Neuronal Dynamics: Computational Neuroscience of Single Neurons

Size: px
Start display at page:

Download "Neuronal Dynamics: Computational Neuroscience of Single Neurons"

Transcription

1 Nonlinear Integrate-and-Fire Model Neronal Dynamics: Comptational Neroscience of Single Nerons Nonlinear Integrate-and-fire (NLIF) - Definition - qadratic and expon. IF - Extracting NLIF model from data Week 1 and Week 4: Nonlinear Integrate-and-fire Model - exponential Integrate-and-fire - Extracting NLIF from detailed model - from two to one dimension Wlfram Gerstner EPFL, Lasanne, Switzerland - Qality of NLIF?

2 Neronal Dynamics Review: Nonlinear Integrate-and Fire LIF (Leaky integrate-and-fire) d ( ) RI( t) rest NLIF (nonlinear integrate-and-fire) d F( ) RI( t) If firing: reset

3 Neronal Dynamics 1.4. Leaky Integrate-and Fire revisited d I=0 LIF d I>0 d ( ) RI( t) rest If firing: r resting repetitive t t

4 Neronal Dynamics 1.4. Nonlinear Integrate-and Fire Nonlinear Integrate-and-Fire d I=0 d I>0 NLIF d F( ) RI( t) firing: if (t) = r then r r r

5 Nonlinear Integrate-and-fire Model j i Spike emission i r F reset I d F( ) RI( t) NONlinear if (t) = r then Fire+reset threshold

6 Nonlinear Integrate-and-fire Model d I=0 d I>0 r r d Qadratic I&F: F ( ) RI( t) NONlinear F ( ) ( ) c c c 0 if (t) = r then Fire+reset threshold

7 Nonlinear Integrate-and-fire Model d I=0 d I>0 r r d Qadratic I&F: F ( ) RI( t) F ( ) ( ) c c c 0 exponential I&F: if (t) = r then Fire+reset F ( ) ( ) c exp( 0 rest )

8 Nonlinear Integrate-and-Fire Model Neronal Dynamics: Comptational Neroscience of Single Nerons Nonlinear Integrate-and-fire (NLIF) - Definition - qadratic and expon. IF - Extracting NLIF model from data Week 1 and Week 4: Nonlinear Integrate-and-fire Model - exponential Integrate-and-fire - Extracting NLIF from detailed model - from two to one dimension Wlfram Gerstner EPFL, Lasanne, Switzerland

9 Neronal Dynamics Review: Nonlinear Integrate-and-fire See: week 1, lectre 1.5 r d f ( ) R I( t) If reset then reset to What is a good choice of f? r

10 Neronal Dynamics Review: Nonlinear Integrate-and-fire (1) d f ( ) R I( t) (2) If then reset to reset r What is a good choice of f? (i) Extract f from data (ii) Extract f from more complex models

11 Neronal Dynamics 1.5. Inject crrent record voltage

12 Neronal Dynamics Inject crrent record voltage voltage I(t) F ( ) ( ) exp( rest ) d 1 C I ( t) F( ) 1 [mv] Badel et al., J. Nerophysiology 2008

13 Neronal Dynamics Review: Nonlinear Integrate-and-fire (i) Extract f from data Badel et al. (2008) d f( ) f ( ) R I( t) f( ) d ( ) exp( ) rest Exp. Integrate-and-Fire, Forcad et al Pyramidal neron linear exponential Inhibitory interneron linear exponential Badel et al. (2008)

14 Neronal Dynamics Review: Nonlinear Integrate-and-fire (1) d f ( ) R I( t) (2) If then reset to reset r Best choice of f : linear + exponential d BUT: Limitations need to add -Adaptation on slower time scales ( ) exp( ) rest -Possibility for a diversity of firing patterns -Increased threshold after each spike -Noise

15 Week 4 part 5: Nonlinear Integrate-and-Fire Model Neronal Dynamics: Comptational Neroscience of Single Nerons Nonlinear Integrate-and-fire (NLIF) - Definition - qadratic and expon. IF - Extracting NLIF model from data Week 1 and Week 4: Nonlinear Integrate-and-fire Model - exponential Integrate-and-fire - Extracting NLIF from detailed model - from two to one dimension Wlfram Gerstner EPFL, Lasanne, Switzerland

16 Neronal Dynamics 4.5. Frther redction to 1 dimension After redction of HH 2-dimensional eqation stimls to two dimensions: d F(, w) RI( t) dw w G(, w) slow! Separation of time scales -w is nearly constant (most of the time)

17 Neronal Dynamics 4.5 sparse activity in vivo Spontaneos activity in vivo awake mose, cortex, freely whisking, -spikes are rare events Crochet et al., membrane potential flctates arond rest Aims of Modeling: - predict spike initation times - predict sbthreshold voltage

18 Neronal Dynamics 4.5. Frther redction to 1 dimension d F stimls (, w) I( t) w dw 0 w dw G(, w) Separation of time scales I(t)=0 w Flx nearly horizontal d 0 Stable fixed point

19 Neronal Dynamics 4.5. Frther redction to 1 dimension Hodgkin-Hxley redced to 2dim dw 0 w d dw F(, w) I( t) G(, w) Separation of time scales w d 0 dw w 0 w w rest d F(, w ) RI ( t) rest Stable fixed point

20 Neronal Dynamics Review: Nonlinear Integrate-and-fire (i) Extract f from more complex models d f ( ) R I( t) A. detect spike and reset resting state Separation of time scales: Arrows are nearly horizontal See week 3: d F(, w) R I( t) Spike initiation, from rest w w rest 2dim version of dw Hodgkin-Hxley w G(, w) B. Assme w=wrest

21 Neronal Dynamics Review: Nonlinear Integrate-and-fire (i) Extract f from more complex models d f ( ) R I( t) linear exponential See week 4: 2dim version of Hodgkin-Hxley d dw w F (, w ) R I ( t ) rest G(, w) w w rest Separation of time scales

22 Neronal Dynamics 4.5. Nonlinear Integrate-and-Fire Model d F(, w ) RI ( t) f ( ) RI ( t) rest Nonlinear I&F (see week 1!) Image: Neronal Dynamics, Gerstner et al., Cambridge Univ. Press (2014)

23 Neronal Dynamics 4.5. Nonlinear Integrate-and-Fire Model Exponential integrate-and-fire model (EIF) f ( ) ( ) exp( ) rest d F(, w ) RI ( t) f ( ) RI ( t) rest Nonlinear I&F (see week 1!) Image: Neronal Dynamics, Gerstner et al., Cambridge Univ. Press (2014)

24 Neronal Dynamics 4.5. Exponential Integrate-and-Fire Model Exponential integrate-and-fire model (EIF) f ( ) ( ) exp( ) rest linear Image: Neronal Dynamics, Gerstner et al., Cambridge Univ. Press (2014)

25 Neronal Dynamics 4.5. Exponential Integrate-and-Fire Model Direct derivation from Hodgkin-Hxley d C g m 3 h( E ) g n 4 ( E ) g ( E ) I( t) Na Na K K l l d C g [ m ( )] 3 h ( E ) g [ n ] 4 ( E ) g ( E ) I( t) Na 0 rest Na K rest K l l Forcad-Trocme et al, J. Nerosci f ( ) ( ) exp( ) rest d F(, h, n ) RI( t) f ( ) RI( t) rest rest gives expon. I&F

26 Neronal Dynamics 4.5. Nonlinear Integrate-and-Fire Model 2-dimensional eqation w d dw F(, w) RI( t) G(, w) Separation of time scales -w is constant (if not firing) Relevant dring spike and downswing of AP d f ( ) RI( t) threshold+reset for firing

27 Neronal Dynamics 4.5. Nonlinear Integrate-and-Fire Model 2-dimensional eqation w d dw F(, w) RI( t) G(, w) Separation of time scales -w is constant (if not firing) d f ( ) RI( t) Linear pls exponential

28 Nonlinear Integrate-and-Fire Model Neronal Dynamics: Comptational Neroscience of Single Nerons Nonlinear Integrate-and-fire (NLIF) - Definition - qadratic and expon. IF - Extracting NLIF model from data Week 1 and Week 4: Nonlinear Integrate-and-fire Model - exponential Integrate-and-fire - Extracting NLIF from detailed model - from two to one dimension Wlfram Gerstner EPFL, Lasanne, Switzerland - Qality of NLIF?

29 Neronal Dynamics 4.5 sparse activity in vivo Spontaneos activity in vivo awake mose, cortex, freely whisking, -spikes are rare events Crochet et al., membrane potential flctates arond rest Aims of Modeling: - predict spike initation times - predict sbthreshold voltage

30 Neronal Dynamics 4.5.How good are integrate-and-fire models? Badel et al., 2008 Aims: - predict spike initation times - predict sbthreshold voltage Add adaptation and refractoriness (week 7)

31 Neronal Dynamics Qiz 4.7. A. Exponential integrate-and-fire model. The model can be derived [ ] from a 2-dimensional model, assming that the axiliary variable w is constant. [ ] from the HH model, assming that the gating variables h and n are constant. [ ] from the HH model, assming that the gating variables m is constant. [ ] from the HH model, assming that the gating variables m is instantaneos. B. Reset. [ ] In a 2-dimensional model, the axiliary variable w is necessary to implement a reset of the voltage after a spike [ ] In a nonlinear integrate-and-fire model, the axiliary variable w is necessary to implement a reset of the voltage after a spike [ ] In a nonlinear integrate-and-fire model, a reset of the voltage after a spike is implemented algorithmically/explicitly

32 Neronal Dynamics Nonlinear Integrate-and-Fire Reading: W. Gerstner, W.M. Kistler, R. Nad and L. Paninski, Neronal Dynamics: from single nerons to networks and models of cognition. Chapter 4: Introdction. Cambridge Univ. Press, 2014 OR W. Gerstner and W.M. Kistler, Spiking Neron Models, Ch.3. Cambridge 2002 OR J. Rinzel and G.B. Ermentrot, (1989). Analysis of neronal excitability and oscillations. In Koch, C. Segev, I., editors, Methods in neronal modeling. MIT Press, Cambridge, MA. Selected references. -Ermentrot, G. B. (1996). Type I membranes, phase resetting crves, and synchrony. Neral Comptation, 8(5): Forcad-Trocme, N., Hansel, D., van Vreeswijk, C., and Brnel, N. (2003). How spike generation mechanisms determine the neronal response to flctating inpt. J. Neroscience, 23: Badel, L., Lefort, S., Berger, T., Petersen, C., Gerstner, W., and Richardson, M. (2008). Biological Cybernetics, 99(4-5): E.M. Izhikevich, Dynamical Systems in Neroscience, MIT Press (2007)

Neuronal Dynamics: Computational Neuroscience of Single Neurons

Neuronal Dynamics: Computational Neuroscience of Single Neurons Week 4 part 5: Nonlinear Integrate-and-Fire Model 4.1 From Hodgkin-Huxley to 2D Neuronal Dynamics: Computational Neuroscience of Single Neurons Week 4 Recing detail: Two-dimensional neuron models Wulfram

More information

Neuronal Dynamics: Computational Neuroscience of Single Neurons

Neuronal Dynamics: Computational Neuroscience of Single Neurons Week 4 part 1 : Redction of the Hodgkin-Hxley Model Neronal Dynamics: Comptational Neroscience of Single Nerons Week 4 Redcing detail: Two-dimensional neron models Wlfram Gerstner EPFL, Lasanne, Switzerland

More information

Reduction of the HH-Model to two dimensions (general)

Reduction of the HH-Model to two dimensions (general) Spiking models 1 Neronal codes Spiking models: Hodgkin Hxley Model (brief repetition) Redction of the HH-Model to two dimensions (general) FitzHgh-Nagmo Model Integrate and Fire Model 2 Varying firing

More information

Biological Modeling of Neural Networks

Biological Modeling of Neural Networks Week 4 part 2: More Detail compartmental models Biological Modeling of Neural Networks Week 4 Reducing detail - Adding detail 4.2. Adding detail - apse -cable equat Wulfram Gerstner EPFL, Lausanne, Switzerland

More information

Neural Modeling and Computational Neuroscience. Claudio Gallicchio

Neural Modeling and Computational Neuroscience. Claudio Gallicchio Neural Modeling and Computational Neuroscience Claudio Gallicchio 1 Neuroscience modeling 2 Introduction to basic aspects of brain computation Introduction to neurophysiology Neural modeling: Elements

More information

Basic elements of neuroelectronics -- membranes -- ion channels -- wiring

Basic elements of neuroelectronics -- membranes -- ion channels -- wiring Computing in carbon Basic elements of neuroelectronics -- membranes -- ion channels -- wiring Elementary neuron models -- conductance based -- modelers alternatives Wires -- signal propagation -- processing

More information

Lecture 11 : Simple Neuron Models. Dr Eileen Nugent

Lecture 11 : Simple Neuron Models. Dr Eileen Nugent Lecture 11 : Simple Neuron Models Dr Eileen Nugent Reading List Nelson, Biological Physics, Chapter 12 Phillips, PBoC, Chapter 17 Gerstner, Neuronal Dynamics: from single neurons to networks and models

More information

Dynamical systems in neuroscience. Pacific Northwest Computational Neuroscience Connection October 1-2, 2010

Dynamical systems in neuroscience. Pacific Northwest Computational Neuroscience Connection October 1-2, 2010 Dynamical systems in neuroscience Pacific Northwest Computational Neuroscience Connection October 1-2, 2010 What do I mean by a dynamical system? Set of state variables Law that governs evolution of state

More information

Simple models of neurons!! Lecture 4!

Simple models of neurons!! Lecture 4! Simple models of neurons!! Lecture 4! 1! Recap: Phase Plane Analysis! 2! FitzHugh-Nagumo Model! Membrane potential K activation variable Notes from Zillmer, INFN 3! FitzHugh Nagumo Model Demo! 4! Phase

More information

Decoding. How well can we learn what the stimulus is by looking at the neural responses?

Decoding. How well can we learn what the stimulus is by looking at the neural responses? Decoding How well can we learn what the stimulus is by looking at the neural responses? Two approaches: devise explicit algorithms for extracting a stimulus estimate directly quantify the relationship

More information

Basic elements of neuroelectronics -- membranes -- ion channels -- wiring. Elementary neuron models -- conductance based -- modelers alternatives

Basic elements of neuroelectronics -- membranes -- ion channels -- wiring. Elementary neuron models -- conductance based -- modelers alternatives Computing in carbon Basic elements of neuroelectronics -- membranes -- ion channels -- wiring Elementary neuron models -- conductance based -- modelers alternatives Wiring neurons together -- synapses

More information

Linearization of F-I Curves by Adaptation

Linearization of F-I Curves by Adaptation LETTER Communicated by Laurence Abbott Linearization of F-I Curves by Adaptation Bard Ermentrout Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, U.S.A. We show that negative

More information

Single Neuron Dynamics for Retaining and Destroying Network Information?

Single Neuron Dynamics for Retaining and Destroying Network Information? Single Neuron Dynamics for Retaining and Destroying Network Information? Michael Monteforte, Tatjana Tchumatchenko, Wei Wei & F. Wolf Bernstein Center for Computational Neuroscience and Faculty of Physics

More information

The Spike Response Model: A Framework to Predict Neuronal Spike Trains

The Spike Response Model: A Framework to Predict Neuronal Spike Trains The Spike Response Model: A Framework to Predict Neuronal Spike Trains Renaud Jolivet, Timothy J. Lewis 2, and Wulfram Gerstner Laboratory of Computational Neuroscience, Swiss Federal Institute of Technology

More information

Biological Modeling of Neural Networks

Biological Modeling of Neural Networks Week 3 part 1 : Rection of the Hodgkin-Huxley Model 3.1 From Hodgkin-Huxley to 2D Biological Modeling of Neural Netorks - Overvie: From 4 to 2 dimensions - MathDetour 1: Exploiting similarities - MathDetour

More information

Single-Compartment Neural Models

Single-Compartment Neural Models Single-Compartment Neural Models BENG/BGGN 260 Neurodynamics University of California, San Diego Week 2 BENG/BGGN 260 Neurodynamics (UCSD) Single-Compartment Neural Models Week 2 1 / 18 Reading Materials

More information

Voltage-clamp and Hodgkin-Huxley models

Voltage-clamp and Hodgkin-Huxley models Voltage-clamp and Hodgkin-Huxley models Read: Hille, Chapters 2-5 (best) Koch, Chapters 6, 8, 9 See also Clay, J. Neurophysiol. 80:903-913 (1998) (for a recent version of the HH squid axon model) Rothman

More information

Dynamics of the Exponential Integrate-and-Fire Model with Slow Currents and Adaptation

Dynamics of the Exponential Integrate-and-Fire Model with Slow Currents and Adaptation Noname manuscript No. (will be inserted by the editor) Dynamics of the Exponential Integrate-and-Fire Model with Slow Currents and Adaptation Victor J. Barranca Daniel C. Johnson Jennifer L. Moyher Joshua

More information

How Spike Generation Mechanisms Determine the Neuronal Response to Fluctuating Inputs

How Spike Generation Mechanisms Determine the Neuronal Response to Fluctuating Inputs 628 The Journal of Neuroscience, December 7, 2003 23(37):628 640 Behavioral/Systems/Cognitive How Spike Generation Mechanisms Determine the Neuronal Response to Fluctuating Inputs Nicolas Fourcaud-Trocmé,

More information

Phase Locking. 1 of of 10. The PRC's amplitude determines which frequencies a neuron locks to. The PRC's slope determines if locking is stable

Phase Locking. 1 of of 10. The PRC's amplitude determines which frequencies a neuron locks to. The PRC's slope determines if locking is stable Printed from the Mathematica Help Browser 1 1 of 10 Phase Locking A neuron phase-locks to a periodic input it spikes at a fixed delay [Izhikevich07]. The PRC's amplitude determines which frequencies a

More information

Factors affecting phase synchronization in integrate-and-fire oscillators

Factors affecting phase synchronization in integrate-and-fire oscillators J Comput Neurosci (26) 2:9 2 DOI.7/s827-6-674-6 Factors affecting phase synchronization in integrate-and-fire oscillators Todd W. Troyer Received: 24 May 25 / Revised: 9 November 25 / Accepted: November

More information

Voltage-clamp and Hodgkin-Huxley models

Voltage-clamp and Hodgkin-Huxley models Voltage-clamp and Hodgkin-Huxley models Read: Hille, Chapters 2-5 (best Koch, Chapters 6, 8, 9 See also Hodgkin and Huxley, J. Physiol. 117:500-544 (1952. (the source Clay, J. Neurophysiol. 80:903-913

More information

Neuronal Dynamics: Computational Neuroscience of Single Neurons

Neuronal Dynamics: Computational Neuroscience of Single Neurons Week 5 part 3a :Three definitions of rate code Neuronal Dynamics: Computational Neuroscience of Single Neurons Week 5 Variability and Noise: The question of the neural code Wulfram Gerstner EPFL, Lausanne,

More information

Consider the following spike trains from two different neurons N1 and N2:

Consider the following spike trains from two different neurons N1 and N2: About synchrony and oscillations So far, our discussions have assumed that we are either observing a single neuron at a, or that neurons fire independent of each other. This assumption may be correct in

More information

Conductance-Based Integrate-and-Fire Models

Conductance-Based Integrate-and-Fire Models NOTE Communicated by Michael Hines Conductance-Based Integrate-and-Fire Models Alain Destexhe Department of Physiology, Laval University School of Medicine, Québec, G1K 7P4, Canada A conductance-based

More information

The Effects of Voltage Gated Gap. Networks

The Effects of Voltage Gated Gap. Networks The Effects of Voltage Gated Gap Junctions on Phase Locking in Neuronal Networks Tim Lewis Department of Mathematics, Graduate Group in Applied Mathematics (GGAM) University of California, Davis with Donald

More information

University of Bristol - Explore Bristol Research. Early version, also known as pre-print

University of Bristol - Explore Bristol Research. Early version, also known as pre-print Chizhov, Anto, V., Rodrigues, S., & Terry, JR. (6). A comparative analysis of an EEG model and a conductance-based. https://doi.org/1.116/j.physleta.7.4.6 Early version, also known as pre-print Link to

More information

Nonlinear Dynamics of Neural Firing

Nonlinear Dynamics of Neural Firing Nonlinear Dynamics of Neural Firing BENG/BGGN 260 Neurodynamics University of California, San Diego Week 3 BENG/BGGN 260 Neurodynamics (UCSD) Nonlinear Dynamics of Neural Firing Week 3 1 / 16 Reading Materials

More information

Phase Response Curves, Delays and Synchronization in Matlab

Phase Response Curves, Delays and Synchronization in Matlab Phase Response Curves, Delays and Synchronization in Matlab W. Govaerts and B. Sautois Department of Applied Mathematics and Computer Science, Ghent University, Krijgslaan 281-S9, B-9000 Ghent, Belgium

More information

arxiv: v2 [q-bio.nc] 3 Dec 2013

arxiv: v2 [q-bio.nc] 3 Dec 2013 Spike-timing prediction with active dendrites Richard Naud 1, Brice Bathellier 2 and Wulfram Gerstner 3 1 Department of Physics, University of Ottawa, 150 Louis Pasteur, ON, K1N 6N5, Canada. 2 Unit of

More information

Chapter 24 BIFURCATIONS

Chapter 24 BIFURCATIONS Chapter 24 BIFURCATIONS Abstract Keywords: Phase Portrait Fixed Point Saddle-Node Bifurcation Diagram Codimension-1 Hysteresis Hopf Bifurcation SNIC Page 1 24.1 Introduction In linear systems, responses

More information

Single neuron models. L. Pezard Aix-Marseille University

Single neuron models. L. Pezard Aix-Marseille University Single neuron models L. Pezard Aix-Marseille University Biophysics Biological neuron Biophysics Ionic currents Passive properties Active properties Typology of models Compartmental models Differential

More information

Interspike interval distributions of spiking neurons driven by fluctuating inputs

Interspike interval distributions of spiking neurons driven by fluctuating inputs J Neurophysiol 106: 361 373, 2011. First published April 27, 2011; doi:10.1152/jn.00830.2010. Interspike interval distributions of spiking neurons driven by fluctuating inputs Srdjan Ostojic Center for

More information

Maximum Likelihood Estimation of a Stochastic Integrate-and-Fire Neural Model

Maximum Likelihood Estimation of a Stochastic Integrate-and-Fire Neural Model Maximum Likelihood Estimation of a Stochastic Integrate-and-Fire Neural Model Jonathan W. Pillow, Liam Paninski, and Eero P. Simoncelli Howard Hughes Medical Institute Center for Neural Science New York

More information

STUDENT PAPER. Santiago Santana University of Illinois, Urbana-Champaign Blue Waters Education Program 736 S. Lombard Oak Park IL, 60304

STUDENT PAPER. Santiago Santana University of Illinois, Urbana-Champaign Blue Waters Education Program 736 S. Lombard Oak Park IL, 60304 STUDENT PAPER Differences between Stochastic and Deterministic Modeling in Real World Systems using the Action Potential of Nerves. Santiago Santana University of Illinois, Urbana-Champaign Blue Waters

More information

Event-driven simulations of nonlinear integrate-and-fire neurons

Event-driven simulations of nonlinear integrate-and-fire neurons Event-driven simulations of nonlinear integrate-and-fire neurons A. Tonnelier, H. Belmabrouk, D. Martinez Cortex Project, LORIA, Campus Scientifique, B.P. 239, 54 56 Vandoeuvre-lès-Nancy, France Abstract

More information

Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting

Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting Eugene M. Izhikevich The MIT Press Cambridge, Massachusetts London, England Contents Preface xv 1 Introduction 1 1.1 Neurons

More information

Introduction to Neural Networks U. Minn. Psy 5038 Spring, 1999 Daniel Kersten. Lecture 2a. The Neuron - overview of structure. From Anderson (1995)

Introduction to Neural Networks U. Minn. Psy 5038 Spring, 1999 Daniel Kersten. Lecture 2a. The Neuron - overview of structure. From Anderson (1995) Introduction to Neural Networks U. Minn. Psy 5038 Spring, 1999 Daniel Kersten Lecture 2a The Neuron - overview of structure From Anderson (1995) 2 Lect_2a_Mathematica.nb Basic Structure Information flow:

More information

Bursting and Chaotic Activities in the Nonlinear Dynamics of FitzHugh-Rinzel Neuron Model

Bursting and Chaotic Activities in the Nonlinear Dynamics of FitzHugh-Rinzel Neuron Model Bursting and Chaotic Activities in the Nonlinear Dynamics of FitzHugh-Rinzel Neuron Model Abhishek Yadav *#, Anurag Kumar Swami *, Ajay Srivastava * * Department of Electrical Engineering, College of Technology,

More information

Biological Modeling of Neural Networks:

Biological Modeling of Neural Networks: Week 14 Dynamics and Plasticity 14.1 Reservoir computing - Review:Random Networks - Computing with rich dynamics Biological Modeling of Neural Networks: 14.2 Random Networks - stationary state - chaos

More information

Temporal whitening by power-law adaptation in neocortical neurons

Temporal whitening by power-law adaptation in neocortical neurons Temporal whitening by power-law adaptation in neocortical neurons Christian Pozzorini, Richard Naud, Skander Mensi and Wulfram Gerstner School of Computer and Communication Sciences and School of Life

More information

Fast neural network simulations with population density methods

Fast neural network simulations with population density methods Fast neural network simulations with population density methods Duane Q. Nykamp a,1 Daniel Tranchina b,a,c,2 a Courant Institute of Mathematical Science b Department of Biology c Center for Neural Science

More information

Activity Driven Adaptive Stochastic. Resonance. Gregor Wenning and Klaus Obermayer. Technical University of Berlin.

Activity Driven Adaptive Stochastic. Resonance. Gregor Wenning and Klaus Obermayer. Technical University of Berlin. Activity Driven Adaptive Stochastic Resonance Gregor Wenning and Klaus Obermayer Department of Electrical Engineering and Computer Science Technical University of Berlin Franklinstr. 8/9, 187 Berlin fgrewe,obyg@cs.tu-berlin.de

More information

3 Action Potentials - Brutal Approximations

3 Action Potentials - Brutal Approximations Physics 172/278 - David Kleinfeld - Fall 2004; Revised Winter 2015 3 Action Potentials - Brutal Approximations The Hodgkin-Huxley equations for the behavior of the action potential in squid, and similar

More information

An Introductory Course in Computational Neuroscience

An Introductory Course in Computational Neuroscience An Introductory Course in Computational Neuroscience Contents Series Foreword Acknowledgments Preface 1 Preliminary Material 1.1. Introduction 1.1.1 The Cell, the Circuit, and the Brain 1.1.2 Physics of

More information

Canonical Neural Models 1

Canonical Neural Models 1 Canonical Neural Models 1 Frank Hoppensteadt 1 and Eugene zhikevich 2 ntroduction Mathematical modeling is a powerful tool in studying fundamental principles of information processing in the brain. Unfortunately,

More information

Balance of Electric and Diffusion Forces

Balance of Electric and Diffusion Forces Balance of Electric and Diffusion Forces Ions flow into and out of the neuron under the forces of electricity and concentration gradients (diffusion). The net result is a electric potential difference

More information

Computational Modeling of Neuronal Systems (Advanced Topics in Mathematical Physiology: G , G )

Computational Modeling of Neuronal Systems (Advanced Topics in Mathematical Physiology: G , G ) Computational Modeling of Neuronal Systems (Advanced Topics in Mathematical Physiology: G63.2855.001, G80.3042.004) Thursday, 9:30-11:20am, WWH Rm 1314. Prerequisites: familiarity with linear algebra,

More information

Effects of synaptic conductance on the voltage distribution and firing rate of spiking neurons

Effects of synaptic conductance on the voltage distribution and firing rate of spiking neurons PHYSICAL REVIEW E 69, 051918 (2004) Effects of synaptic conductance on the voltage distribution and firing rate of spiking neurons Magnus J. E. Richardson* Laboratory of Computational Neuroscience, Brain

More information

Phase-locking in weakly heterogeneous neuronal networks

Phase-locking in weakly heterogeneous neuronal networks Physica D 118 (1998) 343 370 Phase-locking in weakly heterogeneous neuronal networks Carson C. Chow 1 Department of Mathematics and Center for BioDynamics, Boston University, Boston, MA 02215, USA Received

More information

Spike-Frequency Adaptation of a Generalized Leaky Integrate-and-Fire Model Neuron

Spike-Frequency Adaptation of a Generalized Leaky Integrate-and-Fire Model Neuron Journal of Computational Neuroscience 10, 25 45, 2001 c 2001 Kluwer Academic Publishers. Manufactured in The Netherlands. Spike-Frequency Adaptation of a Generalized Leaky Integrate-and-Fire Model Neuron

More information

Fast and exact simulation methods applied on a broad range of neuron models

Fast and exact simulation methods applied on a broad range of neuron models Fast and exact simulation methods applied on a broad range of neuron models Michiel D Haene michiel.dhaene@ugent.be Benjamin Schrauwen benjamin.schrauwen@ugent.be Ghent University, Electronics and Information

More information

NIH Public Access Author Manuscript Neural Comput. Author manuscript; available in PMC 2010 October 13.

NIH Public Access Author Manuscript Neural Comput. Author manuscript; available in PMC 2010 October 13. NIH Public Access Author Manuscript Published in final edited form as: Neural Comput. 2009 March ; 21(3): 704 718. doi:10.1162/neco.2008.12-07-680. A Generalized Linear Integrate-and-Fire Neural Model

More information

A Generalized Linear Integrate-And-Fire Neural. Model Produces Diverse Spiking Behaviors

A Generalized Linear Integrate-And-Fire Neural. Model Produces Diverse Spiking Behaviors A Generalized Linear Integrate-And-Fire Neural Model Produces Diverse Spiking Behaviors Ştefan Mihalaş and Ernst Niebur Zanvyl Krieger Mind/Brain Institute and Department of Neuroscience Johns Hopkins

More information

Reduction of Conductance Based Models with Slow Synapses to Neural Nets

Reduction of Conductance Based Models with Slow Synapses to Neural Nets Reduction of Conductance Based Models with Slow Synapses to Neural Nets Bard Ermentrout October 1, 28 Abstract The method of averaging and a detailed bifurcation calculation are used to reduce a system

More information

Simulation of Cardiac Action Potentials Background Information

Simulation of Cardiac Action Potentials Background Information Simulation of Cardiac Action Potentials Background Information Rob MacLeod and Quan Ni February 7, 2 Introduction The goal of assignments related to this document is to experiment with a numerical simulation

More information

Compartmental Modelling

Compartmental Modelling Modelling Neurons Computing and the Brain Compartmental Modelling Spring 2010 2 1 Equivalent Electrical Circuit A patch of membrane is equivalent to an electrical circuit This circuit can be described

More information

Effects of Betaxolol on Hodgkin-Huxley Model of Tiger Salamander Retinal Ganglion Cell

Effects of Betaxolol on Hodgkin-Huxley Model of Tiger Salamander Retinal Ganglion Cell Effects of Betaxolol on Hodgkin-Huxley Model of Tiger Salamander Retinal Ganglion Cell 1. Abstract Matthew Dunlevie Clement Lee Indrani Mikkilineni mdunlevi@ucsd.edu cll008@ucsd.edu imikkili@ucsd.edu Isolated

More information

Two computational regimes of a single-compartment neuron separated by a planar boundary in conductance space

Two computational regimes of a single-compartment neuron separated by a planar boundary in conductance space Two computational regimes of a single-compartment neuron separated by a planar boundary in conductance space Brian Nils Lundstrom 1, Sungho Hong 1, Matthew H Higgs 1,2 and Adrienne L Fairhall 1 Department

More information

Neural Coding: Integrate-and-Fire Models of Single and Multi-Neuron Responses

Neural Coding: Integrate-and-Fire Models of Single and Multi-Neuron Responses Neural Coding: Integrate-and-Fire Models of Single and Multi-Neuron Responses Jonathan Pillow HHMI and NYU http://www.cns.nyu.edu/~pillow Oct 5, Course lecture: Computational Modeling of Neuronal Systems

More information

MANY scientists believe that pulse-coupled neural networks

MANY scientists believe that pulse-coupled neural networks IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 3, MAY 1999 499 Class 1 Neural Excitability, Conventional Synapses, Weakly Connected Networks, and Mathematical Foundations of Pulse-Coupled Models Eugene

More information

NE 204 mini-syllabus (weeks 4 8)

NE 204 mini-syllabus (weeks 4 8) NE 24 mini-syllabus (weeks 4 8) Instructor: John Burke O ce: MCS 238 e-mail: jb@math.bu.edu o ce hours: by appointment Overview: For the next few weeks, we will focus on mathematical models of single neurons.

More information

Lecture IV: LTI models of physical systems

Lecture IV: LTI models of physical systems BME 171: Signals and Systems Duke University September 5, 2008 This lecture Plan for the lecture: 1 Interconnections of linear systems 2 Differential equation models of LTI systems 3 eview of linear circuit

More information

Reflections on a mismatched transmission line Reflections.doc (4/1/00) Introduction The transmission line equations are given by

Reflections on a mismatched transmission line Reflections.doc (4/1/00) Introduction The transmission line equations are given by Reflections on a mismatched transmission line Reflections.doc (4/1/00) Introdction The transmission line eqations are given by, I z, t V z t l z t I z, t V z, t c z t (1) (2) Where, c is the per-nit-length

More information

Synaptic dynamics. John D. Murray. Synaptic currents. Simple model of the synaptic gating variable. First-order kinetics

Synaptic dynamics. John D. Murray. Synaptic currents. Simple model of the synaptic gating variable. First-order kinetics Synaptic dynamics John D. Murray A dynamical model for synaptic gating variables is presented. We use this to study the saturation of synaptic gating at high firing rate. Shunting inhibition and the voltage

More information

CSE/NB 528 Final Lecture: All Good Things Must. CSE/NB 528: Final Lecture

CSE/NB 528 Final Lecture: All Good Things Must. CSE/NB 528: Final Lecture CSE/NB 528 Final Lecture: All Good Things Must 1 Course Summary Where have we been? Course Highlights Where do we go from here? Challenges and Open Problems Further Reading 2 What is the neural code? What

More information

When is an Integrate-and-fire Neuron like a Poisson Neuron?

When is an Integrate-and-fire Neuron like a Poisson Neuron? When is an Integrate-and-fire Neuron like a Poisson Neuron? Charles F. Stevens Salk Institute MNL/S La Jolla, CA 92037 cfs@salk.edu Anthony Zador Salk Institute MNL/S La Jolla, CA 92037 zador@salk.edu

More information

MATH 723 Mathematical Neuroscience Spring 2008 Instructor: Georgi Medvedev

MATH 723 Mathematical Neuroscience Spring 2008 Instructor: Georgi Medvedev MATH 723 Mathematical Neuroscience Spring 28 Instructor: Georgi Medvedev 2 Lecture 2. Approximate systems. 2. Reduction of the HH model to a 2D system. The original HH system consists of 4 differential

More information

CORRELATION TRANSFER FROM BASAL GANGLIA TO THALAMUS IN PARKINSON S DISEASE. by Pamela Reitsma. B.S., University of Maine, 2007

CORRELATION TRANSFER FROM BASAL GANGLIA TO THALAMUS IN PARKINSON S DISEASE. by Pamela Reitsma. B.S., University of Maine, 2007 CORRELATION TRANSFER FROM BASAL GANGLIA TO THALAMUS IN PARKINSON S DISEASE by Pamela Reitsma B.S., University of Maine, 27 Submitted to the Graduate Faculty of the Department of Mathematics in partial

More information

Liquid Computing in a Simplified Model of Cortical Layer IV: Learning to Balance a Ball

Liquid Computing in a Simplified Model of Cortical Layer IV: Learning to Balance a Ball Liquid Computing in a Simplified Model of Cortical Layer IV: Learning to Balance a Ball Dimitri Probst 1,3, Wolfgang Maass 2, Henry Markram 1, and Marc-Oliver Gewaltig 1 1 Blue Brain Project, École Polytechnique

More information

Single-Cell and Mean Field Neural Models

Single-Cell and Mean Field Neural Models 1 Single-Cell and Mean Field Neural Models Richard Bertram Department of Mathematics and Programs in Neuroscience and Molecular Biophysics Florida State University Tallahassee, Florida 32306 The neuron

More information

Signal processing in nervous system - Hodgkin-Huxley model

Signal processing in nervous system - Hodgkin-Huxley model Signal processing in nervous system - Hodgkin-Huxley model Ulrike Haase 19.06.2007 Seminar "Gute Ideen in der theoretischen Biologie / Systembiologie" Signal processing in nervous system Nerve cell and

More information

Theory of action potentials. Romain Brette

Theory of action potentials. Romain Brette Theory of action potentials Romain Brette March 14, 2017 ii Contents 4 Excitability of an isopotential membrane 1 4.1 Elements of dynamical systems................... 1 4.1.1 What is a dynamical system?................

More information

Modeling neural oscillations

Modeling neural oscillations Physiology & Behavior 77 (2002) 629 633 Modeling neural oscillations G. Bard Ermentrout*, Carson C. Chow Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, USA Received 30 July

More information

Synfire Waves in Small Balanced Networks

Synfire Waves in Small Balanced Networks Synfire Waves in Small Balanced Networks Yuval Aviel 1,3, David Horn 2 and Moshe Abeles 1 1 Interdisciplinary Center for Neural Computation, Hebrew University, Jerusalem, Israel. 2 School of Physics and

More information

Characterizing the firing properties of an adaptive

Characterizing the firing properties of an adaptive Characterizing the firing properties of an adaptive analog VLSI neuron Daniel Ben Dayan Rubin 1,2, Elisabetta Chicca 2, and Giacomo Indiveri 2 1 Department of Bioengineering, Politecnico di Milano, P.zza

More information

Threshold Curve for the Excitability of Bidimensional Spiking Neurons

Threshold Curve for the Excitability of Bidimensional Spiking Neurons Threshold Curve for the Excitability of Bidimensional Spiking Neurons Arnaud Tonnelier INRIA-Grenoble 655 avenue de l Europe, Montbonnot 38334 Saint Ismier, France (Dated: July 29, 214) We shed light on

More information

Phase Response. 1 of of 11. Synaptic input advances (excitatory) or delays (inhibitory) spiking

Phase Response. 1 of of 11. Synaptic input advances (excitatory) or delays (inhibitory) spiking Printed from the Mathematica Help Browser 1 1 of 11 Phase Response Inward current-pulses decrease a cortical neuron's period (Cat, Layer V). [Fetz93] Synaptic input advances (excitatory) or delays (inhibitory)

More information

COGNITIVE SCIENCE 107A

COGNITIVE SCIENCE 107A COGNITIVE SCIENCE 107A Electrophysiology: Electrotonic Properties 2 Jaime A. Pineda, Ph.D. The Model Neuron Lab Your PC/CSB115 http://cogsci.ucsd.edu/~pineda/cogs107a/index.html Labs - Electrophysiology

More information

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore.

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. Title Small-signal neural models and their applications Author(s) Basu, Arindam Citation Basu, A. (01). Small-signal

More information

Subthreshold cross-correlations between cortical neurons: Areference model with static synapses

Subthreshold cross-correlations between cortical neurons: Areference model with static synapses Neurocomputing 65 66 (25) 685 69 www.elsevier.com/locate/neucom Subthreshold cross-correlations between cortical neurons: Areference model with static synapses Ofer Melamed a,b, Gilad Silberberg b, Henry

More information

Electrophysiology of the neuron

Electrophysiology of the neuron School of Mathematical Sciences G4TNS Theoretical Neuroscience Electrophysiology of the neuron Electrophysiology is the study of ionic currents and electrical activity in cells and tissues. The work of

More information

Stochastic Oscillator Death in Globally Coupled Neural Systems

Stochastic Oscillator Death in Globally Coupled Neural Systems Journal of the Korean Physical Society, Vol. 52, No. 6, June 2008, pp. 19131917 Stochastic Oscillator Death in Globally Coupled Neural Systems Woochang Lim and Sang-Yoon Kim y Department of Physics, Kangwon

More information

Determining the contributions of divisive and subtractive feedback in the Hodgkin-Huxley model

Determining the contributions of divisive and subtractive feedback in the Hodgkin-Huxley model JComputNeurosci(2014)37:403 415 DOI 10.1007/s10827-014-0511-y Determining the contributions of divisive and subtractive feedback in the Hodgkin-Huxley model Sevgi Şengül & Robert Clewley & Richard Bertram

More information

arxiv: v2 [q-bio.nc] 7 Nov 2013

arxiv: v2 [q-bio.nc] 7 Nov 2013 arxiv:1307.5728v2 [q-bio.nc] 7 Nov 2013 How adaptation currents change threshold, gain and variability of neuronal spiking Josef Ladenbauer 1,2, Moritz Augustin 1,2, Klaus Obermayer 1,2 1 Neural Information

More information

Hybrid Integrate-and-Fire Model of a Bursting Neuron

Hybrid Integrate-and-Fire Model of a Bursting Neuron LETTER Communicated by John Rinzel Hybrid Integrate-and-Fire Model of a Bursting Neuron Barbara J. Breen bbreen@ece.gatech.edu William C. Gerken wgerken@ece.gatech.edu Robert J. Butera, Jr. rbutera@ece.gatech.edu

More information

Naseem Demeri. Mohammad Alfarra. Mohammad Khatatbeh

Naseem Demeri. Mohammad Alfarra. Mohammad Khatatbeh 7 Naseem Demeri Mohammad Alfarra Mohammad Khatatbeh In the previous lectures, we have talked about how the difference in permeability for ions across the cell membrane can generate a potential. The potential

More information

Mathematical Foundations of Neuroscience - Lecture 3. Electrophysiology of neurons - continued

Mathematical Foundations of Neuroscience - Lecture 3. Electrophysiology of neurons - continued Mathematical Foundations of Neuroscience - Lecture 3. Electrophysiology of neurons - continued Filip Piękniewski Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toruń, Poland

More information

Synchrony in Neural Systems: a very brief, biased, basic view

Synchrony in Neural Systems: a very brief, biased, basic view Synchrony in Neural Systems: a very brief, biased, basic view Tim Lewis UC Davis NIMBIOS Workshop on Synchrony April 11, 2011 components of neuronal networks neurons synapses connectivity cell type - intrinsic

More information

A Model for Real-Time Computation in Generic Neural Microcircuits

A Model for Real-Time Computation in Generic Neural Microcircuits A Model for Real-Time Computation in Generic Neural Microcircuits Wolfgang Maass, Thomas Natschläger Institute for Theoretical Computer Science Technische Universitaet Graz A-81 Graz, Austria maass, tnatschl

More information

Biophysical Foundations

Biophysical Foundations Biophysical Foundations BENG/BGGN 260 Neurodynamics University of California, San Diego Week 1 BENG/BGGN 260 Neurodynamics (UCSD Biophysical Foundations Week 1 1 / 15 Reading Material B. Hille, Ion Channels

More information

Title. Author(s)Fujii, Hiroshi; Tsuda, Ichiro. CitationNeurocomputing, 58-60: Issue Date Doc URL. Type.

Title. Author(s)Fujii, Hiroshi; Tsuda, Ichiro. CitationNeurocomputing, 58-60: Issue Date Doc URL. Type. Title Neocortical gap junction-coupled interneuron systems exhibiting transient synchrony Author(s)Fujii, Hiroshi; Tsuda, Ichiro CitationNeurocomputing, 58-60: 151-157 Issue Date 2004-06 Doc URL http://hdl.handle.net/2115/8488

More information

Dynamical Systems in Neuroscience: Elementary Bifurcations

Dynamical Systems in Neuroscience: Elementary Bifurcations Dynamical Systems in Neuroscience: Elementary Bifurcations Foris Kuang May 2017 1 Contents 1 Introduction 3 2 Definitions 3 3 Hodgkin-Huxley Model 3 4 Morris-Lecar Model 4 5 Stability 5 5.1 Linear ODE..............................................

More information

A Contraction Argument for Two-Dimensional Spiking Neuron Models

A Contraction Argument for Two-Dimensional Spiking Neuron Models A Contraction Argument for Two-Dimensional Spiking Neuron Models by Eric Foxall B.A.Sc., University of British Columbia, 2010 A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree

More information

From neuronal oscillations to complexity

From neuronal oscillations to complexity 1/39 The Fourth International Workshop on Advanced Computation for Engineering Applications (ACEA 2008) MACIS 2 Al-Balqa Applied University, Salt, Jordan Corson Nathalie, Aziz Alaoui M.A. University of

More information

Dynamical Constraints on Computing with Spike Timing in the Cortex

Dynamical Constraints on Computing with Spike Timing in the Cortex Appears in Advances in Neural Information Processing Systems, 15 (NIPS 00) Dynamical Constraints on Computing with Spike Timing in the Cortex Arunava Banerjee and Alexandre Pouget Department of Brain and

More information

Predicting the synaptic information efficacy in cortical layer 5 pyramidal neurons using a minimal integrate-and-fire model

Predicting the synaptic information efficacy in cortical layer 5 pyramidal neurons using a minimal integrate-and-fire model Biol Cybern (2008) 99:393 401 DOI 10.1007/s00422-008-0268-3 ORIGINAL PAPER Predicting the synaptic information efficacy in cortical layer 5 pyramidal neurons using a minimal integrate-and-fire model Michael

More information

Neuronal Dynamics. From Single Neurons to Networks and Models of Cognition

Neuronal Dynamics. From Single Neurons to Networks and Models of Cognition Neuronal Dynamics From Single Neurons to Networks and Models of Cognition Wulfram Gerstner, Werner M. Kistler, Richard Naud and Liam Paninski Cambridge Univ. Press, Cambridge, 2014 Preprint-draft, Chapter

More information

Synchronization in Electrically Coupled Neural Networks

Synchronization in Electrically Coupled Neural Networks Synchronization in Electrically Coupled Neural Networks Rajesh G. Kavasseri Department of Electrical and Computer Engineering, North Dakota State University, Fargo, ND 5815 Radhakrishnan Nagarajan Department

More information

Efficient Digital Neurons for Large Scale Cortical Architectures

Efficient Digital Neurons for Large Scale Cortical Architectures Efficient Digital Neurons for Large Scale Cortical Architectures James E. Smith University of Wisconsin-Madison jes@ece.wisc.edu Abstract Digital neurons are implemented with the goal of supporting research

More information