feedforward networks. Lecture 12: Recurrent Neural Networks and LSTMs Natural Language Understanding Lecture 12: Recurrent Neural Networks and LSTMs Recap: probability, language models, and feedforward networks Simple Recurrent Networks Adam Lopez Credits: Mirella Lapata

More information

N-grams. Motivation. Simple n-grams. Smoothing. Backoff. N-grams L545. Dept. of Linguistics, Indiana University Spring / 24

N-grams. Motivation. Simple n-grams. Smoothing. Backoff. N-grams L545. Dept. of Linguistics, Indiana University Spring / 24 L545 Dept. of Linguistics, Indiana University Spring 2013 1 / 24 Morphosyntax We just finished talking about morphology (cf. words) And pretty soon we re going to discuss syntax (cf. sentences) In between,

More information

Recurrent Neural Networks (Part - 2) Sumit Chopra Facebook

Recurrent Neural Networks (Part - 2) Sumit Chopra Facebook Recurrent Neural Networks (Part - 2) Sumit Chopra Facebook Recap Standard RNNs Training: Backpropagation Through Time (BPTT) Application to sequence modeling Language modeling Applications: Automatic speech

More information

Deep Learning Sequence to Sequence models: Attention Models. 17 March 2018

Deep Learning Sequence to Sequence models: Attention Models. 17 March 2018 Deep Learning Sequence to Sequence models: Attention Models 17 March 2018 1 Sequence-to-sequence modelling Problem: E.g. A sequence X 1 X N goes in A different sequence Y 1 Y M comes out Speech recognition:

More information

Neural Architectures for Image, Language, and Speech Processing

Neural Architectures for Image, Language, and Speech Processing Neural Architectures for Image, Language, and Speech Processing Karl Stratos June 26, 2018 1 / 31 Overview Feedforward Networks Need for Specialized Architectures Convolutional Neural Networks (CNNs) Recurrent

More information

Neural Networks in Structured Prediction. November 17, 2015

Neural Networks in Structured Prediction. November 17, 2015 Neural Networks in Structured Prediction November 17, 2015 HWs and Paper Last homework is going to be posted soon Neural net NER tagging model This is a new structured model Paper - Thursday after Thanksgiving

More information

Online Videos FERPA. Sign waiver or sit on the sides or in the back. Off camera question time before and after lecture. Questions?

Online Videos FERPA. Sign waiver or sit on the sides or in the back. Off camera question time before and after lecture. Questions? Online Videos FERPA Sign waiver or sit on the sides or in the back Off camera question time before and after lecture Questions? Lecture 1, Slide 1 CS224d Deep NLP Lecture 4: Word Window Classification

More information

EE-559 Deep learning Recurrent Neural Networks

EE-559 Deep learning Recurrent Neural Networks EE-559 Deep learning 11.1. Recurrent Neural Networks François Fleuret https://fleuret.org/ee559/ Sun Feb 24 20:33:31 UTC 2019 Inference from sequences François Fleuret EE-559 Deep learning / 11.1. Recurrent

More information

4. Multilayer Perceptrons

4. Multilayer Perceptrons 4. Multilayer Perceptrons This is a supervised error-correction learning algorithm. 1 4.1 Introduction A multilayer feedforward network consists of an input layer, one or more hidden layers, and an output

More information

Homework 3 COMS 4705 Fall 2017 Prof. Kathleen McKeown

Homework 3 COMS 4705 Fall 2017 Prof. Kathleen McKeown Homework 3 COMS 4705 Fall 017 Prof. Kathleen McKeown The assignment consists of a programming part and a written part. For the programming part, make sure you have set up the development environment as

More information

Natural Language Processing

Natural Language Processing Natural Language Processing Info 159/259 Lecture 12: Features and hypothesis tests (Oct 3, 2017) David Bamman, UC Berkeley Announcements No office hours for DB this Friday (email if you d like to chat)

More information

Neural Networks. David Rosenberg. July 26, New York University. David Rosenberg (New York University) DS-GA 1003 July 26, / 35

Neural Networks. David Rosenberg. July 26, New York University. David Rosenberg (New York University) DS-GA 1003 July 26, / 35 Neural Networks David Rosenberg New York University July 26, 2017 David Rosenberg (New York University) DS-GA 1003 July 26, 2017 1 / 35 Neural Networks Overview Objectives What are neural networks? How

More information

Slide credit from Hung-Yi Lee & Richard Socher

Slide credit from Hung-Yi Lee & Richard Socher Slide credit from Hung-Yi Lee & Richard Socher 1 Review Recurrent Neural Network 2 Recurrent Neural Network Idea: condition the neural network on all previous words and tie the weights at each time step

More information

Recurrent Neural Networks 2. CS 287 (Based on Yoav Goldberg s notes)

Recurrent Neural Networks 2. CS 287 (Based on Yoav Goldberg s notes) Recurrent Neural Networks 2 CS 287 (Based on Yoav Goldberg s notes) Review: Representation of Sequence Many tasks in NLP involve sequences w 1,..., w n Representations as matrix dense vectors X (Following

More information

Statistical Machine Learning from Data

Statistical Machine Learning from Data January 17, 2006 Samy Bengio Statistical Machine Learning from Data 1 Statistical Machine Learning from Data Multi-Layer Perceptrons Samy Bengio IDIAP Research Institute, Martigny, Switzerland, and Ecole

More information

CSC321 Lecture 15: Recurrent Neural Networks

CSC321 Lecture 15: Recurrent Neural Networks CSC321 Lecture 15: Recurrent Neural Networks Roger Grosse Roger Grosse CSC321 Lecture 15: Recurrent Neural Networks 1 / 26 Overview Sometimes we re interested in predicting sequences Speech-to-text and

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Jeff Clune Assistant Professor Evolving Artificial Intelligence Laboratory Announcements Be making progress on your projects! Three Types of Learning Unsupervised Supervised Reinforcement

More information

Semantics with Dense Vectors. Reference: D. Jurafsky and J. Martin, Speech and Language Processing

Semantics with Dense Vectors. Reference: D. Jurafsky and J. Martin, Speech and Language Processing Semantics with Dense Vectors Reference: D. Jurafsky and J. Martin, Speech and Language Processing 1 Semantics with Dense Vectors We saw how to represent a word as a sparse vector with dimensions corresponding

More information

Lecture 12: Algorithms for HMMs

Lecture 12: Algorithms for HMMs Lecture 12: Algorithms for HMMs Nathan Schneider (some slides from Sharon Goldwater; thanks to Jonathan May for bug fixes) ENLP 17 October 2016 updated 9 September 2017 Recap: tagging POS tagging is a

More information

Recurrent Neural Networks. COMP-550 Oct 5, 2017

Recurrent Neural Networks. COMP-550 Oct 5, 2017 Recurrent Neural Networks COMP-550 Oct 5, 2017 Outline Introduction to neural networks and deep learning Feedforward neural networks Recurrent neural networks 2 Classification Review y = f( x) output label

More information

Introduction to Machine Learning HW6

Introduction to Machine Learning HW6 CS 189 Spring 2018 Introduction to Machine Learning HW6 Your self-grade URL is http://eecs189.org/self_grade?question_ids=1_1,1_ 2,2_1,2_2,3_1,3_2,3_3,4_1,4_2,4_3,4_4,4_5,4_6,5_1,5_2,6. This homework is

More information

Neural networks CMSC 723 / LING 723 / INST 725 MARINE CARPUAT. Slides credit: Graham Neubig

Neural networks CMSC 723 / LING 723 / INST 725 MARINE CARPUAT. Slides credit: Graham Neubig Neural networks CMSC 723 / LING 723 / INST 725 MARINE CARPUAT marine@cs.umd.edu Slides credit: Graham Neubig Outline Perceptron: recap and limitations Neural networks Multi-layer perceptron Forward propagation

More information

Artificial Neural Networks. MGS Lecture 2

Artificial Neural Networks. MGS Lecture 2 Artificial Neural Networks MGS 2018 - Lecture 2 OVERVIEW Biological Neural Networks Cell Topology: Input, Output, and Hidden Layers Functional description Cost functions Training ANNs Back-Propagation

More information

Generative Clustering, Topic Modeling, & Bayesian Inference

Generative Clustering, Topic Modeling, & Bayesian Inference Generative Clustering, Topic Modeling, & Bayesian Inference INFO-4604, Applied Machine Learning University of Colorado Boulder December 12-14, 2017 Prof. Michael Paul Unsupervised Naïve Bayes Last week

More information

Deep Feedforward Networks. Seung-Hoon Na Chonbuk National University

Deep Feedforward Networks. Seung-Hoon Na Chonbuk National University Deep Feedforward Networks Seung-Hoon Na Chonbuk National University Neural Network: Types Feedforward neural networks (FNN) = Deep feedforward networks = multilayer perceptrons (MLP) No feedback connections

More information

CS 6501: Deep Learning for Computer Graphics. Basics of Neural Networks. Connelly Barnes

CS 6501: Deep Learning for Computer Graphics. Basics of Neural Networks. Connelly Barnes CS 6501: Deep Learning for Computer Graphics Basics of Neural Networks Connelly Barnes Overview Simple neural networks Perceptron Feedforward neural networks Multilayer perceptron and properties Autoencoders

More information

Contents. (75pts) COS495 Midterm. (15pts) Short answers

Contents. (75pts) COS495 Midterm. (15pts) Short answers Contents (75pts) COS495 Midterm 1 (15pts) Short answers........................... 1 (5pts) Unequal loss............................. 2 (15pts) About LSTMs........................... 3 (25pts) Modular

More information

Neural Networks Lecturer: J. Matas Authors: J. Matas, B. Flach, O. Drbohlav

Neural Networks Lecturer: J. Matas Authors: J. Matas, B. Flach, O. Drbohlav Neural Networks 30.11.2015 Lecturer: J. Matas Authors: J. Matas, B. Flach, O. Drbohlav 1 Talk Outline Perceptron Combining neurons to a network Neural network, processing input to an output Learning Cost

More information

MLPR: Logistic Regression and Neural Networks

MLPR: Logistic Regression and Neural Networks MLPR: Logistic Regression and Neural Networks Machine Learning and Pattern Recognition Amos Storkey Amos Storkey MLPR: Logistic Regression and Neural Networks 1/28 Outline 1 Logistic Regression 2 Multi-layer

More information

Outline. MLPR: Logistic Regression and Neural Networks Machine Learning and Pattern Recognition. Which is the correct model? Recap.

Outline. MLPR: Logistic Regression and Neural Networks Machine Learning and Pattern Recognition. Which is the correct model? Recap. Outline MLPR: and Neural Networks Machine Learning and Pattern Recognition 2 Amos Storkey Amos Storkey MLPR: and Neural Networks /28 Recap Amos Storkey MLPR: and Neural Networks 2/28 Which is the correct

More information

The Language Modeling Problem (Fall 2007) Smoothed Estimation, and Language Modeling. The Language Modeling Problem (Continued) Overview

The Language Modeling Problem (Fall 2007) Smoothed Estimation, and Language Modeling. The Language Modeling Problem (Continued) Overview The Language Modeling Problem We have some (finite) vocabulary, say V = {the, a, man, telescope, Beckham, two, } 6.864 (Fall 2007) Smoothed Estimation, and Language Modeling We have an (infinite) set of

More information

Deep Learning: a gentle introduction

Deep Learning: a gentle introduction Deep Learning: a gentle introduction Jamal Atif jamal.atif@dauphine.fr PSL, Université Paris-Dauphine, LAMSADE February 8, 206 Jamal Atif (Université Paris-Dauphine) Deep Learning February 8, 206 / Why

More information

Neural Networks: Backpropagation

Neural Networks: Backpropagation Neural Networks: Backpropagation Seung-Hoon Na 1 1 Department of Computer Science Chonbuk National University 2018.10.25 eung-hoon Na (Chonbuk National University) Neural Networks: Backpropagation 2018.10.25

More information

ECE521 Lecture 7/8. Logistic Regression

ECE521 Lecture 7/8. Logistic Regression ECE521 Lecture 7/8 Logistic Regression Outline Logistic regression (Continue) A single neuron Learning neural networks Multi-class classification 2 Logistic regression The output of a logistic regression

More information

Introduction to Natural Computation. Lecture 9. Multilayer Perceptrons and Backpropagation. Peter Lewis

Introduction to Natural Computation. Lecture 9. Multilayer Perceptrons and Backpropagation. Peter Lewis Introduction to Natural Computation Lecture 9 Multilayer Perceptrons and Backpropagation Peter Lewis 1 / 25 Overview of the Lecture Why multilayer perceptrons? Some applications of multilayer perceptrons.

More information

arxiv: v1 [cs.cl] 5 Mar Introduction

arxiv: v1 [cs.cl] 5 Mar Introduction Neural Machine Translation and Sequence-to-sequence Models: A Tutorial Graham Neubig Language Technologies Institute, Carnegie Mellon University arxiv:1703.01619v1 [cs.cl] 5 Mar 2017 1 Introduction This

More information

CSC321 Lecture 7 Neural language models

CSC321 Lecture 7 Neural language models CSC321 Lecture 7 Neural language models Roger Grosse and Nitish Srivastava February 1, 2015 Roger Grosse and Nitish Srivastava CSC321 Lecture 7 Neural language models February 1, 2015 1 / 19 Overview We

More information

Deep Feedforward Networks

Deep Feedforward Networks Deep Feedforward Networks Liu Yang March 30, 2017 Liu Yang Short title March 30, 2017 1 / 24 Overview 1 Background A general introduction Example 2 Gradient based learning Cost functions Output Units 3

More information

DEEP LEARNING AND NEURAL NETWORKS: BACKGROUND AND HISTORY

DEEP LEARNING AND NEURAL NETWORKS: BACKGROUND AND HISTORY DEEP LEARNING AND NEURAL NETWORKS: BACKGROUND AND HISTORY 1 On-line Resources http://neuralnetworksanddeeplearning.com/index.html Online book by Michael Nielsen http://matlabtricks.com/post-5/3x3-convolution-kernelswith-online-demo

More information

Sequence Modelling with Features: Linear-Chain Conditional Random Fields. COMP-599 Oct 6, 2015

Sequence Modelling with Features: Linear-Chain Conditional Random Fields. COMP-599 Oct 6, 2015 Sequence Modelling with Features: Linear-Chain Conditional Random Fields COMP-599 Oct 6, 2015 Announcement A2 is out. Due Oct 20 at 1pm. 2 Outline Hidden Markov models: shortcomings Generative vs. discriminative

More information

CSC321 Lecture 16: ResNets and Attention

CSC321 Lecture 16: ResNets and Attention CSC321 Lecture 16: ResNets and Attention Roger Grosse Roger Grosse CSC321 Lecture 16: ResNets and Attention 1 / 24 Overview Two topics for today: Topic 1: Deep Residual Networks (ResNets) This is the state-of-the

More information

Deep Learning for Natural Language Processing

Deep Learning for Natural Language Processing Deep Learning for Natural Language Processing Dylan Drover, Borui Ye, Jie Peng University of Waterloo djdrover@uwaterloo.ca borui.ye@uwaterloo.ca July 8, 2015 Dylan Drover, Borui Ye, Jie Peng (University

More information

Log-Linear Models, MEMMs, and CRFs

Log-Linear Models, MEMMs, and CRFs Log-Linear Models, MEMMs, and CRFs Michael Collins 1 Notation Throughout this note I ll use underline to denote vectors. For example, w R d will be a vector with components w 1, w 2,... w d. We use expx

More information

Lecture 3 Feedforward Networks and Backpropagation

Lecture 3 Feedforward Networks and Backpropagation Lecture 3 Feedforward Networks and Backpropagation CMSC 35246: Deep Learning Shubhendu Trivedi & Risi Kondor University of Chicago April 3, 2017 Things we will look at today Recap of Logistic Regression

More information

Midterm sample questions

Midterm sample questions Midterm sample questions CS 585, Brendan O Connor and David Belanger October 12, 2014 1 Topics on the midterm Language concepts Translation issues: word order, multiword translations Human evaluation Parts

More information

Week 5: Logistic Regression & Neural Networks

Week 5: Logistic Regression & Neural Networks Week 5: Logistic Regression & Neural Networks Instructor: Sergey Levine 1 Summary: Logistic Regression In the previous lecture, we covered logistic regression. To recap, logistic regression models and

More information

Sparse vectors recap. ANLP Lecture 22 Lexical Semantics with Dense Vectors. Before density, another approach to normalisation.

Sparse vectors recap. ANLP Lecture 22 Lexical Semantics with Dense Vectors. Before density, another approach to normalisation. ANLP Lecture 22 Lexical Semantics with Dense Vectors Henry S. Thompson Based on slides by Jurafsky & Martin, some via Dorota Glowacka 5 November 2018 Previous lectures: Sparse vectors recap How to represent

More information