SAT Modulo Monotonic Theories

Size: px
Start display at page:

Download "SAT Modulo Monotonic Theories"

Transcription

1 SAT Modulo Monotonic Theories Sam Bayless, Noah Bayless, Holger H. Hoos, Alan J. Hu University of British Columbia Point Grey Secondary School Sam Bayless (UBC) SAT Modulo Monotonic Theories / 0

2 Procedural Content Generation Sam Bayless (UBC) SAT Modulo Monotonic Theories / 0

3 MonoSAT Applications Circuit Layout Sam Bayless (UBC) Data Center Allocation SAT Modulo Monotonic Theories /0

4 MonoSAT Applications Finite State Machine Synthesis b q0 a b q a b q a b q a a,b q4 CTL Controller Synthesis {p} {~p} {~p} {p} Sam Bayless (UBC) SAT Modulo Monotonic Theories 4 / 0

5 MonoSAT MonoSAT is a SAT Modulo Theory Solver for: Graph Predicates: Reachability Shortest paths Maximum s t flow Minimum Spanning Tree Acyclicity Sam Bayless (UBC) SAT Modulo Monotonic Theories 5 / 0

6 MonoSAT MonoSAT is a SAT Modulo Theory Solver for: Graph Predicates: Reachability Shortest paths Maximum s t flow Minimum Spanning Tree Acyclicity Collision Detection for Convex Hulls Finite State Machine String Acceptance L-Systems, Boolean Geometry, CTL checking (soon) These are all monotonic theories Sam Bayless (UBC) SAT Modulo Monotonic Theories 5 / 0

7 Boolean Monotonic Theories A function p is a Boolean monotonic predicate iff:. : p returns a Boolean. : All arguments are of p are Boolean. : p(..., F,...) = p(..., T,...) Sam Bayless (UBC) SAT Modulo Monotonic Theories 6 / 0

8 Boolean Monotonic Theories A function p is a Boolean monotonic predicate iff:. : p returns a Boolean. : All arguments are of p are Boolean. : p(..., F,...) = p(..., T,...). Definition (Boolean Monotonic Theory). A theory T with signature Σ is Boolean monotonic if and only if:. The only sort in Σ is Boolean;. all predicates in Σ are monotonic; and.. all functions in Σ are monotonic. Sam Bayless (UBC) SAT Modulo Monotonic Theories 6 / 0

9 Graph Constraints in SMMT A formula over Booleans, edges, and monotonic predicates: (a b) (b c) ( c d) (reaches, reaches,4 ) And or more symbolic graphs: a b c d 4 Sam Bayless (UBC) SAT Modulo Monotonic Theories 7 / 0

10 Graph Constraints in SMMT Reachability is Boolean monotonic: 4 reaches, False reaches,4 False Sam Bayless (UBC) SAT Modulo Monotonic Theories 8 / 0

11 Graph Constraints in SMMT Reachability is Boolean monotonic: 4 reaches, False reaches,4 False Sam Bayless (UBC) SAT Modulo Monotonic Theories 8 / 0

12 Graph Constraints in SMMT Reachability is Boolean monotonic: 4 reaches, True reaches,4 False Sam Bayless (UBC) SAT Modulo Monotonic Theories 8 / 0

13 Graph Constraints in SMMT Reachability is Boolean monotonic: 4 reaches, True reaches,4 False Sam Bayless (UBC) SAT Modulo Monotonic Theories 8 / 0

14 Graph Constraints in SMMT Reachability is Boolean monotonic: 4 reaches, True reaches,4 True Sam Bayless (UBC) SAT Modulo Monotonic Theories 8 / 0

15 Theory Propagation in SMMT Formula: (a b) (b c) ( c d) (reaches, reaches,4 ) Assignment: a 4 c b d 4 Underapproximation Overapproximation reaches, reaches,4 Sam Bayless (UBC) SAT Modulo Monotonic Theories 9 / 0

16 Theory Propagation in SMMT Formula: (a b) (b c) ( c d) (reaches, reaches,4 ) Assignment: b a 4 c d 4 Underapproximation Overapproximation reaches, reaches,4 Sam Bayless (UBC) SAT Modulo Monotonic Theories 9 / 0

17 Theory Propagation in SMMT Formula: (a b) (b c) ( c d) (reaches, reaches,4 ) Assignment: b, a a 4 a c d 4 Underapproximation Overapproximation reaches, reaches,4 Sam Bayless (UBC) SAT Modulo Monotonic Theories 9 / 0

18 Theory Propagation in SMMT Formula: (a b) (b c) ( c d) (reaches, reaches,4 ) Assignment: b, a, c a c 4 a c d 4 Underapproximation Overapproximation reaches, True reaches,4 Sam Bayless (UBC) SAT Modulo Monotonic Theories 9 / 0

19 Theory Propagation in SMMT Formula: (a b) (b c) ( c d) (reaches, reaches,4 ) Assignment: b, a, c, d a c 4 a c 4 Underapproximation Overapproximation reaches, True reaches,4 False Sam Bayless (UBC) SAT Modulo Monotonic Theories 9 / 0

20 Theory Propagation in SMMT Theory propagation in SMMT has useful properties: Easy to implement. Can use off-the-shelf algorithms. Improved worst-case clause learning. Sam Bayless (UBC) SAT Modulo Monotonic Theories 0 / 0

21 MonoSAT Applications: Shortest Path Constraints Shortest Path Runtime (s) MonoSAT clasp MiniSat 0 Dst.8-6 Dst.6- Dst.- 48 Dst.- 64 Dst.- 96 Dst.- 8 Dst Dst Dst.64-8 Sam Bayless (UBC) SAT Modulo Monotonic Theories / 0

22 MonoSAT Applications: Maximum Flow Constraints Maximum Flow Runtime (s) MonoSAT clasp MiniSat 0 8x8 6Flow 6x6 8Flow 6x6 6Flow 6x6 4Flow 4x4 6Flow x 6Flow Sam Bayless (UBC) SAT Modulo Monotonic Theories / 0

23 MonoSAT Applications: Convex Hull Containment Art Gallery Synthesis MonoSAT Z 0 points, hulls, cameras s 7s 0 points, 4 hulls, 4 cameras 6s 4s 0 points, 5 hulls, 5 cameras 87s > 600s 40 points, 6 hulls, 6 cameras 645s > 600s 50 points, 7 hulls, 7 cameras 5s > 600s Sam Bayless (UBC) SAT Modulo Monotonic Theories / 0

24 Conclusion Monotonic theories have many applications. Building SMT solvers for them is easy. MonoSAT supports many graph properties (and more!), and it is free & open-source: New! Bit vector support, New! Python support. Website: cs.ubc.ca/labs/isd/projects/monosat GitHub: github.com/sambayless/monosat Sam Bayless (UBC) SAT Modulo Monotonic Theories 4 / 0

25 MonoSAT + Python from monosat import a = Var ( ) b = Var ( ) c = Or ( a, Not ( b ) ) A s s e r t ( c ) r e s u l t = S o l v e ( ) Sam Bayless (UBC) SAT Modulo Monotonic Theories 5 / 0

26 MonoSAT + Python from monosat import g= Graph ( ) e = g. addedge (, ) e = g. addedge (, ) e = g. addedge (, ) A s s e r t ( Not ( And ( e, e ) ) ) A s s e r t ( g. r e a c h e s (, ) ) r e s u l t = S o l v e ( ) Sam Bayless (UBC) SAT Modulo Monotonic Theories 6 / 0

27 MonoSAT + Python from monosat import g= Graph ( ) e = g. addedge (, ) e = g. addedge (, ) e = g. addedge (, ) A s s e r t ( Or ( g. r e a c h e s (, ), g. d i s t a n c e l e q (,, ) ) ) r e s u l t = S o l v e ( ) Sam Bayless (UBC) SAT Modulo Monotonic Theories 7 / 0

28 MonoSAT + Python from monosat import g= Graph ( ) bv = B i t V e c t o r ( 4 ) bv = B i t V e c t o r ( 4 ) bv = B i t V e c t o r ( 4 ) e = g. addedge (,, bv ) e = g. addedge (,, bv ) A s s e r t ( g. d i s t a n c e l e q (,, bv ) ) A s s e r t ( Not ( g. d i s t a n c e l t (,, bv ) ) ) A s s e r t ( ( bv + bv ) == 9) r e s u l t = S o l v e ( ) Sam Bayless (UBC) SAT Modulo Monotonic Theories 8 / 0

Tutorial 1: Modern SMT Solvers and Verification

Tutorial 1: Modern SMT Solvers and Verification University of Illinois at Urbana-Champaign Tutorial 1: Modern SMT Solvers and Verification Sayan Mitra Electrical & Computer Engineering Coordinated Science Laboratory University of Illinois at Urbana

More information

1 Classical Propositional Logic [20 points]

1 Classical Propositional Logic [20 points] Homework 1 Solutions 15-414/614 : Bug Catching, Spring 2014 1 Classical Propositional Logic [20 points] Let x, y and z be three propositions. (a) (8 points) Show that the two propositional formulas, (x

More information

Time to learn about NP-completeness!

Time to learn about NP-completeness! Time to learn about NP-completeness! Harvey Mudd College March 19, 2007 Languages A language is a set of strings Examples The language of strings of all zeros with odd length The language of strings with

More information

WHAT IS AN SMT SOLVER? Jaeheon Yi - April 17, 2008

WHAT IS AN SMT SOLVER? Jaeheon Yi - April 17, 2008 WHAT IS AN SMT SOLVER? Jaeheon Yi - April 17, 2008 WHAT I LL TALK ABOUT Propositional Logic Terminology, Satisfiability, Decision Procedure First-Order Logic Terminology, Background Theories Satisfiability

More information

Introduction to Z3. Bow-Yaw Wang. December 19, Institute of Information Science Academia Sinica, Taiwan

Introduction to Z3. Bow-Yaw Wang. December 19, Institute of Information Science Academia Sinica, Taiwan Introduction to Z3 Bow-Yaw Wang Institute of Information Science Academia Sinica, Taiwan December 19, 2017 Bow-Yaw Wang (Academia Sinica) Introduction to Z3 December 19, 2017 1 / 26 Outline 1 Introduction

More information

Comp487/587 - Boolean Formulas

Comp487/587 - Boolean Formulas Comp487/587 - Boolean Formulas 1 Logic and SAT 1.1 What is a Boolean Formula Logic is a way through which we can analyze and reason about simple or complicated events. In particular, we are interested

More information

University of New Mexico Department of Computer Science. Final Examination. CS 561 Data Structures and Algorithms Fall, 2013

University of New Mexico Department of Computer Science. Final Examination. CS 561 Data Structures and Algorithms Fall, 2013 University of New Mexico Department of Computer Science Final Examination CS 561 Data Structures and Algorithms Fall, 2013 Name: Email: This exam lasts 2 hours. It is closed book and closed notes wing

More information

An Introduction to Z3

An Introduction to Z3 An Introduction to Z3 Huixing Fang National Trusted Embedded Software Engineering Technology Research Center April 12, 2017 Outline 1 SMT 2 Z3 Huixing Fang (ECNU) An Introduction to Z3 April 12, 2017 2

More information

The Eager Approach to SMT. Eager Approach to SMT

The Eager Approach to SMT. Eager Approach to SMT The Eager Approach to SMT Sanjit A. Seshia UC Berkeley Slides based on ICCAD 09 Tutorial Eager Approach to SMT Input Formula Satisfiability-preserving Boolean Encoder Boolean Formula SAT Solver SAT Solver

More information

Leonardo de Moura Microsoft Research

Leonardo de Moura Microsoft Research Leonardo de Moura Microsoft Research Is formula F satisfiable modulo theory T? SMT solvers have specialized algorithms for T b + 2 = c and f(read(write(a,b,3), c-2)) f(c-b+1) b + 2 = c and f(read(write(a,b,3),

More information

LOGIC PROPOSITIONAL REASONING

LOGIC PROPOSITIONAL REASONING LOGIC PROPOSITIONAL REASONING WS 2017/2018 (342.208) Armin Biere Martina Seidl biere@jku.at martina.seidl@jku.at Institute for Formal Models and Verification Johannes Kepler Universität Linz Version 2018.1

More information

Complexity (Pre Lecture)

Complexity (Pre Lecture) Complexity (Pre Lecture) Dr. Neil T. Dantam CSCI-561, Colorado School of Mines Fall 2018 Dantam (Mines CSCI-561) Complexity (Pre Lecture) Fall 2018 1 / 70 Why? What can we always compute efficiently? What

More information

CHAPTER 3 FUNDAMENTALS OF COMPUTATIONAL COMPLEXITY. E. Amaldi Foundations of Operations Research Politecnico di Milano 1

CHAPTER 3 FUNDAMENTALS OF COMPUTATIONAL COMPLEXITY. E. Amaldi Foundations of Operations Research Politecnico di Milano 1 CHAPTER 3 FUNDAMENTALS OF COMPUTATIONAL COMPLEXITY E. Amaldi Foundations of Operations Research Politecnico di Milano 1 Goal: Evaluate the computational requirements (this course s focus: time) to solve

More information

Limitations of Algorithm Power

Limitations of Algorithm Power Limitations of Algorithm Power Objectives We now move into the third and final major theme for this course. 1. Tools for analyzing algorithms. 2. Design strategies for designing algorithms. 3. Identifying

More information

VIII. NP-completeness

VIII. NP-completeness VIII. NP-completeness 1 / 15 NP-Completeness Overview 1. Introduction 2. P and NP 3. NP-complete (NPC): formal definition 4. How to prove a problem is NPC 5. How to solve a NPC problem: approximate algorithms

More information

Heuristics for Efficient SAT Solving. As implemented in GRASP, Chaff and GSAT.

Heuristics for Efficient SAT Solving. As implemented in GRASP, Chaff and GSAT. Heuristics for Efficient SAT Solving As implemented in GRASP, Chaff and GSAT. Formulation of famous problems as SAT: k-coloring (1/2) The K-Coloring problem: Given an undirected graph G(V,E) and a natural

More information

Propositional Logic: Evaluating the Formulas

Propositional Logic: Evaluating the Formulas Institute for Formal Models and Verification Johannes Kepler University Linz VL Logik (LVA-Nr. 342208) Winter Semester 2015/2016 Propositional Logic: Evaluating the Formulas Version 2015.2 Armin Biere

More information

Cardinality Networks: a Theoretical and Empirical Study

Cardinality Networks: a Theoretical and Empirical Study Constraints manuscript No. (will be inserted by the editor) Cardinality Networks: a Theoretical and Empirical Study Roberto Asín, Robert Nieuwenhuis, Albert Oliveras, Enric Rodríguez-Carbonell Received:

More information

Integrating Answer Set Programming and Satisfiability Modulo Theories

Integrating Answer Set Programming and Satisfiability Modulo Theories Integrating Answer Set Programming and Satisfiability Modulo Theories Ilkka Niemelä Helsinki University of Technology (TKK) Department of Information and Computer Science http://www.tcs.tkk.fi/ ini/ References:

More information

Turing Machines and Time Complexity

Turing Machines and Time Complexity Turing Machines and Time Complexity Turing Machines Turing Machines (Infinitely long) Tape of 1 s and 0 s Turing Machines (Infinitely long) Tape of 1 s and 0 s Able to read and write the tape, and move

More information

Satisfiability Modulo Theories (SMT)

Satisfiability Modulo Theories (SMT) Satisfiability Modulo Theories (SMT) Sylvain Conchon Cours 7 / 9 avril 2014 1 Road map The SMT problem Modern efficient SAT solvers CDCL(T) Examples of decision procedures: equality (CC) and difference

More information

CS 5114: Theory of Algorithms. Tractable Problems. Tractable Problems (cont) Decision Problems. Clifford A. Shaffer. Spring 2014

CS 5114: Theory of Algorithms. Tractable Problems. Tractable Problems (cont) Decision Problems. Clifford A. Shaffer. Spring 2014 Department of Computer Science Virginia Tech Blacksburg, Virginia Copyright c 2014 by Clifford A. Shaffer : Theory of Algorithms Title page : Theory of Algorithms Clifford A. Shaffer Spring 2014 Clifford

More information

NP-Complete problems

NP-Complete problems NP-Complete problems NP-complete problems (NPC): A subset of NP. If any NP-complete problem can be solved in polynomial time, then every problem in NP has a polynomial time solution. NP-complete languages

More information

NP-Completeness. Until now we have been designing algorithms for specific problems

NP-Completeness. Until now we have been designing algorithms for specific problems NP-Completeness 1 Introduction Until now we have been designing algorithms for specific problems We have seen running times O(log n), O(n), O(n log n), O(n 2 ), O(n 3 )... We have also discussed lower

More information

CS 5114: Theory of Algorithms

CS 5114: Theory of Algorithms CS 5114: Theory of Algorithms Clifford A. Shaffer Department of Computer Science Virginia Tech Blacksburg, Virginia Spring 2014 Copyright c 2014 by Clifford A. Shaffer CS 5114: Theory of Algorithms Spring

More information

Determine the size of an instance of the minimum spanning tree problem.

Determine the size of an instance of the minimum spanning tree problem. 3.1 Algorithm complexity Consider two alternative algorithms A and B for solving a given problem. Suppose A is O(n 2 ) and B is O(2 n ), where n is the size of the instance. Let n A 0 be the size of the

More information

Lecture 25: Cook s Theorem (1997) Steven Skiena. skiena

Lecture 25: Cook s Theorem (1997) Steven Skiena.   skiena Lecture 25: Cook s Theorem (1997) Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.sunysb.edu/ skiena Prove that Hamiltonian Path is NP

More information

Solvers for the Problem of Boolean Satisfiability (SAT) Will Klieber Aug 31, 2011

Solvers for the Problem of Boolean Satisfiability (SAT) Will Klieber Aug 31, 2011 Solvers for the Problem of Boolean Satisfiability (SAT) Will Klieber 15-414 Aug 31, 2011 Why study SAT solvers? Many problems reduce to SAT. Formal verification CAD, VLSI Optimization AI, planning, automated

More information

Computation and Inference

Computation and Inference Computation and Inference N. Shankar Computer Science Laboratory SRI International Menlo Park, CA July 13, 2018 Length of the Longest Increasing Subsequence You have a sequence of numbers, e.g., 9, 7,

More information

a > 3, (a = b a = b + 1), f(a) = 0, f(b) = 1

a > 3, (a = b a = b + 1), f(a) = 0, f(b) = 1 Yeting Ge New York University Leonardo de Moura Microsoft Research a > 3, (a = b a = b + 1), f(a) = 0, f(b) = 1 Dynamic symbolic execution (DART) Extended static checking Test-case generation Bounded model

More information

Exclusive OR/ Exclusive NOR

Exclusive OR/ Exclusive NOR University of Wisconsin - Madison ECE/Comp Sci 352 Digital Systems Fundamentals Charles R. Kime Section 2 Fall 2001 Chapter 2 Combinational Logic Circuits Part 8 Charles Kime & Thomas Kaminski Exclusive

More information

SMT: Satisfiability Modulo Theories

SMT: Satisfiability Modulo Theories SMT: Satisfiability Modulo Theories Ranjit Jhala, UC San Diego April 9, 2013 Decision Procedures Last Time Propositional Logic Today 1. Combining SAT and Theory Solvers 2. Theory Solvers Theory of Equality

More information

Introduction to SAT (constraint) solving. Justyna Petke

Introduction to SAT (constraint) solving. Justyna Petke Introduction to SAT (constraint) solving Justyna Petke SAT, SMT and CSP solvers are used for solving problems involving constraints. The term constraint solver, however, usually refers to a CSP solver.

More information

Introduction to Artificial Intelligence Propositional Logic & SAT Solving. UIUC CS 440 / ECE 448 Professor: Eyal Amir Spring Semester 2010

Introduction to Artificial Intelligence Propositional Logic & SAT Solving. UIUC CS 440 / ECE 448 Professor: Eyal Amir Spring Semester 2010 Introduction to Artificial Intelligence Propositional Logic & SAT Solving UIUC CS 440 / ECE 448 Professor: Eyal Amir Spring Semester 2010 Today Representation in Propositional Logic Semantics & Deduction

More information

1. Introduction Recap

1. Introduction Recap 1. Introduction Recap 1. Tractable and intractable problems polynomial-boundness: O(n k ) 2. NP-complete problems informal definition 3. Examples of P vs. NP difference may appear only slightly 4. Optimization

More information

POLYNOMIAL SPACE QSAT. Games. Polynomial space cont d

POLYNOMIAL SPACE QSAT. Games. Polynomial space cont d T-79.5103 / Autumn 2008 Polynomial Space 1 T-79.5103 / Autumn 2008 Polynomial Space 3 POLYNOMIAL SPACE Polynomial space cont d Polynomial space-bounded computation has a variety of alternative characterizations

More information

PROPOSITIONAL LOGIC. VL Logik: WS 2018/19

PROPOSITIONAL LOGIC. VL Logik: WS 2018/19 PROPOSITIONAL LOGIC VL Logik: WS 2018/19 (Version 2018.2) Martina Seidl (martina.seidl@jku.at), Armin Biere (biere@jku.at) Institut für Formale Modelle und Verifikation BOX Game: Rules 1. The game board

More information

EECS 144/244: Fundamental Algorithms for System Modeling, Analysis, and Optimization

EECS 144/244: Fundamental Algorithms for System Modeling, Analysis, and Optimization EECS 144/244: Fundamental Algorithms for System Modeling, Analysis, and Optimization Discrete Systems Lecture: State-Space Exploration Stavros Tripakis University of California, Berkeley Stavros Tripakis:

More information

P vs NP. Andzu Schaefer. January 2017

P vs NP. Andzu Schaefer. January 2017 P vs NP Andzu Schaefer January 07 Abstract Our approach to the topic of P vs NP is intuitive with regards to describing the classes P and NP, as well as to describing the inherent computational nature

More information

About the impossibility to prove P NP or P = NP and the pseudo-randomness in NP

About the impossibility to prove P NP or P = NP and the pseudo-randomness in NP About the impossibility to prove P NP or P = NP and the pseudo-randomness in NP Prof. Marcel Rémon 1 arxiv:0904.0698v3 [cs.cc] 24 Mar 2016 Abstract The relationship between the complexity classes P and

More information

Propositional Logic: Models and Proofs

Propositional Logic: Models and Proofs Propositional Logic: Models and Proofs C. R. Ramakrishnan CSE 505 1 Syntax 2 Model Theory 3 Proof Theory and Resolution Compiled at 11:51 on 2016/11/02 Computing with Logic Propositional Logic CSE 505

More information

Formal Modeling with Propositional Logic

Formal Modeling with Propositional Logic Formal Modeling with Propositional Logic Assaf Kfoury February 6, 2017 (last modified: September 3, 2018) Contents 1 The Pigeon Hole Principle 2 2 Graph Problems 3 2.1 Paths in Directed Graphs..................................

More information

Announcements. Friday Four Square! Problem Set 8 due right now. Problem Set 9 out, due next Friday at 2:15PM. Did you lose a phone in my office?

Announcements. Friday Four Square! Problem Set 8 due right now. Problem Set 9 out, due next Friday at 2:15PM. Did you lose a phone in my office? N P NP Completeness Announcements Friday Four Square! Today at 4:15PM, outside Gates. Problem Set 8 due right now. Problem Set 9 out, due next Friday at 2:15PM. Explore P, NP, and their connection. Did

More information

Interpolation. Seminar Slides. Betim Musa. 27 th June Albert-Ludwigs-Universität Freiburg

Interpolation. Seminar Slides. Betim Musa. 27 th June Albert-Ludwigs-Universität Freiburg Interpolation Seminar Slides Albert-Ludwigs-Universität Freiburg Betim Musa 27 th June 2015 Motivation program add(int a, int b) { var x,i : int; l 0 assume(b 0); l 1 x := a; l 2 i := 0; while(i < b) {

More information

From SAT To SMT: Part 1. Vijay Ganesh MIT

From SAT To SMT: Part 1. Vijay Ganesh MIT From SAT To SMT: Part 1 Vijay Ganesh MIT Software Engineering & SMT Solvers An Indispensable Tactic for Any Strategy Formal Methods Program Analysis SE Goal: Reliable/Secure Software Automatic Testing

More information

Constraint Solving for Finite Model Finding in SMT Solvers

Constraint Solving for Finite Model Finding in SMT Solvers myjournal manuscript No. (will be inserted by the editor) Constraint Solving for Finite Model Finding in SMT Solvers Andrew Reynolds Cesare Tinelli Clark Barrett Received: date / Accepted: date Abstract

More information

Time to learn about NP-completeness!

Time to learn about NP-completeness! Time to learn about NP-completeness! Harvey Mudd College March 19, 2007 Languages A language is a set of strings Examples The language of strings of all a s with odd length The language of strings with

More information

The Journey. Inductive Invariants. Söllerhaus IC3 FSIS. 2 of 21

The Journey. Inductive Invariants. Söllerhaus IC3 FSIS. 2 of 21 .. The Journey Inductive Invariants. Söllerhaus FSIS 2 of 21 IC3 Tim Lange tim.lange@cs.rwth-aachen.de Software Modeling and Verification IC3 Inductive Invariants Finite State Inductive Strengthening IC3

More information

Complexity. Complexity Theory Lecture 3. Decidability and Complexity. Complexity Classes

Complexity. Complexity Theory Lecture 3. Decidability and Complexity. Complexity Classes Complexity Theory 1 Complexity Theory 2 Complexity Theory Lecture 3 Complexity For any function f : IN IN, we say that a language L is in TIME(f(n)) if there is a machine M = (Q, Σ, s, δ), such that: L

More information

NP-Completeness. Algorithmique Fall semester 2011/12

NP-Completeness. Algorithmique Fall semester 2011/12 NP-Completeness Algorithmique Fall semester 2011/12 1 What is an Algorithm? We haven t really answered this question in this course. Informally, an algorithm is a step-by-step procedure for computing a

More information

CS 320, Fall Dr. Geri Georg, Instructor 320 NP 1

CS 320, Fall Dr. Geri Georg, Instructor 320 NP 1 NP CS 320, Fall 2017 Dr. Geri Georg, Instructor georg@colostate.edu 320 NP 1 NP Complete A class of problems where: No polynomial time algorithm has been discovered No proof that one doesn t exist 320

More information

Lecture 2: Symbolic Model Checking With SAT

Lecture 2: Symbolic Model Checking With SAT Lecture 2: Symbolic Model Checking With SAT Edmund M. Clarke, Jr. School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213 (Joint work over several years with: A. Biere, A. Cimatti, Y.

More information

1 Circuit Complexity. CS 6743 Lecture 15 1 Fall Definitions

1 Circuit Complexity. CS 6743 Lecture 15 1 Fall Definitions CS 6743 Lecture 15 1 Fall 2007 1 Circuit Complexity 1.1 Definitions A Boolean circuit C on n inputs x 1,..., x n is a directed acyclic graph (DAG) with n nodes of in-degree 0 (the inputs x 1,..., x n ),

More information

Computational Complexity

Computational Complexity Computational Complexity Algorithm performance and difficulty of problems So far we have seen problems admitting fast algorithms flow problems, shortest path, spanning tree... and other problems for which

More information

Umans Complexity Theory Lectures

Umans Complexity Theory Lectures Umans Complexity Theory Lectures Lecture 12: The Polynomial-Time Hierarchy Oracle Turing Machines Oracle Turing Machine (OTM): Deterministic multitape TM M with special query tape special states q?, q

More information

Topics in Model-Based Reasoning

Topics in Model-Based Reasoning Towards Integration of Proving and Solving Dipartimento di Informatica Università degli Studi di Verona Verona, Italy March, 2014 Automated reasoning Artificial Intelligence Automated Reasoning Computational

More information

CSE507. Introduction. Computer-Aided Reasoning for Software. Emina Torlak courses.cs.washington.edu/courses/cse507/17wi/

CSE507. Introduction. Computer-Aided Reasoning for Software. Emina Torlak courses.cs.washington.edu/courses/cse507/17wi/ Computer-Aided Reasoning for Software CSE507 courses.cs.washington.edu/courses/cse507/17wi/ Introduction Emina Torlak emina@cs.washington.edu Today What is this course about? Course logistics Review of

More information

Notes for Lecture 3... x 4

Notes for Lecture 3... x 4 Stanford University CS254: Computational Complexity Notes 3 Luca Trevisan January 14, 2014 Notes for Lecture 3 In this lecture we introduce the computational model of boolean circuits and prove that polynomial

More information

Undecidable Problems. Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science May 12, / 65

Undecidable Problems. Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science May 12, / 65 Undecidable Problems Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science May 12, 2018 1/ 65 Algorithmically Solvable Problems Let us assume we have a problem P. If there is an algorithm solving

More information

CSE 332. Data Abstractions

CSE 332. Data Abstractions Adam Blank Lecture 23 Autumn 2015 CSE 332 Data Abstractions CSE 332: Data Abstractions Graphs 4: Minimum Spanning Trees Final Dijkstra s Algorithm 1 1 dijkstra(g, source) { 2 dist = new Dictionary(); 3

More information

Ordered Completion for First-Order Logic Programs on Finite Structures

Ordered Completion for First-Order Logic Programs on Finite Structures Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10) Ordered Completion for First-Order Logic Programs on Finite Structures Vernon Asuncion School of Computing & Mathematics

More information

How hard is it to find a good solution?

How hard is it to find a good solution? How hard is it to find a good solution? Simons Institute Open Lecture November 4, 2013 Research Area: Complexity Theory Given a computational problem, find an efficient algorithm that solves it. Goal of

More information

Lecture 8: Complete Problems for Other Complexity Classes

Lecture 8: Complete Problems for Other Complexity Classes IAS/PCMI Summer Session 2000 Clay Mathematics Undergraduate Program Basic Course on Computational Complexity Lecture 8: Complete Problems for Other Complexity Classes David Mix Barrington and Alexis Maciel

More information

Introduction to Algorithms

Introduction to Algorithms Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 18 Prof. Erik Demaine Negative-weight cycles Recall: If a graph G = (V, E) contains a negativeweight cycle, then some shortest paths may not exist.

More information

Complexity Theory of Polynomial-Time Problems

Complexity Theory of Polynomial-Time Problems Complexity Theory of Polynomial-Time Problems Lecture 1: Introduction, Easy Examples Karl Bringmann and Sebastian Krinninger Audience no formal requirements, but: NP-hardness, satisfiability problem, how

More information

Introduction. Pvs.NPExample

Introduction. Pvs.NPExample Introduction Computer Science & Engineering 423/823 Design and Analysis of Algorithms Lecture 09 NP-Completeness (Chapter 34) Stephen Scott (Adapted from Vinodchandran N. Variyam) sscott@cse.unl.edu I

More information

CS21 Decidability and Tractability

CS21 Decidability and Tractability CS21 Decidability and Tractability Lecture 20 February 23, 2018 February 23, 2018 CS21 Lecture 20 1 Outline the complexity class NP NP-complete probelems: Subset Sum NP-complete problems: NAE-3-SAT, max

More information

Maximum 3-SAT as QUBO

Maximum 3-SAT as QUBO Maximum 3-SAT as QUBO Michael J. Dinneen 1 Semester 2, 2016 1/15 1 Slides mostly based on Alex Fowler s and Rong (Richard) Wang s notes. Boolean Formula 2/15 A Boolean variable is a variable that can take

More information

FMCAD 2013 Parameter Synthesis with IC3

FMCAD 2013 Parameter Synthesis with IC3 FMCAD 2013 Parameter Synthesis with IC3 A. Cimatti, A. Griggio, S. Mover, S. Tonetta FBK, Trento, Italy Motivations and Contributions Parametric descriptions of systems arise in many domains E.g. software,

More information

On Solving Boolean Combinations of UTVPI Constraints

On Solving Boolean Combinations of UTVPI Constraints Journal on Satisfiability, Boolean Modeling and Computation N (007) xx-yy On Solving Boolean Combinations of UTVPI Constraints Sanjit A. Seshia Department of Electrical Engineering and Computer Sciences

More information

Verification using Satisfiability Checking, Predicate Abstraction, and Craig Interpolation. Himanshu Jain THESIS ORAL TALK

Verification using Satisfiability Checking, Predicate Abstraction, and Craig Interpolation. Himanshu Jain THESIS ORAL TALK Verification using Satisfiability Checking, Predicate Abstraction, and Craig Interpolation Himanshu Jain THESIS ORAL TALK 1 Computer Systems are Pervasive Computer Systems = Software + Hardware Software/Hardware

More information

Solving SAT Modulo Theories

Solving SAT Modulo Theories Solving SAT Modulo Theories R. Nieuwenhuis, A. Oliveras, and C.Tinelli. Solving SAT and SAT Modulo Theories: from an Abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T) Mooly Sagiv Motivation

More information

Lecture 3: Nondeterminism, NP, and NP-completeness

Lecture 3: Nondeterminism, NP, and NP-completeness CSE 531: Computational Complexity I Winter 2016 Lecture 3: Nondeterminism, NP, and NP-completeness January 13, 2016 Lecturer: Paul Beame Scribe: Paul Beame 1 Nondeterminism and NP Recall the definition

More information

Motion planning applications of Satisfiability Modulo Convex Optimization

Motion planning applications of Satisfiability Modulo Convex Optimization Motion planning applications of Satisfiability Modulo Convex Optimization Yasser Shoukry (1) and Paulo Tabuada (2) (1) Department of Electrical and Computer Engineering, UMD (2) Electrical and Computer

More information

Foundations of Artificial Intelligence

Foundations of Artificial Intelligence Foundations of Artificial Intelligence 8. Satisfiability and Model Construction Davis-Putnam-Logemann-Loveland Procedure, Phase Transitions, GSAT Joschka Boedecker and Wolfram Burgard and Bernhard Nebel

More information

Maximal ideal recursive semantics for defeasible argumentation

Maximal ideal recursive semantics for defeasible argumentation Maximal ideal recursive semantics for defeasible argumentation Teresa Alsinet 1, Ramón Béjar 1, Lluis Godo 2, and Francesc Guitart 1 1 Department of Computer Science University of Lleida Jaume II, 69 251

More information

Satisfiability Modulo Theories (SMT)

Satisfiability Modulo Theories (SMT) CS510 Software Engineering Satisfiability Modulo Theories (SMT) Slides modified from those by Aarti Gupta Textbook: The Calculus of Computation by A. Bradley and Z. Manna 1 Satisfiability Modulo Theory

More information

The Cook-Levin Theorem

The Cook-Levin Theorem An Exposition Sandip Sinha Anamay Chaturvedi Indian Institute of Science, Bangalore 14th November 14 Introduction Deciding a Language Let L {0, 1} be a language, and let M be a Turing machine. We say M

More information

Lecture 7: The Polynomial-Time Hierarchy. 1 Nondeterministic Space is Closed under Complement

Lecture 7: The Polynomial-Time Hierarchy. 1 Nondeterministic Space is Closed under Complement CS 710: Complexity Theory 9/29/2011 Lecture 7: The Polynomial-Time Hierarchy Instructor: Dieter van Melkebeek Scribe: Xi Wu In this lecture we first finish the discussion of space-bounded nondeterminism

More information

Complexity, P and NP

Complexity, P and NP Complexity, P and NP EECS 477 Lecture 21, 11/26/2002 Last week Lower bound arguments Information theoretic (12.2) Decision trees (sorting) Adversary arguments (12.3) Maximum of an array Graph connectivity

More information

State Space Search Problems

State Space Search Problems State Space Search Problems Lecture Heuristic Search Stefan Edelkamp 1 Overview Different state space formalisms, including labelled, implicit and explicit weighted graph representations Alternative formalisms:

More information

Symbolic Counterexample Generation for Large Discrete-Time Markov Chains

Symbolic Counterexample Generation for Large Discrete-Time Markov Chains Symbolic Counterexample Generation for Large Discrete-Time Markov Chains Nils Jansen a,, Ralf Wimmer b, Erika Ábraháma, Barna Zajzon a, Joost-Pieter Katoen a, Bernd Becker b, Johann Schuster c a RWTH Aachen

More information

Lecture 4: NP and computational intractability

Lecture 4: NP and computational intractability Chapter 4 Lecture 4: NP and computational intractability Listen to: Find the longest path, Daniel Barret What do we do today: polynomial time reduction NP, co-np and NP complete problems some examples

More information

COSE215: Theory of Computation. Lecture 20 P, NP, and NP-Complete Problems

COSE215: Theory of Computation. Lecture 20 P, NP, and NP-Complete Problems COSE215: Theory of Computation Lecture 20 P, NP, and NP-Complete Problems Hakjoo Oh 2018 Spring Hakjoo Oh COSE215 2018 Spring, Lecture 20 June 6, 2018 1 / 14 Contents 1 P and N P Polynomial-time reductions

More information

SMT BASICS WS 2017/2018 ( ) LOGIC SATISFIABILITY MODULO THEORIES. Institute for Formal Models and Verification Johannes Kepler Universität Linz

SMT BASICS WS 2017/2018 ( ) LOGIC SATISFIABILITY MODULO THEORIES. Institute for Formal Models and Verification Johannes Kepler Universität Linz LOGIC SATISFIABILITY MODULO THEORIES SMT BASICS WS 2017/2018 (342.208) Armin Biere Martina Seidl biere@jku.at martina.seidl@jku.at Institute for Formal Models and Verification Johannes Kepler Universität

More information

Automata Theory CS Complexity Theory I: Polynomial Time

Automata Theory CS Complexity Theory I: Polynomial Time Automata Theory CS411-2015-17 Complexity Theory I: Polynomial Time David Galles Department of Computer Science University of San Francisco 17-0: Tractable vs. Intractable If a problem is recursive, then

More information

On Abstract Modular Inference Systems and Solvers

On Abstract Modular Inference Systems and Solvers University of Nebraska at Omaha DigitalCommons@UNO Computer Science Faculty Publications Department of Computer Science 7-2016 On Abstract Modular Inference Systems and Solvers Yuliya Lierler University

More information

Review of unsolvability

Review of unsolvability Review of unsolvability L L H To prove unsolvability: show a reduction. To prove solvability: show an algorithm. Unsolvable problems (main insight) Turing machine (algorithm) properties Pattern matching

More information

Definition: Alternating time and space Game Semantics: State of machine determines who

Definition: Alternating time and space Game Semantics: State of machine determines who CMPSCI 601: Recall From Last Time Lecture 3 Definition: Alternating time and space Game Semantics: State of machine determines who controls, White wants it to accept, Black wants it to reject. White wins

More information

Adleman Theorem and Sipser Gács Lautemann Theorem. CS422 Computation Theory CS422 Complexity Theory

Adleman Theorem and Sipser Gács Lautemann Theorem. CS422 Computation Theory CS422 Complexity Theory Adleman Theorem and Sipser Gács Lautemann Theorem CS422 Computation Theory CS422 Complexity Theory Complexity classes, N, co N, SACE, EXTIME, H, R, RE, ALL, Complexity theorists: "Which is contained in

More information

Quantified Boolean Formulas Part 1

Quantified Boolean Formulas Part 1 Quantified Boolean Formulas Part 1 Uwe Egly Knowledge-Based Systems Group Institute of Information Systems Vienna University of Technology Results of the SAT 2009 application benchmarks for leading solvers

More information

The Reachability-Bound Problem. Gulwani and Zuleger PLDI 10

The Reachability-Bound Problem. Gulwani and Zuleger PLDI 10 The Reachability-Bound Problem Gulwani and Zuleger PLDI 10 CS252r Spring 2011 The Reachability-Bound problem Find a symbolic worst case bound on the number of times a program point is reached Intra-procedural:

More information

Theory of Computation CS3102 Spring 2014 A tale of computers, math, problem solving, life, love and tragic death

Theory of Computation CS3102 Spring 2014 A tale of computers, math, problem solving, life, love and tragic death Theory of Computation CS3102 Spring 2014 A tale of computers, math, problem solving, life, love and tragic death Nathan Brunelle Department of Computer Science University of Virginia www.cs.virginia.edu/~njb2b/theory

More information

On the efficient approximability of constraint satisfaction problems

On the efficient approximability of constraint satisfaction problems On the efficient approximability of constraint satisfaction problems July 13, 2007 My world Max-CSP Efficient computation. P Polynomial time BPP Probabilistic Polynomial time (still efficient) NP Non-deterministic

More information

SAT-Solving: From Davis- Putnam to Zchaff and Beyond Day 3: Recent Developments. Lintao Zhang

SAT-Solving: From Davis- Putnam to Zchaff and Beyond Day 3: Recent Developments. Lintao Zhang SAT-Solving: From Davis- Putnam to Zchaff and Beyond Day 3: Recent Developments Requirements for SAT solvers in the Real World Fast & Robust Given a problem instance, we want to solve it quickly Reliable

More information

Lecture #14: NP-Completeness (Chapter 34 Old Edition Chapter 36) Discussion here is from the old edition.

Lecture #14: NP-Completeness (Chapter 34 Old Edition Chapter 36) Discussion here is from the old edition. Lecture #14: 0.0.1 NP-Completeness (Chapter 34 Old Edition Chapter 36) Discussion here is from the old edition. 0.0.2 Preliminaries: Definition 1 n abstract problem Q is a binary relations on a set I of

More information

Propositional and Predicate Logic - II

Propositional and Predicate Logic - II Propositional and Predicate Logic - II Petr Gregor KTIML MFF UK WS 2016/2017 Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - II WS 2016/2017 1 / 16 Basic syntax Language Propositional logic

More information

Graph Theory and Optimization Computational Complexity (in brief)

Graph Theory and Optimization Computational Complexity (in brief) Graph Theory and Optimization Computational Complexity (in brief) Nicolas Nisse Inria, France Univ. Nice Sophia Antipolis, CNRS, I3S, UMR 7271, Sophia Antipolis, France September 2015 N. Nisse Graph Theory

More information

COMPRESSED STATE SPACE REPRESENTATIONS - BINARY DECISION DIAGRAMS

COMPRESSED STATE SPACE REPRESENTATIONS - BINARY DECISION DIAGRAMS QUALITATIVE ANALYIS METHODS, OVERVIEW NET REDUCTION STRUCTURAL PROPERTIES COMPRESSED STATE SPACE REPRESENTATIONS - BINARY DECISION DIAGRAMS LINEAR PROGRAMMING place / transition invariants state equation

More information

Linear Algebra, Boolean Rings and Resolution? Armin Biere. Institute for Formal Models and Verification Johannes Kepler University Linz, Austria

Linear Algebra, Boolean Rings and Resolution? Armin Biere. Institute for Formal Models and Verification Johannes Kepler University Linz, Austria Linear Algebra, Boolean Rings and Resolution? Armin Biere Institute for Formal Models and Verification Johannes Kepler University Linz, Austria ACA 08 Applications of Computer Algebra Symbolic Computation

More information