Finding the Higgs. Facts And Mysteries In Elementary Particle Physics Downloaded from

Size: px
Start display at page:

Download "Finding the Higgs. Facts And Mysteries In Elementary Particle Physics Downloaded from"

Transcription

1 Finding the Higgs The Standard Model has been very successful. All the detailed couplings and particles needed for the cancellations between the diagrams have been found, and the more complicated quantum mechanical corrections that can be calculated theoretically agree with the observed data. The most spectacular of these is the quantum correction to the ρ parameter and the mass of the top quark; it might be helpful to remind the reader in simple terms of this most remarkable incident. We will be repeating some of the arguments of Chapter 9, but it is from a slightly different point of view, and also such that it is not necessary to understand all of the sometimes difficult arguments of that Chapter. First of all there is the issue of the number of Higgs particles. While the theoretical difficulties that the Higgs particle(s) must cure are well defined, it is quite possible to cure those problems using one, two, or in fact any number of Higgs particles. So here is the first question: how many Higgs particles are there? Here we have some idea about the answer. The theory by itself has nothing to say about the values of the masses of the vector bosons. They must be established by measuring them. However, it so happens that if all theoretical problems mentioned in the previous Chapter are to be solved using one and only one Higgs particle then the ratio of the mass + of the charged vector bosons ( W or W ) to the mass of the neutral one ( Z 0) must have a very specific value. Thus by measuring the masses of the vector bosons we have an indication of the possible number of Higgs particles. Here experiment tells us

2 286 Peter Higgs (1929). This is the man whose name is associated with the big mystery of the Standard Model: the Higgs particle. He developed his work after an important piece of work by Anderson, who investigated the penetration of electromagnetic fields in a superconductor. He found that they penetrated only over a small distance, and he produced a theoretical understanding. The same mechanism was then used by Higgs (and Brout and Englert) to make a theory of photons with mass, thus with a limited range for the associated force. That became an ingredient of the Standard Model, not for the photons (that have zero mass), but for the homologues, the vector bosons W and Z. That turned out to be just what was needed to make the model mathematically viable (renormalizable). I met Higgs for the first time at a summer school in Edinburgh in 1959, where he was part of the organization, in particular he had the key to the wine cellar. Cabibbo and I, among others, profited greatly from his gracious understanding of our needs. Polkinghorne, a professor at that same summer school, writes in a book (Rochester Roundabout ): Higgs was a competent theorist, but of no great distinction, while in that same book he writes about X (admittedly a very good physicist): X is a very deep thinker with a marked reluctance to publish his ideas, and of the same X with respect to Higgs s idea: Perhaps one of the most surprising aspects of the story is that this idea did not occur to the acute and fertile mind of X himself. In 1979 Polkinghorne became an Anglican priest, instantly becoming the best physicist among Anglican priests. Recently he received the enormous Templeton prize. I think it was for something indeed not that easy: bridging the gap between sense and nonsense.

3 287 Robert Brout (1928, left) and François Englert (1932). These two must be credited, together with Higgs, for introducing the Higgs system. They are not well known to the general public, the name of Higgs alone has stuck in association with the subject. Brout and Englert were perhaps the first to suspect that their work would make vector boson theories renormalizable. Englert said so in a discussion remark at a talk by Weinberg at the 1967 Solvay conference. Weinberg did have a handwritten version of his 1967 paper with him, in which the same is said. However, I do not think that any of them had any inkling about the complexities of the theory. I feel a bit guilty with respect to Brout and Englert, because in 1971 I heard about Higgs s work, but only later of their work, and I thus did not cite them in the beginning. That was one of the reasons that they did not become as well-known as Higgs. They got full recognition in 1997, when they were awarded (together with Higgs) the High-Energy and Particle Physics prize of the European Physical Society. I met Brout in Utrecht around He impressed us all, but I did not meet him for a long time after that because he worked mainly in another field of physics, more related to the domain in which Anderson was active. At a dinner where Englert was also present I proposed a conjecture based on the statistics of one person (myself), namely that being born in the summer, preferably June, is the best with respect to intelligence. Englert, born in November, replied by saying that he was a Jew, and did not need this. Then he laughed so hard that I started to be worried for his life. For your information: my conjecture holds on the average for Nobel prize winners; Einstein, however, was born in March.

4 288 ELEMENTARY PARTICLE PHYSICS that the answer is that the values of the masses are indeed precisely such that one Higgs particle is enough to do the job. However, there are subtleties here. The mass of a vector boson such as the Z 0 is affected by quantum corrections (often called radiative corrections). The fact that a vector boson such as the Z0 may, for a short time, split into a pair of particles of different mass, changes slightly the value measured for the Z 0 mass. The particles that may intervene here are any of those that the Z 0 is coupled to, and that includes the top and bottom quark. The figure below shows the two possibilities. b Z 0 Z 0 b t Z 0 Z 0 The same story holds for the charged vector bosons. The + measured value of the mass of the W is also influenced by the occurrence of virtual pairs, but they occur differently as compared to the Z 0 case. In fact, there is only one possible diagram. The reader may observe that this is so because of conservation of charge. See the next figure, and remember that the antibottom quark has a charge of + 1 while the top quark has a charge of b W + W + + The masses of the W and W are the same, and so are the corrections due to quantum effects. However, the corrections to the Z 0 + mass are not equal to those of the W mass, and the ratio of charged and neutral vector boson masses changes slightly. This rather small effect has been evaluated theoretically and measured experimentally, and as its value depends on the masses of top and bottom quark, the measurement can be used to determine the t t 3

5 FINDING THE HIGGS 289 top mass (the mass of the bottom quark is of course known since its discovery in the seventies). This then led to a prediction for the top mass, and indeed the top was found with precisely that value for its mass. It in fact helped the experimenters to find the top in 1995, since they had at least some idea about its mass before they started looking for it. At that moment the Nobel committee started worrying about what became the 1999 Nobel prize. Predicting and experimentally confirming the mass of an elementary particle is the sort of thing they look for. It is here that we resume our discussion of the Higgs particle. It too may influence the vector boson mass measurements, and possibly also the ratio of the masses. See the figure below. There is a strange new type of diagram that ought to tickle the imagination of the reader. H Z 0 Z 0 Z 0 Z 0 As the Higgs couples with different strength to the Z 0 and + the W the mass ratio is indeed affected, although very much less so than through the corrections due to bottom and top quark. So, the prediction for the top quark mass is unsure since we do not know the mass of the Higgs particle and thereby the magnitude of the correction (except that its magnitude is quite small). In practice this led to an uncertainty of about 5% in the prediction of the top quark mass. Once however the top quark was discovered and its mass measured, the mass of the Higgs could be estimated from this very small effect. The prediction for the Higgs mass from this is not very precise, and today stands at somewhere above 110 GeV with a very large error margin. So, what is the situation? Most likely there is only one Higgs (if any!) and there is a vague prediction for its mass. However, there is trouble brewing and it is not at all sure that the Higgs actually exists. Here are the complicating issues. H Z 0

6 290 ELEMENTARY PARTICLE PHYSICS Introducing the Higgs with certain couplings to the known particles (all of which have to be verified when the Higgs is actually found) leads also to the necessity of coupling the Higgs to itself. So two Higgs bosons may attract each other, etc. This turns out to have some really surprising consequences. There may be bound states of Higgs particles, depending on the strength of the Higgs self-coupling. The reader may recall the important feature of a bound state, namely that it is a state of negative energy as compared to the non-bound state. This is obvious if one realizes that it costs energy to tear the bound state apart. For example, in a hydrogen atom the electron is bound to the proton with an energy of 13.6 ev. You need 13.6 ev of energy to pull the electron from a hydrogen atom. Thus in a bound state there is some amount of negative energy, binding energy, in addition to the usual mass-energy. The total energy of one hydrogen atom is equal to the sum of electron and proton mass minus the binding energy. Thus a bound state of Higgs particles involves negative energy. It now happens that it is possible to have bound states of two, three, etc., Higgs particles, and there is a bound state of an infinite number of Higgs particles whose binding energy is actually larger than the sum of all the Higgs masses! Thus the total energy of that state is negative, and if you start with nothing then you can create energy by making such a bound state. This is a most curious and disturbing fact, because it is obvious that such a state (it actually has an infinite spatial extension) would be created immediately in the beginning of our universe. But such a bound state cannot go undetected. Having a system of Higgs particles all over the universe is something that would be sensed by gravitation, and calculation reveals that such a system would lead to a curved universe with the size of a football. Theoretically it must be cured in a most horrid way: one assumes that the universe was initially curved in a negative sense and in precisely the same amount before this Higgs bound state came along. The result then would be a flat universe. Quite unbelievable, unless there is a principle that forces these two a priori unrelated curvatures to be

7 FINDING THE HIGGS 291 the same. Recent observations by astronomers have shown that the universe is really very flat and even the expected curvature due to the masses of galaxies etc. has not been seen. There is a big puzzle here. Evidently there is some relation between the Higgs system and gravitation. How strange. All this indicates that there is more to the Higgs than meets the eye, and one may well expect to see something quite different from the simple picture of a particle of some 150 GeV with certain interactions with the known particles and itself. Even so the Higgs particle has a task to fulfill: it must be such that it cancels out certain unwanted effects in scattering processes. There are certain things that must be there with certainty, and therefore the hunt for the Higgs is not open-ended. There is an important theoretical fact: the strength of the self coupling of the Higgs is related to the mass of the Higgs. So, a heavy Higgs couples stronger to itself than a light Higgs. If the Higgs is sufficiently heavy these self-couplings become so large that perturbation theory breaks down. Diagrams with an ever increasing number of self-couplings are not smaller than diagrams with no or only a few such couplings. Under those circumstances the theorists cannot make precise quantitative predictions. Here is then the state of affairs. Higgs or Higgs related effects become large and visible (but actually unpredictable in precise magnitude) if the Higgs itself has a mass exceeding 500 GeV. The ominous fact that already now the Higgs, from an experimental point of view, seems heavier than any other particle we know seems to point in this direction. Of course, if the Higgs is that heavy the prediction from the vector boson mass ratio becomes worthless also, and cannot be used to predict the Higgs mass. So the Higgs mass prediction from present data may be a joke. We must go hunt for the thing itself, or inspect closely those situations where it has a job to do, cancelling undesirable behaviour for example in vector boson scattering. The theory ends here. We need help. Experiments must clear up this mess.

8 292 ELEMENTARY PARTICLE PHYSICS There are a few light points here. It is virtually sure that the Large Hadron Collider at CERN will come into operation in the first decade of this century. Very likely that will establish at least some as yet unanswered questions. The Higgs itself may actually be discovered if its mass is not too high (somewhere below 400 GeV). This machine does not cover, however, the complete spectrum of manifestations of the Higgs particle. Much more in that sense can be expected from a high-energy electron-positron collider, of which there are some on the drawing board. They may actually measure the Higgs self-interactions. But there is no question about it: we may well run into something totally unexpected!

ASTRO 114 Lecture Okay. We re now gonna continue discussing and conclude discussing the entire

ASTRO 114 Lecture Okay. We re now gonna continue discussing and conclude discussing the entire ASTRO 114 Lecture 55 1 Okay. We re now gonna continue discussing and conclude discussing the entire universe. So today we re gonna learn about everything, everything that we know of. There s still a lot

More information

I. Antoniadis CERN. IAS CERN Novice Workshop, NTU, 7 Feb 2014

I. Antoniadis CERN. IAS CERN Novice Workshop, NTU, 7 Feb 2014 I. Antoniadis CERN IAS CERN Novice Workshop, NTU, 7 Feb 2014 1 2 3 the Large Hadron Collider (LHC) Largest scientific instrument ever built, 27km of circumference >10 000 people involved in its design

More information

Higgs boson may appear to be a technihiggs

Higgs boson may appear to be a technihiggs Higgs boson may appear to be a technihiggs The discovered elusive Higgs boson, first predicted theoretically, turns out to may have been a different particle after all. A team of international researchers

More information

PHYSICS 107. Lecture 27 What s Next?

PHYSICS 107. Lecture 27 What s Next? PHYSICS 107 Lecture 27 What s Next? The origin of the elements Apart from the expansion of the universe and the cosmic microwave background radiation, the Big Bang theory makes another important set of

More information

String Theory And The Universe

String Theory And The Universe String Theory And The Universe Edward Witten Institute for Advanced Studies Ludwig-Maximilians University July 28, 2012 1 Particle physicists are really interested in understanding the laws of nature the

More information

Democritus, a fifth century B.C. philosopher, is credited with being the first

Democritus, a fifth century B.C. philosopher, is credited with being the first This paper will give a general overview of the current thoughts on the building blocks of atoms through the scope of the Standard Model. There will be an abridged explanation of the interactions that these

More information

Chapter 32 Lecture Notes

Chapter 32 Lecture Notes Chapter 32 Lecture Notes Physics 2424 - Strauss Formulas: mc 2 hc/2πd 1. INTRODUCTION What are the most fundamental particles and what are the most fundamental forces that make up the universe? For a brick

More information

MITOCW watch?v=wr88_vzfcx4

MITOCW watch?v=wr88_vzfcx4 MITOCW watch?v=wr88_vzfcx4 PROFESSOR: So we're building this story. We had the photoelectric effect. But at this moment, Einstein, in the same year that he was talking about general relativity, he came

More information

Untitled 1/21/18, 11:31 AM Physics: What We Do and Don t Know Steven Weinberg NOVEMBER 7, 2013 ISSUE Speculations of this sort ran into an obvious dif

Untitled 1/21/18, 11:31 AM Physics: What We Do and Don t Know Steven Weinberg NOVEMBER 7, 2013 ISSUE Speculations of this sort ran into an obvious dif Untitled 1/21/18, 11:31 AM Physics: What We Do and Don t Know Steven Weinberg NOVEMBER 7, 2013 ISSUE Speculations of this sort ran into an obvious difficulty: photons have no mass, while any new particles

More information

Mechanics, Heat, Oscillations and Waves Prof. V. Balakrishnan Department of Physics Indian Institute of Technology, Madras

Mechanics, Heat, Oscillations and Waves Prof. V. Balakrishnan Department of Physics Indian Institute of Technology, Madras Mechanics, Heat, Oscillations and Waves Prof. V. Balakrishnan Department of Physics Indian Institute of Technology, Madras Lecture 05 The Fundamental Forces of Nature In this lecture, we will discuss the

More information

Source:CERN. Size and Scale

Source:CERN. Size and Scale Table of Contents Introduction Unification of Forces Size and Scale Standard Model Summary Standard Model Particles and Force Carriers About Mass and Energy Standard Model Fermions: Generations and Masses

More information

Particle + Physics at ATLAS and the Large Hadron Coillder

Particle + Physics at ATLAS and the Large Hadron Coillder Particle + Physics at ATLAS and the Large Hadron Coillder Discovering the elementary particles of the Universe Kate Shaw The International Centre for Theoretical Physics + Overview Introduction to Particle

More information

Higgs Field and Quantum Gravity

Higgs Field and Quantum Gravity Higgs Field and Quantum Gravity The magnetic induction creates a negative electric field, causing an electromagnetic inertia responsible for the relativistic mass change; it is the mysterious Higgs Field

More information

Special Theory of Relativity Prof. Shiva Prasad Department of Physics Indian Institute of Technology, Bombay. Lecture - 15 Momentum Energy Four Vector

Special Theory of Relativity Prof. Shiva Prasad Department of Physics Indian Institute of Technology, Bombay. Lecture - 15 Momentum Energy Four Vector Special Theory of Relativity Prof. Shiva Prasad Department of Physics Indian Institute of Technology, Bombay Lecture - 15 Momentum Energy Four Vector We had started discussing the concept of four vectors.

More information

The Higgs Boson, the Origin of Mass, and the Mystery of Spontaneous Symmetry Breaking. Felix Yu Theoretical Physics Department Fermilab

The Higgs Boson, the Origin of Mass, and the Mystery of Spontaneous Symmetry Breaking. Felix Yu Theoretical Physics Department Fermilab The Higgs Boson, the Origin of Mass, and the Mystery of Spontaneous Symmetry Breaking Felix Yu Theoretical Physics Department Fermilab Ask-A-Scientist Public Talk November 3, 2013 Nobel Prize 2013 F. Englert,

More information

An Introduction to Particle Physics

An Introduction to Particle Physics An Introduction to Particle Physics The Universe started with a Big Bang The Universe started with a Big Bang What is our Universe made of? Particle physics aims to understand Elementary (fundamental)

More information

1. What does this poster contain?

1. What does this poster contain? This poster presents the elementary constituents of matter (the particles) and their interactions, the latter having other particles as intermediaries. These elementary particles are point-like and have

More information

A first trip to the world of particle physics

A first trip to the world of particle physics A first trip to the world of particle physics Itinerary Massimo Passera Padova - 13/03/2013 1 Massimo Passera Padova - 13/03/2013 2 The 4 fundamental interactions! Electromagnetic! Weak! Strong! Gravitational

More information

Part I Electrostatics. 1: Charge and Coulomb s Law July 6, 2008

Part I Electrostatics. 1: Charge and Coulomb s Law July 6, 2008 Part I Electrostatics 1: Charge and Coulomb s Law July 6, 2008 1.1 What is Electric Charge? 1.1.1 History Before 1600CE, very little was known about electric properties of materials, or anything to do

More information

Particles and Forces

Particles and Forces Particles and Forces Particles Spin Before I get into the different types of particle there's a bit more back story you need. All particles can spin, like the earth on its axis, however it would be possible

More information

Where are we heading? Nathan Seiberg IAS 2014

Where are we heading? Nathan Seiberg IAS 2014 Where are we heading? Nathan Seiberg IAS 2014 Purpose of this talk A brief, broad brush status report of particle physics Where we are How we got here (some historical perspective) Problems and challenges

More information

Electroweak Symmetry Breaking

Electroweak Symmetry Breaking Electroweak Symmetry Breaking An enduring mystery of the standard model of particle physics and how we hope to solve it David Schaich Department of Physics and Center for Computational Science Boston University

More information

Elementary (?) Particles

Elementary (?) Particles Elementary (?) Particles Dan Styer; 12 December 2018 This document summarizes the so-called standard model of elementary particle physics. It cannot, in seven pages, even touch upon the copious experimental

More information

Lecture 6-4 momentum transfer and the kinematics of two body scattering

Lecture 6-4 momentum transfer and the kinematics of two body scattering Lecture 6-4 momentum transfer and the kinematics of two body scattering E. Daw March 26, 2012 1 Review of Lecture 5 Last time we figured out the physical meaning of the square of the total 4 momentum in

More information

NEXT STEPS IN PARTICLE PHYSICS. Edward Witten Royal Society Of Edinburgh April 21, 2009

NEXT STEPS IN PARTICLE PHYSICS. Edward Witten Royal Society Of Edinburgh April 21, 2009 NEXT STEPS IN PARTICLE PHYSICS Edward Witten Royal Society Of Edinburgh April 21, 2009 Particle physics is a loose way of talking It is a modern name for the centuries old effort to understand the laws

More information

The Physics of Particles and Forces David Wilson

The Physics of Particles and Forces David Wilson The Physics of Particles and Forces David Wilson Particle Physics Masterclass 21st March 2018 Overview David Wilson (TCD) Particles & Forces 2/30 Overview of Hadron Spectrum Collaboration (HadSpec) scattering

More information

Physics 142 Modern Physics 2 Page 1. Nuclear Physics

Physics 142 Modern Physics 2 Page 1. Nuclear Physics Physics 142 Modern Physics 2 Page 1 Nuclear Physics The Creation of the Universe was made possible by a grant from Texas Instruments. Credit on a PBS Program Overview: the elements are not elementary The

More information

Searches at the LHC and the discovery of the Higgs Boson

Searches at the LHC and the discovery of the Higgs Boson Searches at the LHC and the discovery of the Higgs Boson Christos Leonidopoulos, University of Edinburgh March 18, 2014 Producing the Higgs boson at a hadron collider One of the most characteristic features

More information

The Large Hadron Collider, and New Avenues in Elementary Particle Physics. Gerard t Hooft, Public Lecture, IPMU Tokyo, April 16, 2015

The Large Hadron Collider, and New Avenues in Elementary Particle Physics. Gerard t Hooft, Public Lecture, IPMU Tokyo, April 16, 2015 The Large Hadron Collider, and New Avenues in Elementary Particle Physics Gerard t Hooft, Public Lecture, IPMU Tokyo, April 16, 2015 CERN European Center for Nuclear Research LHC Large Hadron Collider

More information

TEACHER. The Atom 4. Make a drawing of an atom including: Nucleus, proton, neutron, electron, shell

TEACHER. The Atom 4. Make a drawing of an atom including: Nucleus, proton, neutron, electron, shell Click on the SUBATOMIC roadmap button on the left. Explore the Subatomic Universe Roadmap to answer the following questions. Matter 1. What 3 atoms is a water molecule made of? Two Hydrogen atoms and one

More information

The quantization of space

The quantization of space The quantization of space Uta Volkenborn and Heinz Volkenborn volkenborn-architekten@hamburg.de Abstract The fine-structure constant demands a quantization of space. For this purpose, we refer to a volume

More information

The poetry of mathematics

The poetry of mathematics The poetry of mathematics Paul Turner I read in a book by W.W. Sawyer that to be complete, a mathematician needs to be something of a poet. The author was quoting the 19 th century German mathematician

More information

EIC Science. Rik Yoshida, EIC-Center at Jefferson Lab Abhay Deshpande, Center for Frontiers in Nuclear Physics, BNL and Stony Brook

EIC Science. Rik Yoshida, EIC-Center at Jefferson Lab Abhay Deshpande, Center for Frontiers in Nuclear Physics, BNL and Stony Brook EIC Science Rik Yoshida, EIC-Center at Jefferson Lab Abhay Deshpande, Center for Frontiers in Nuclear Physics, BNL and Stony Brook Introduction Invited to give a talk EIC Science and JLEIC Status I will

More information

Elementary Particle Physics Glossary. Course organiser: Dr Marcella Bona February 9, 2016

Elementary Particle Physics Glossary. Course organiser: Dr Marcella Bona February 9, 2016 Elementary Particle Physics Glossary Course organiser: Dr Marcella Bona February 9, 2016 1 Contents 1 Terms A-C 5 1.1 Accelerator.............................. 5 1.2 Annihilation..............................

More information

Lecture 26 Fundamentals of Physics Phys 120, Fall 2015 Quantum Fields

Lecture 26 Fundamentals of Physics Phys 120, Fall 2015 Quantum Fields Lecture 26 Fundamentals of Physics Phys 120, Fall 2015 Quantum Fields A. J. Wagner North Dakota State University, Fargo, ND 58102 Fargo, December 3, 2015 Overview Quantized Fields: the reason for particles

More information

Modern Physics notes Spring 2005 Paul Fendley Lecture 38

Modern Physics notes Spring 2005 Paul Fendley Lecture 38 Modern Physics notes Spring 2005 Paul Fendley fendley@virginia.edu Lecture 38 Dark matter and energy Cosmic Microwave Background Weinberg, chapters II and III cosmological parameters: Tegmark et al, http://arxiv.org/abs/astro-ph/0310723

More information

Knots, Coloring and Applications

Knots, Coloring and Applications Knots, Coloring and Applications Ben Webster University of Virginia March 10, 2015 Ben Webster (UVA) Knots, Coloring and Applications March 10, 2015 1 / 14 This talk is online at http://people.virginia.edu/~btw4e/knots.pdf

More information

1 Introduction. 1.1 The Standard Model of particle physics The fundamental particles

1 Introduction. 1.1 The Standard Model of particle physics The fundamental particles 1 Introduction The purpose of this chapter is to provide a brief introduction to the Standard Model of particle physics. In particular, it gives an overview of the fundamental particles and the relationship

More information

Cosmic Strings and Other Topological Defects. by A. Vilenkin and E. P. S. Shellard. Reviewed by John Preskill. 28 March 1996

Cosmic Strings and Other Topological Defects. by A. Vilenkin and E. P. S. Shellard. Reviewed by John Preskill. 28 March 1996 Cosmic Strings and Other Topological Defects by A. Vilenkin and E. P. S. Shellard Reviewed by John Preskill 28 March 1996 One of the most ironic twists of twentieth century science, and one of the most

More information

Cosmology and particle physics

Cosmology and particle physics Cosmology and particle physics Lecture notes Timm Wrase Lecture 5 The thermal universe - part I In the last lecture we have shown that our very early universe was in a very hot and dense state. During

More information

Chapter 22 Lecture. The Cosmic Perspective. Seventh Edition. The Birth of the Universe Pearson Education, Inc.

Chapter 22 Lecture. The Cosmic Perspective. Seventh Edition. The Birth of the Universe Pearson Education, Inc. Chapter 22 Lecture The Cosmic Perspective Seventh Edition The Birth of the Universe The Birth of the Universe 22.1 The Big Bang Theory Our goals for learning: What were conditions like in the early universe?

More information

4.2 The Mysterious Electron

4.2 The Mysterious Electron 2 Chapter 4 Modern Atomic Theory 4.2 The Mysterious Electron Where there is an open mind, there will always be a frontier. Charles F. Kettering (876-958) American engineer and inventor Scientists have

More information

How and Why to go Beyond the Discovery of the Higgs Boson

How and Why to go Beyond the Discovery of the Higgs Boson How and Why to go Beyond the Discovery of the Higgs Boson John Alison University of Chicago Discovery of the Higgs Boson Nobel Prize 2 What it Took: The Large Hadron Collider 17 miles 3 What it Took: The

More information

NUCLEAR FORCES. Historical perspective

NUCLEAR FORCES. Historical perspective NUCLEAR FORCES Figure 1: The atomic nucleus made up from protons (yellow) and neutrons (blue) and held together by nuclear forces. Nuclear forces (also known as nuclear interactions or strong forces) are

More information

Newsletter No. 2. (part A)

Newsletter No. 2. (part A) Newsletter No. 2 (part A) - for the Indiegogo crowdfunding campaign A THEORY OF EVERYTHING 27.06.2017 Copenhagen, Denmark Dear all, welcome to the second newsletter of the Indiegogo crowdfunding campaign

More information

Beyond the standard model? From last time. What does the SM say? Grand Unified Theories. Unifications: now and the future

Beyond the standard model? From last time. What does the SM say? Grand Unified Theories. Unifications: now and the future From last time Quantum field theory is a relativistic quantum theory of fields and interactions. Fermions make up matter, and bosons mediate the forces by particle exchange. Lots of particles, lots of

More information

Linear Collider. Hitoshi Murayama (Berkeley) Jan 31, 2005

Linear Collider. Hitoshi Murayama (Berkeley) Jan 31, 2005 Linear Collider Hitoshi Murayama (Berkeley) EPP2010@SLAC, Jan 31, 2005 Take-home messages We are approaching a new layer of energy scale: something is brewing at TeV-scale Solutions to many deep puzzles

More information

FUNDAMENTAL PARTICLES CLASSIFICATION! BOSONS! QUARKS! FERMIONS! Gauge Bosons! Fermions! Strange and Charm! Top and Bottom! Up and Down!

FUNDAMENTAL PARTICLES CLASSIFICATION! BOSONS! QUARKS! FERMIONS! Gauge Bosons! Fermions! Strange and Charm! Top and Bottom! Up and Down! FUNDAMENTAL PARTICLES CLASSIFICATION! BOSONS! --Bosons are generally associated with radiation and are sometimes! characterized as force carrier particles.! Quarks! Fermions! Leptons! (protons, neutrons)!

More information

Saturday Morning Physics (2007) Prof. Bhaskar Dutta and Prof. Teruki Kamon. Department of Physics Texas A&M University. Question

Saturday Morning Physics (2007) Prof. Bhaskar Dutta and Prof. Teruki Kamon. Department of Physics Texas A&M University. Question Dark Puzzles of the Universe Saturday Morning Physics (2007) Prof. Bhaskar Dutta and Prof. Teruki Kamon Department of Physics Texas A&M University Question March 24, 2007 Dark Puzzles of the Universe 2

More information

Dark Puzzles of the Universe

Dark Puzzles of the Universe Dark Puzzles of the Universe Saturday Morning Physics (2007) Prof. Bhaskar Dutta and Prof. Teruki Kamon Department of Physics Texas A&M University Question March 24, 2007 Dark Puzzles of the Universe 2

More information

Today. From Last Time. Fundamental Matter Particles. Similar particles. Exchange Bosons (force carriers) And several different interactions

Today. From Last Time. Fundamental Matter Particles. Similar particles. Exchange Bosons (force carriers) And several different interactions From Last Time Discussed the weak interaction All quarks and leptons have a weak charge They interact through the weak interaction Weak interaction often swamped by electromagnetic or strong interaction.

More information

Chapter 8: E & M (Electricity & Magnetism or Electromagnetism)

Chapter 8: E & M (Electricity & Magnetism or Electromagnetism) Chapter 8: E & M (Electricity & Magnetism or Electromagnetism) Electric charge & electric force Coulomb s Law Electrons & basic facts about atoms (mainly review) Charge conservation Electric current &

More information

Introduction to the Standard Model of elementary particle physics

Introduction to the Standard Model of elementary particle physics Introduction to the Standard Model of elementary particle physics Anders Ryd (Anders.Ryd@cornell.edu) May 31, 2011 Abstract This short compendium will try to explain our current understanding of the microscopic

More information

Einstein did not explain the photoelectric effect. There are not Black Holes at Planck wall

Einstein did not explain the photoelectric effect. There are not Black Holes at Planck wall Einstein did not explain the photoelectric effect. There are not Black Holes at Planck wall I discovered a new Gravitation theory which breaks the wall of Planck scale! Abstract My Nobel Prize - Discoveries

More information

Modern Physics notes Paul Fendley Lecture 1

Modern Physics notes Paul Fendley Lecture 1 Modern Physics notes Paul Fendley fendley@virginia.edu Lecture 1 What is Modern Physics? Topics in this Class Books Their Authors Feynman 1.1 What is Modern Physics? This class is usually called modern

More information

Preface to Presentation

Preface to Presentation Preface to Presentation I gave a presentation last October about time travel, warp drive, travel to a Goldilocks Planet etc. to provide some possible place to escape a possible dying world I mentioned

More information

A Tour of the Standard Model of Elementary Particles and Fields

A Tour of the Standard Model of Elementary Particles and Fields A Tour of the Standard Model of Elementary Particles and Fields What Do We Know About the Fundamental Structure of Nature and How Do We Know It? Dr. Michael G. Strauss The University of Oklahoma Elementary

More information

ASTRO 114 Lecture Okay. What we re going to discuss today are what we call radiation laws. We ve

ASTRO 114 Lecture Okay. What we re going to discuss today are what we call radiation laws. We ve ASTRO 114 Lecture 15 1 Okay. What we re going to discuss today are what we call radiation laws. We ve been spending a lot of time talking about laws. We ve talked about gravitational laws, we ve talked

More information

Mathematics-I Prof. S.K. Ray Department of Mathematics and Statistics Indian Institute of Technology, Kanpur. Lecture 1 Real Numbers

Mathematics-I Prof. S.K. Ray Department of Mathematics and Statistics Indian Institute of Technology, Kanpur. Lecture 1 Real Numbers Mathematics-I Prof. S.K. Ray Department of Mathematics and Statistics Indian Institute of Technology, Kanpur Lecture 1 Real Numbers In these lectures, we are going to study a branch of mathematics called

More information

Introduction. Facts And Mysteries In Elementary Particle Physics Downloaded from

Introduction. Facts And Mysteries In Elementary Particle Physics Downloaded from 1 Introduction The twentieth century has seen an enormous progress in physics. The fundamental physics of the first half of that century was dominated by the theory of relativity, Einstein s theory of

More information

Lecture 03. The Standard Model of Particle Physics. Part II The Higgs Boson Properties of the SM

Lecture 03. The Standard Model of Particle Physics. Part II The Higgs Boson Properties of the SM Lecture 03 The Standard Model of Particle Physics Part II The Higgs Boson Properties of the SM The Standard Model So far we talked about all the particles except the Higgs If we know what the particles

More information

The Standard Model Part. II

The Standard Model Part. II Our Story Thus Far The Standard Model Part. II!!We started with QED (and!)!!we extended this to the Fermi theory of weak interactions! Adding G F!!Today we will extended this to Glashow-Weinberg-Salam

More information

The Particle World. This talk: What is our Universe made of? Where does it come from? Why does it behave the way it does?

The Particle World. This talk: What is our Universe made of? Where does it come from? Why does it behave the way it does? The Particle World What is our Universe made of? Where does it come from? Why does it behave the way it does? Particle physics tries to answer these questions. This talk: particles as we understand them

More information

PH5211: High Energy Physics. Prafulla Kumar Behera Room: HSB-304B

PH5211: High Energy Physics. Prafulla Kumar Behera Room: HSB-304B PH5211: High Energy Physics Prafulla Kumar Behera E-mail:behera@iitm.ac.in Room: HSB-304B Information Class timing: Wed. 11am, Thur. 9am, Fri. 8am The course will be graded as follows: 1 st quiz (20 marks)

More information

Leptons and Weak interactions

Leptons and Weak interactions PHY771, 8/28/2014 Tomasz Skwarnicki 1 Historical introduction to Elementary Particles: Leptons and Weak interactions Tomasz Skwarnicki Syracuse University Griffiths, 2 nd ed., 1.3-1.5,1.10 PHY771, 8/28/2014

More information

Chapter 26: Cosmology

Chapter 26: Cosmology Chapter 26: Cosmology Cosmology means the study of the structure and evolution of the entire universe as a whole. First of all, we need to know whether the universe has changed with time, or if it has

More information

The 64th Compton Lecture Series Unsolved Mysteries of the Universe: Looking for Clues in Surprising Places

The 64th Compton Lecture Series Unsolved Mysteries of the Universe: Looking for Clues in Surprising Places The 64th Compton Lecture Series Unsolved Mysteries of the Universe: Looking for Clues in Surprising Places Brian Odom Fall 2006 http://kicp.uchicago.edu/~odom/compton.htm Lecture 2: From the Big Bang to

More information

37-6 Watching the electrons (matter waves)

37-6 Watching the electrons (matter waves) 37-6 Watching the electrons (matter waves) 1 testing our proposition: the electrons go either through hole 1 or hole 2 add a very strong light source behind walls between two holes, electrons will scatter

More information

Lecture 11 Perturbative calculation

Lecture 11 Perturbative calculation M.Krawczyk, AFZ Particles and Universe 11 1 Particles and Universe Lecture 11 Perturbative calculation Maria Krawczyk, Aleksander F. Żarnecki Faculty of Physics UW I.Theory of elementary particles description

More information

What is Quantum Mechanics?

What is Quantum Mechanics? Quantum Worlds, session 1 1 What is Quantum Mechanics? Quantum mechanics is the theory, or picture of the world, that physicists use to describe and predict the behavior of the smallest elements of matter.

More information

Spectral Lines. I've done that with sunlight. You see the whole rainbow because the prism breaks the light into all of its separate colors.

Spectral Lines. I've done that with sunlight. You see the whole rainbow because the prism breaks the light into all of its separate colors. Spectral Lines At the end of 19th century, physicists knew there were electrons inside atoms, and that the wiggling of these electrons gave off light and other electromagnetic radiation. But there was

More information

Particles in the Early Universe

Particles in the Early Universe Particles in the Early Universe David Morrissey Saturday Morning Physics, October 16, 2010 Using Little Stuff to Explain Big Stuff David Morrissey Saturday Morning Physics, October 16, 2010 Can we explain

More information

How and Why to go Beyond the Discovery of the Higgs Boson

How and Why to go Beyond the Discovery of the Higgs Boson How and Why to go Beyond the Discovery of the Higgs Boson John Alison University of Chicago http://hep.uchicago.edu/~johnda/comptonlectures.html Lecture Outline April 1st: Newton s dream & 20th Century

More information

Inside the Atom. Say Thanks to the Authors Click (No sign in required)

Inside the Atom. Say Thanks to the Authors Click   (No sign in required) Inside the Atom Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other interactive content, visit www.ck12.org

More information

The first 400,000 years

The first 400,000 years The first 400,000 years All about the Big Bang Temperature Chronology of the Big Bang The Cosmic Microwave Background (CMB) The VERY early universe Our Evolving Universe 1 Temperature and the Big Bang

More information

CHAPTER 1. Introduction

CHAPTER 1. Introduction CHAPTER 1 Introduction A typical Modern Geometry course will focus on some variation of a set of axioms for Euclidean geometry due to Hilbert. At the end of such a course, non-euclidean geometries (always

More information

The Strong Interaction and LHC phenomenology

The Strong Interaction and LHC phenomenology The Strong Interaction and LHC phenomenology Juan Rojo STFC Rutherford Fellow University of Oxford Theoretical Physics Graduate School course Introduction and motivation: QCD and modern high-energy physics

More information

13.1 Fundamental Particles and Forces

13.1 Fundamental Particles and Forces 13.1 Fundamental Particles and Forces Scientists once believed atoms were the smallest particles of matter. With the advancement of technology, it became clear that atoms themselves are made of simpler

More information

Pic of the day: false color topographical map from Lunar Reconnaissance Orbiter

Pic of the day: false color topographical map from Lunar Reconnaissance Orbiter Friday, November 18, 2011 Reading: Chapter 12, Chapter 13, Chapter 14 Astronomy in the news? Fabric of the Cosmos, Quantum Leap, weird world of quantum uncertainty, quantum entanglement (instantaneous

More information

Dark Side of the Universe

Dark Side of the Universe Dark Side of the Universe Bhaskar Dutta Department of Physics & Astronomy Texas A&M University Dark Side of the Universe 1 Content of the Universe 4% The 23% is still unobserved in the laboratory.. (This

More information

The Early Universe. 1. Inflation Theory: The early universe expanded enormously in a brief instance in time.

The Early Universe. 1. Inflation Theory: The early universe expanded enormously in a brief instance in time. The Early Universe The Early Universe 1. Inflation Theory: The early universe expanded enormously in a brief instance in time. 2. The fundamental forces change during the first second after the big bang.

More information

Superposition - World of Color and Hardness

Superposition - World of Color and Hardness Superposition - World of Color and Hardness We start our formal discussion of quantum mechanics with a story about something that can happen to various particles in the microworld, which we generically

More information

Hadron Physics & Quantum Chromodynamics Adnan Bashir, IFM, UMSNH, Mexico August 2013 Hermosillo Sonora

Hadron Physics & Quantum Chromodynamics Adnan Bashir, IFM, UMSNH, Mexico August 2013 Hermosillo Sonora Hadron Physics & Quantum Chromodynamics Adnan Bashir, IFM, UMSNH, Mexico August 2013 Hermosillo Sonora Hadron Physics & QCD Part 1: First Encounter With Hadrons: Introduction to Mesons & Baryons, The Quark

More information

Particle physics today. Giulia Zanderighi (CERN & University of Oxford)

Particle physics today. Giulia Zanderighi (CERN & University of Oxford) Particle physics today Giulia Zanderighi (CERN & University of Oxford) Particle Physics Particle Physics is fundamental research, as opposed to many applied sciences (medicine, biology, chemistry, nano-science,

More information

The Building Blocks of Nature

The Building Blocks of Nature The Building Blocks of Nature PCES 15.1 Schematic picture of constituents of an atom, & rough length scales. The size quoted for the nucleus here (10-14 m) is too large- a single nucleon has size 10-15

More information

Introduction to the Standard Model

Introduction to the Standard Model Introduction to the Standard Model Bill Murray, RAL, Quarks and leptons Bosons and forces The Higgs March 2002 1 Outline: An introduction to particle physics What is the Higgs Boson? Some unanswered questions

More information

Connectedness. Proposition 2.2. The following are equivalent for a topological space (X, T ).

Connectedness. Proposition 2.2. The following are equivalent for a topological space (X, T ). Connectedness 1 Motivation Connectedness is the sort of topological property that students love. Its definition is intuitive and easy to understand, and it is a powerful tool in proofs of well-known results.

More information

Introductory Quantum Chemistry Prof. K. L. Sebastian Department of Inorganic and Physical Chemistry Indian Institute of Science, Bangalore

Introductory Quantum Chemistry Prof. K. L. Sebastian Department of Inorganic and Physical Chemistry Indian Institute of Science, Bangalore Introductory Quantum Chemistry Prof. K. L. Sebastian Department of Inorganic and Physical Chemistry Indian Institute of Science, Bangalore Lecture - 4 Postulates Part 1 (Refer Slide Time: 00:59) So, I

More information

FXA Candidates should be able to :

FXA Candidates should be able to : 1 Candidates should be able to : MATTER AND ANTIMATTER Explain that since protons and neutrons contain charged constituents called quarks, they are therefore, not fundamental particles. Every particle

More information

Photon Coupling with Matter, u R

Photon Coupling with Matter, u R 1 / 16 Photon Coupling with Matter, u R Consider the up quark. We know that the u R has electric charge 2 3 e (where e is the proton charge), and that the photon A is a linear combination of the B and

More information

4.3 The accelerating universe and the distant future

4.3 The accelerating universe and the distant future Discovering Astronomy : Galaxies and Cosmology 46 Figure 55: Alternate histories of the universe, depending on the mean density compared to the critical value. The left hand panel shows the idea graphically.

More information

CERN, LHC and the particle adventure. Bernhard Meirose

CERN, LHC and the particle adventure. Bernhard Meirose CERN, LHC and the particle adventure Bernhard Meirose CERN European Organization for Nuclear Research World's largest particle physics laboratory Situated in the Northwest suburbs of Geneva on the Franco

More information

The Wave Function. Chapter The Harmonic Wave Function

The Wave Function. Chapter The Harmonic Wave Function Chapter 3 The Wave Function On the basis of the assumption that the de Broglie relations give the frequency and wavelength of some kind of wave to be associated with a particle, plus the assumption that

More information

Essentials of Particle Physics

Essentials of Particle Physics Essentials of Particle Physics Kajari Mazumdar Department of High Energy Physics Tata Institute of Fundamental Research Mumbai http://www.tifr.res.in/~mazumdar Kajari.Mazumdar@gmail.com KSTA Lecture Series

More information

Modern Physics notes Spring 2005 Paul Fendley Lecture 1

Modern Physics notes Spring 2005 Paul Fendley Lecture 1 Modern Physics notes Spring 2005 Paul Fendley fendley@virginia.edu Lecture 1 What is Modern Physics? Topics in this class The books and their authors Quantum mechanics Feynman 1.1 What is Modern Physics?

More information

REALIZING EINSTEIN S DREAM. Exploring Our Mysterious Universe

REALIZING EINSTEIN S DREAM. Exploring Our Mysterious Universe REALIZING EINSTEIN S DREAM Exploring Our Mysterious Universe Mysteries of the Universe Quarks Leptons Higgs Bosons Supersymmetric Particles SuperString Theory Dark Matter Dark Energy and the cosmological

More information

Do you know the man that dropped out of school and still was one of the greatest physicists of the 20th century? That is Albert Einstein.

Do you know the man that dropped out of school and still was one of the greatest physicists of the 20th century? That is Albert Einstein. Do you know the man that dropped out of school and still was one of the greatest physicists of the 20th century? That is Albert Einstein. Albert was a man that thought for himself and changed the world

More information

The Four Fundamental Forces. The Four Fundamental Forces. Gravitational Force. The Electrical Force. The Photon (γ) Unification. Mass.

The Four Fundamental Forces. The Four Fundamental Forces. Gravitational Force. The Electrical Force. The Photon (γ) Unification. Mass. The Four Fundamental Forces What are the four fundamental forces? The Four Fundamental Forces What are the four fundamental forces? Weaker Stronger Gravitational, Electromagnetic, Strong and Weak Nuclear

More information

Limitations of Newtonian Physics

Limitations of Newtonian Physics Limitations of Newtonian Physics 18 th and 19 th Centuries Newtonian Physics was accepted as an ultimate truth Science is never absolute Hundreds of experiments can t prove my theory right but only one

More information

Exam Results. Force between charges. Electric field lines. Other particles and fields

Exam Results. Force between charges. Electric field lines. Other particles and fields Exam: Exam scores posted on Learn@UW No homework due next week Exam Results F D C BC B AB A Phy107 Fall 2006 1 Particles and fields We have talked about several particles Electron,, proton, neutron, quark

More information