Premiliminary Examination, Part I & II

Size: px
Start display at page:

Download "Premiliminary Examination, Part I & II"

Transcription

1 Premiliminary Examination, Part I & II Monday, August 9, 16 Dept. of Mathematics University of Pennsylvania Problem 1. Let V be the real vector space of continuous real-valued functions on the closed interval [, 1] and let w V. For p, q V, define p, q = 1 pxqxwx dx. a Suppose that wα > for all α [, 1]. Does this follow that the above defines an inner product on V? Justify your assertion b Does there exist a choice of w such that w1/ < and such that the above defines an inner product on V? Justify your assertion. Solution. a Yes, when wa > on [, 1], p, q is an inner product over R. We need verify four properties: 1. f + g, q = f, q + g, q, from the distributive property and linearity of integration. cf, q = c f, q, from linearity of integration 3. f, g = g, f, from commutativity 4. f, f and zero if and only if f To see why the fourth property is true recall that if f is continuous and f then f = f. So, f, f = f w = f = f =. And of course f, f since the integral of non-negative functions is non-negative. b No p, q is not an inner product, as property 4 fails. To see this, we will find a non zero function f such that f, f. From continuity of w we can find a δ > such that wa < for all a 1/ δ, 1/+δ. Define fx = f 1+δ 1 x 1/ δ 1 [ 1 δ, 1+δ ] x, where 1 Ax is the indicator function of A. As f 1 δ = =, the function f is indeed continuous. Since the function f w is non-positive on [, 1], we conclude that f, f. Problem. Let {x n } be a sequence of real numbers indexed by n, and let < c < 1 be a real number. Suppose that x n+1 x n c x n x n 1 for all n = 1,, 3,... a If n k are positive integers, show that x n+1 x k < ck 1 c x 1 x Hint: First bound x n+1 x n in terms of x 1 x. b Prove that the sequence {x n } converges to a real number. Solution. a By induction we get x n+1 x n c x n x n 1 c n x 1 x, for all n. Now, by applying the 1

2 triangle inequality and the previous bound we obtain x n+1 x k = x n+1 x n + x n x n 1 + x k+1 x k n x 1 x = c k x 1 x m=k c m n m=k c k x 1 x u c m k c u = ck 1 c x 1 x Sup- b It suffices to show that {x n } is Cauchy. Let ɛ >. We pick N such that cn 1 c x 1 x < ɛ. pose n, m N, then from part a we have x n x m cmin{n,m} x 1 x 1 c cn 1 c x 1 x < ɛ Problem 3. a In the polynomial ring Q[x] consider the ideal I generated by x 4 1 and x 3 x. Does I have a generator fx Q[x]? Either find one or explain why none exists. b In the polynomial ring Q[x, y], do the same for the ideal generated by the polynomials x and y. Solution. asince Q is a field Q[x] is a PID, there is f Q[x] such that I = f. By finding the common roots of x 4 1 and x 3 x, we obtain that gcdx 4 1, x 3 x = x 1. Hence, there are p, q Q[x] such that pxx qxx 3 x = x 1. 1 We claim that the ideal I generated by x 4 1 and x 3 x is equal to the ideal J generated by x 1. Since x 1 x 4 1, x 3 x we have that x 4 1, x 3 x J, therefore, by minimality of I, I J. Similarly, using equation 1, we conclude that J I. b The ideal I generated by x, y is not principal. We will argue by contradiction, and assume I = f for some f Q[x, y]. First notice that f / Q, as I does not contain constant polynomials. Since x, y I, f divides both x and y; but x and y are non-associated irreducible elements of the ring, therefore f must be a unit, which gives a contradiction. Problem 4. For each of the following, give either a proof or a counterexample. a Let f be a continuous real-valued function on the open interval < x < 3. continuous on the open interval 1 < x <? Must f be uniformly b Suppose instead that f is only assumed to be continuous on the open interval < x <. Must f be uniformly continuous on the open interval 1 < x <? Solution. a Yes. The restriction of f on [1, ] is uniformly continuous since [1, ] is compact. Therefore, the restriction of f on 1 < x < must be uniformly continuous as well. b Not necessarily. A counterexample is fx = 1 x. To show this we will argue by contradiction. Assume f is uniformly continuous. Take x n = 1 n, then fx n+1 fx n = n+1 n = 1. This is a contradiction, since uniformly continuous functions map Cauchy sequences to Cauchy sequences.

3 Problem 5. Let V, W be two-dimensional real vectorspaces, and let f 1,, f 5 be linear transformations from V to W. Show that there exist real numbers a 1,..., a 5, not all zero, such that a 1 f a 5 f 5 is the zero transformation. Solution. The vector space of linear transformations from V to W has dimension 4. So, f 1, f,..., f 5 must be linearly dependent. Problem 6. Evaluate e x + siny dx + xy cosy + xy 3 dy, where C is the triangle with vertices C,, 1, 1, 1, 1 oriented counterclockwise. Solution. Define C I to be the interior of C. We will calculate the line integral by applying Green s theorem. e x + siny dx + xy cosy + xy 3 xy cosy + xy 3 e x + siny dy = da x y C = = C I ˆ 1 ˆ x x y 3 dy dx Problem 7. Let f : X Y be a continuous map between metric spaces. For each of the following, give either a proof or a counterexample, using just the definition of compactness. a If A X is compact, the so is fa Y. b If B Y is compact, the so is f 1 B X. Solution. athis is true. Take an open cover of fa α U α. Then, A f 1 fa f 1 α U α = α f 1 U α, so, since A is compact, we can find a finite cover of A, i.e. A n f 1 U i. Finally, applying f to the previous containment we obtain fa n U i, hence, by definition, fa is compact. b This is not true. For instance, suppose that X = R, then for any constant function f : R Y, x c, the preimage f 1 c = R is not compact. Problem 8. Find a continuous function f : R R and a constant A such that ˆ x ft1 + t dt = cosx + A. Solution. Plugging x = into yields A = 1. Take ft = cosx 1+t. We will verify that f satisfies. Substituting f into, the LHS becomes x cost dt = cosx 1. Problem 9. For every integer n > 1, let U n be the group of invertible elements of Z/nZ under multiplication. a Find the orders of U 8 and U 9. Explain. b Determine whether the groups U 8 and U 9 are cyclic. 3

4 Solution. a The multiplicative group U n consists of the invertible elements of Z n. The invertible elements of Z n are the numbers that are relatively prime to n. The number of the relatively prime elements is equal to φn, where φ is Euler s totient function, given by φn = n p n 1 1 p. Therefore U 8 = 3 = 4, and U 9 = 3 3 = 6. b Using the fundamental theorem for abelian groups FTAG an abelian group of 4 elements is either Z Z or Z 4. However, since all the elements {1, 3, 5, 7} have order in U 8, we conclude that U 8 = Z Z, so U 8 is not cyclic. By FTAG an abelian group of order 6, is isomorphic to Z Z 3 = Z6 since gcd, 3 = 1. Therefore, U 9 is cyclic. Problem 1. Let fx, y = x xy + y y. a Does the function f achieve an absolute maximum on R? an absolute minimum on R? If so, find all points where this occurs. b Do the same with R replaced by the square x, y 1. Solution. a As lim x ± fx, =, the function f does not attain a global maximum. Observe that fx, y = x y 3 + y Therefore, the global minimum is attained when y 3 = and x y =. So there is a unique global minimum achieved at 1 3, 3. b Denote D the unit square x, y 1 and D its boundary. Since D is compact f attains a global minimum and maximum. The function f achieves its extrema either in the interior of D, at points where f is vanishing, or on D. To find the critical points we solve fx, y = x y =, x 1 + y = x = 1 3, y = 3. From part a f D must achieve its global minimum at 1 3, 3, consequently, from the previous calculation, f must achieve its maximum somewhere on D. We partition D = 4 D i where D i correspond to the different edges of D, and calculate the points where the maximum occurs. D 1 = {x, y D y = }, since f D1 = x we find arg max f D1 = {1, } and max f D1 = 1. D = {x, y D y = 1}, since f D = x x there are no maxima on D D 3 = {x, y D x = }, since f D3 = y y there are no maxima on D 3 D 4 = {x, y D x = 1}, since f D4 = y 1 we find arg max f D4 = {1, } and max f D4 = 1 From the previous analysis we see that the max f on D is 1, and it is attained at 1,. a b c Problem 11. Let a, b, c be real numbers, and consider the matrix A = b c b c b a a Explain why all the eigenvalues of A must be real. b Show that some eigenvalue λ of A has the property that for every vector v R 3, v Av λ v. Note: You are not being asked to compute the eigenvalue of A. Solution. a Every symmetric matrix has real eigenvalues. Indeed, let v be an eigenvector and λ its corresponding eigenvalue. Then, Hence, λ λ v =. Therefore, λ is real. λ v, v = λv, v = Av, v = v, Av = v, λv = λ v, v 4

5 b Since A is symmetric we can find an orthonormal basis v 1, v, v 3 consisting of eigenvectors of A. Now, let λ i be the corresponding eigenvalues non necessarily distinct. So, using orthogonality, we obtain Av, v = A a i v i, a i v i = = a i λ i v i, a i v i λ i a i v i max λ i a i v i. And since, v = 3 a i v i we conclude. Problem 1. Consider the differential equation y 4 y = ce x where c is a real constant. a Let S c be the set of solutions of this equation. For which c is this set a vector space? Why?. b For each such c, find this solution space explicitly, and find a basis for it. Solution. a For c the space S c is not a vector space since the zero function is not a member of S c. For c =, notice that S c is the kernel of the linear transformation Lf = f 4 f, hence S c is a vector space as the subspace of a vector space. b The characteristic polynomial of the ODE y 4 y = 3 is χr = r 4 r. Solving χr = we find 4 roots, r 1 = and r j = e jiπ 3 for j. Hence, the vectors e rit 3t 3t constitute the desired basis. A different basis, using real valued function is 1, e t, e t cos, e t sin. 5

SPRING 2006 PRELIMINARY EXAMINATION SOLUTIONS

SPRING 2006 PRELIMINARY EXAMINATION SOLUTIONS SPRING 006 PRELIMINARY EXAMINATION SOLUTIONS 1A. Let G be the subgroup of the free abelian group Z 4 consisting of all integer vectors (x, y, z, w) such that x + 3y + 5z + 7w = 0. (a) Determine a linearly

More information

TEST CODE: PMB SYLLABUS

TEST CODE: PMB SYLLABUS TEST CODE: PMB SYLLABUS Convergence and divergence of sequence and series; Cauchy sequence and completeness; Bolzano-Weierstrass theorem; continuity, uniform continuity, differentiability; directional

More information

d(x n, x) d(x n, x nk ) + d(x nk, x) where we chose any fixed k > N

d(x n, x) d(x n, x nk ) + d(x nk, x) where we chose any fixed k > N Problem 1. Let f : A R R have the property that for every x A, there exists ɛ > 0 such that f(t) > ɛ if t (x ɛ, x + ɛ) A. If the set A is compact, prove there exists c > 0 such that f(x) > c for all x

More information

converges as well if x < 1. 1 x n x n 1 1 = 2 a nx n

converges as well if x < 1. 1 x n x n 1 1 = 2 a nx n Solve the following 6 problems. 1. Prove that if series n=1 a nx n converges for all x such that x < 1, then the series n=1 a n xn 1 x converges as well if x < 1. n For x < 1, x n 0 as n, so there exists

More information

Department of Mathematics, University of California, Berkeley. GRADUATE PRELIMINARY EXAMINATION, Part A Fall Semester 2016

Department of Mathematics, University of California, Berkeley. GRADUATE PRELIMINARY EXAMINATION, Part A Fall Semester 2016 Department of Mathematics, University of California, Berkeley YOUR 1 OR 2 DIGIT EXAM NUMBER GRADUATE PRELIMINARY EXAMINATION, Part A Fall Semester 2016 1. Please write your 1- or 2-digit exam number on

More information

NORMS ON SPACE OF MATRICES

NORMS ON SPACE OF MATRICES NORMS ON SPACE OF MATRICES. Operator Norms on Space of linear maps Let A be an n n real matrix and x 0 be a vector in R n. We would like to use the Picard iteration method to solve for the following system

More information

(3) Let Y be a totally bounded subset of a metric space X. Then the closure Y of Y

(3) Let Y be a totally bounded subset of a metric space X. Then the closure Y of Y () Consider A = { q Q : q 2 2} as a subset of the metric space (Q, d), where d(x, y) = x y. Then A is A) closed but not open in Q B) open but not closed in Q C) neither open nor closed in Q D) both open

More information

Math 140A - Fall Final Exam

Math 140A - Fall Final Exam Math 140A - Fall 2014 - Final Exam Problem 1. Let {a n } n 1 be an increasing sequence of real numbers. (i) If {a n } has a bounded subsequence, show that {a n } is itself bounded. (ii) If {a n } has a

More information

Functional Analysis Review

Functional Analysis Review Outline 9.520: Statistical Learning Theory and Applications February 8, 2010 Outline 1 2 3 4 Vector Space Outline A vector space is a set V with binary operations +: V V V and : R V V such that for all

More information

Problem 1A. Calculus. Problem 3A. Real analysis. f(x) = 0 x = 0.

Problem 1A. Calculus. Problem 3A. Real analysis. f(x) = 0 x = 0. Problem A. Calculus Find the length of the spiral given in polar coordinates by r = e θ, < θ 0. Solution: The length is 0 θ= ds where by Pythagoras ds = dr 2 + (rdθ) 2 = dθ 2e θ, so the length is 0 2e

More information

Some notes on Coxeter groups

Some notes on Coxeter groups Some notes on Coxeter groups Brooks Roberts November 28, 2017 CONTENTS 1 Contents 1 Sources 2 2 Reflections 3 3 The orthogonal group 7 4 Finite subgroups in two dimensions 9 5 Finite subgroups in three

More information

Mid Term-1 : Practice problems

Mid Term-1 : Practice problems Mid Term-1 : Practice problems These problems are meant only to provide practice; they do not necessarily reflect the difficulty level of the problems in the exam. The actual exam problems are likely to

More information

2.3. VECTOR SPACES 25

2.3. VECTOR SPACES 25 2.3. VECTOR SPACES 25 2.3 Vector Spaces MATH 294 FALL 982 PRELIM # 3a 2.3. Let C[, ] denote the space of continuous functions defined on the interval [,] (i.e. f(x) is a member of C[, ] if f(x) is continuous

More information

THE INVERSE FUNCTION THEOREM

THE INVERSE FUNCTION THEOREM THE INVERSE FUNCTION THEOREM W. PATRICK HOOPER The implicit function theorem is the following result: Theorem 1. Let f be a C 1 function from a neighborhood of a point a R n into R n. Suppose A = Df(a)

More information

Algebra Exam Topics. Updated August 2017

Algebra Exam Topics. Updated August 2017 Algebra Exam Topics Updated August 2017 Starting Fall 2017, the Masters Algebra Exam will have 14 questions. Of these students will answer the first 8 questions from Topics 1, 2, and 3. They then have

More information

Problem 1A. Find the volume of the solid given by x 2 + z 2 1, y 2 + z 2 1. (Hint: 1. Solution: The volume is 1. Problem 2A.

Problem 1A. Find the volume of the solid given by x 2 + z 2 1, y 2 + z 2 1. (Hint: 1. Solution: The volume is 1. Problem 2A. Problem 1A Find the volume of the solid given by x 2 + z 2 1, y 2 + z 2 1 (Hint: 1 1 (something)dz) Solution: The volume is 1 1 4xydz where x = y = 1 z 2 This integral has value 16/3 Problem 2A Let f(x)

More information

Math 350 Fall 2011 Notes about inner product spaces. In this notes we state and prove some important properties of inner product spaces.

Math 350 Fall 2011 Notes about inner product spaces. In this notes we state and prove some important properties of inner product spaces. Math 350 Fall 2011 Notes about inner product spaces In this notes we state and prove some important properties of inner product spaces. First, recall the dot product on R n : if x, y R n, say x = (x 1,...,

More information

Real Analysis Prelim Questions Day 1 August 27, 2013

Real Analysis Prelim Questions Day 1 August 27, 2013 Real Analysis Prelim Questions Day 1 August 27, 2013 are 5 questions. TIME LIMIT: 3 hours Instructions: Measure and measurable refer to Lebesgue measure µ n on R n, and M(R n ) is the collection of measurable

More information

Solutions Final Exam May. 14, 2014

Solutions Final Exam May. 14, 2014 Solutions Final Exam May. 14, 2014 1. Determine whether the following statements are true or false. Justify your answer (i.e., prove the claim, derive a contradiction or give a counter-example). (a) (10

More information

GRE Math Subject Test #5 Solutions.

GRE Math Subject Test #5 Solutions. GRE Math Subject Test #5 Solutions. 1. E (Calculus) Apply L Hôpital s Rule two times: cos(3x) 1 3 sin(3x) 9 cos(3x) lim x 0 = lim x 2 x 0 = lim 2x x 0 = 9. 2 2 2. C (Geometry) Note that a line segment

More information

235 Final exam review questions

235 Final exam review questions 5 Final exam review questions Paul Hacking December 4, 0 () Let A be an n n matrix and T : R n R n, T (x) = Ax the linear transformation with matrix A. What does it mean to say that a vector v R n is an

More information

5 Compact linear operators

5 Compact linear operators 5 Compact linear operators One of the most important results of Linear Algebra is that for every selfadjoint linear map A on a finite-dimensional space, there exists a basis consisting of eigenvectors.

More information

Finite-dimensional spaces. C n is the space of n-tuples x = (x 1,..., x n ) of complex numbers. It is a Hilbert space with the inner product

Finite-dimensional spaces. C n is the space of n-tuples x = (x 1,..., x n ) of complex numbers. It is a Hilbert space with the inner product Chapter 4 Hilbert Spaces 4.1 Inner Product Spaces Inner Product Space. A complex vector space E is called an inner product space (or a pre-hilbert space, or a unitary space) if there is a mapping (, )

More information

08a. Operators on Hilbert spaces. 1. Boundedness, continuity, operator norms

08a. Operators on Hilbert spaces. 1. Boundedness, continuity, operator norms (February 24, 2017) 08a. Operators on Hilbert spaces Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/ [This document is http://www.math.umn.edu/ garrett/m/real/notes 2016-17/08a-ops

More information

Analysis Comprehensive Exam Questions Fall F(x) = 1 x. f(t)dt. t 1 2. tf 2 (t)dt. and g(t, x) = 2 t. 2 t

Analysis Comprehensive Exam Questions Fall F(x) = 1 x. f(t)dt. t 1 2. tf 2 (t)dt. and g(t, x) = 2 t. 2 t Analysis Comprehensive Exam Questions Fall 2. Let f L 2 (, ) be given. (a) Prove that ( x 2 f(t) dt) 2 x x t f(t) 2 dt. (b) Given part (a), prove that F L 2 (, ) 2 f L 2 (, ), where F(x) = x (a) Using

More information

Solutions to the Calculus and Linear Algebra problems on the Comprehensive Examination of January 28, 2011

Solutions to the Calculus and Linear Algebra problems on the Comprehensive Examination of January 28, 2011 Solutions to the Calculus and Linear Algebra problems on the Comprehensive Examination of January 8, Solutions to Problems 5 are omitted since they involve topics no longer covered on the Comprehensive

More information

Problem 1A. Use residues to compute. dx x

Problem 1A. Use residues to compute. dx x Problem 1A. A non-empty metric space X is said to be connected if it is not the union of two non-empty disjoint open subsets, and is said to be path-connected if for every two points a, b there is a continuous

More information

MATH 115A: SAMPLE FINAL SOLUTIONS

MATH 115A: SAMPLE FINAL SOLUTIONS MATH A: SAMPLE FINAL SOLUTIONS JOE HUGHES. Let V be the set of all functions f : R R such that f( x) = f(x) for all x R. Show that V is a vector space over R under the usual addition and scalar multiplication

More information

Functional Analysis Exercise Class

Functional Analysis Exercise Class Functional Analysis Exercise Class Week 2 November 6 November Deadline to hand in the homeworks: your exercise class on week 9 November 13 November Exercises (1) Let X be the following space of piecewise

More information

Math 120 HW 9 Solutions

Math 120 HW 9 Solutions Math 120 HW 9 Solutions June 8, 2018 Question 1 Write down a ring homomorphism (no proof required) f from R = Z[ 11] = {a + b 11 a, b Z} to S = Z/35Z. The main difficulty is to find an element x Z/35Z

More information

x 3y 2z = 6 1.2) 2x 4y 3z = 8 3x + 6y + 8z = 5 x + 3y 2z + 5t = 4 1.5) 2x + 8y z + 9t = 9 3x + 5y 12z + 17t = 7

x 3y 2z = 6 1.2) 2x 4y 3z = 8 3x + 6y + 8z = 5 x + 3y 2z + 5t = 4 1.5) 2x + 8y z + 9t = 9 3x + 5y 12z + 17t = 7 Linear Algebra and its Applications-Lab 1 1) Use Gaussian elimination to solve the following systems x 1 + x 2 2x 3 + 4x 4 = 5 1.1) 2x 1 + 2x 2 3x 3 + x 4 = 3 3x 1 + 3x 2 4x 3 2x 4 = 1 x + y + 2z = 4 1.4)

More information

Preliminary Exam 2018 Solutions to Morning Exam

Preliminary Exam 2018 Solutions to Morning Exam Preliminary Exam 28 Solutions to Morning Exam Part I. Solve four of the following five problems. Problem. Consider the series n 2 (n log n) and n 2 (n(log n)2 ). Show that one converges and one diverges

More information

Solutions Final Exam May. 14, 2014

Solutions Final Exam May. 14, 2014 Solutions Final Exam May. 14, 2014 1. (a) (10 points) State the formal definition of a Cauchy sequence of real numbers. A sequence, {a n } n N, of real numbers, is Cauchy if and only if for every ɛ > 0,

More information

Applied Analysis (APPM 5440): Final exam 1:30pm 4:00pm, Dec. 14, Closed books.

Applied Analysis (APPM 5440): Final exam 1:30pm 4:00pm, Dec. 14, Closed books. Applied Analysis APPM 44: Final exam 1:3pm 4:pm, Dec. 14, 29. Closed books. Problem 1: 2p Set I = [, 1]. Prove that there is a continuous function u on I such that 1 ux 1 x sin ut 2 dt = cosx, x I. Define

More information

1. Let A R be a nonempty set that is bounded from above, and let a be the least upper bound of A. Show that there exists a sequence {a n } n N

1. Let A R be a nonempty set that is bounded from above, and let a be the least upper bound of A. Show that there exists a sequence {a n } n N Applied Analysis prelim July 15, 216, with solutions Solve 4 of the problems 1-5 and 2 of the problems 6-8. We will only grade the first 4 problems attempted from1-5 and the first 2 attempted from problems

More information

Math 61CM - Solutions to homework 6

Math 61CM - Solutions to homework 6 Math 61CM - Solutions to homework 6 Cédric De Groote November 5 th, 2018 Problem 1: (i) Give an example of a metric space X such that not all Cauchy sequences in X are convergent. (ii) Let X be a metric

More information

Problem List MATH 5143 Fall, 2013

Problem List MATH 5143 Fall, 2013 Problem List MATH 5143 Fall, 2013 On any problem you may use the result of any previous problem (even if you were not able to do it) and any information given in class up to the moment the problem was

More information

Preliminary Examination, Part I Tuesday morning, August 31, 2004

Preliminary Examination, Part I Tuesday morning, August 31, 2004 Preliminary Examination, Part I Tuesday morning, August 31, 24 This part of the examination consists of six problems. You should work all of the problems. Show all of your work in your workbook. Try to

More information

MASTERS EXAMINATION IN MATHEMATICS SOLUTIONS

MASTERS EXAMINATION IN MATHEMATICS SOLUTIONS MASTERS EXAMINATION IN MATHEMATICS PURE MATHEMATICS OPTION SPRING 010 SOLUTIONS Algebra A1. Let F be a finite field. Prove that F [x] contains infinitely many prime ideals. Solution: The ring F [x] of

More information

Metric Spaces and Topology

Metric Spaces and Topology Chapter 2 Metric Spaces and Topology From an engineering perspective, the most important way to construct a topology on a set is to define the topology in terms of a metric on the set. This approach underlies

More information

MASTERS EXAMINATION IN MATHEMATICS

MASTERS EXAMINATION IN MATHEMATICS MASTERS EXAMINATION IN MATHEMATICS PURE MATHEMATICS OPTION FALL 2007 Full points can be obtained for correct answers to 8 questions. Each numbered question (which may have several parts) is worth the same

More information

MAT Linear Algebra Collection of sample exams

MAT Linear Algebra Collection of sample exams MAT 342 - Linear Algebra Collection of sample exams A-x. (0 pts Give the precise definition of the row echelon form. 2. ( 0 pts After performing row reductions on the augmented matrix for a certain system

More information

Linear algebra II Homework #1 due Thursday, Feb A =

Linear algebra II Homework #1 due Thursday, Feb A = Homework #1 due Thursday, Feb. 1 1. Find the eigenvalues and the eigenvectors of the matrix [ ] 3 2 A =. 1 6 2. Find the eigenvalues and the eigenvectors of the matrix 3 2 2 A = 2 3 2. 2 2 1 3. The following

More information

Algebraic structures I

Algebraic structures I MTH5100 Assignment 1-10 Algebraic structures I For handing in on various dates January March 2011 1 FUNCTIONS. Say which of the following rules successfully define functions, giving reasons. For each one

More information

Problem 1A. Suppose that f is a continuous real function on [0, 1]. Prove that

Problem 1A. Suppose that f is a continuous real function on [0, 1]. Prove that Problem 1A. Suppose that f is a continuous real function on [, 1]. Prove that lim α α + x α 1 f(x)dx = f(). Solution: This is obvious for f a constant, so by subtracting f() from both sides we can assume

More information

REVIEW OF ESSENTIAL MATH 346 TOPICS

REVIEW OF ESSENTIAL MATH 346 TOPICS REVIEW OF ESSENTIAL MATH 346 TOPICS 1. AXIOMATIC STRUCTURE OF R Doğan Çömez The real number system is a complete ordered field, i.e., it is a set R which is endowed with addition and multiplication operations

More information

Exercise Sheet 1.

Exercise Sheet 1. Exercise Sheet 1 You can download my lecture and exercise sheets at the address http://sami.hust.edu.vn/giang-vien/?name=huynt 1) Let A, B be sets. What does the statement "A is not a subset of B " mean?

More information

Algebra Exam Fall Alexander J. Wertheim Last Updated: October 26, Groups Problem Problem Problem 3...

Algebra Exam Fall Alexander J. Wertheim Last Updated: October 26, Groups Problem Problem Problem 3... Algebra Exam Fall 2006 Alexander J. Wertheim Last Updated: October 26, 2017 Contents 1 Groups 2 1.1 Problem 1..................................... 2 1.2 Problem 2..................................... 2

More information

Math 24 Spring 2012 Sample Homework Solutions Week 8

Math 24 Spring 2012 Sample Homework Solutions Week 8 Math 4 Spring Sample Homework Solutions Week 8 Section 5. (.) Test A M (R) for diagonalizability, and if possible find an invertible matrix Q and a diagonal matrix D such that Q AQ = D. ( ) 4 (c) A =.

More information

Math 127C, Spring 2006 Final Exam Solutions. x 2 ), g(y 1, y 2 ) = ( y 1 y 2, y1 2 + y2) 2. (g f) (0) = g (f(0))f (0).

Math 127C, Spring 2006 Final Exam Solutions. x 2 ), g(y 1, y 2 ) = ( y 1 y 2, y1 2 + y2) 2. (g f) (0) = g (f(0))f (0). Math 27C, Spring 26 Final Exam Solutions. Define f : R 2 R 2 and g : R 2 R 2 by f(x, x 2 (sin x 2 x, e x x 2, g(y, y 2 ( y y 2, y 2 + y2 2. Use the chain rule to compute the matrix of (g f (,. By the chain

More information

l(y j ) = 0 for all y j (1)

l(y j ) = 0 for all y j (1) Problem 1. The closed linear span of a subset {y j } of a normed vector space is defined as the intersection of all closed subspaces containing all y j and thus the smallest such subspace. 1 Show that

More information

MATH 581D FINAL EXAM Autumn December 12, 2016

MATH 581D FINAL EXAM Autumn December 12, 2016 MATH 58D FINAL EXAM Autumn 206 December 2, 206 NAME: SIGNATURE: Instructions: there are 6 problems on the final. Aim for solving 4 problems, but do as much as you can. Partial credit will be given on all

More information

Analysis Finite and Infinite Sets The Real Numbers The Cantor Set

Analysis Finite and Infinite Sets The Real Numbers The Cantor Set Analysis Finite and Infinite Sets Definition. An initial segment is {n N n n 0 }. Definition. A finite set can be put into one-to-one correspondence with an initial segment. The empty set is also considered

More information

MATH 205C: STATIONARY PHASE LEMMA

MATH 205C: STATIONARY PHASE LEMMA MATH 205C: STATIONARY PHASE LEMMA For ω, consider an integral of the form I(ω) = e iωf(x) u(x) dx, where u Cc (R n ) complex valued, with support in a compact set K, and f C (R n ) real valued. Thus, I(ω)

More information

Total 100

Total 100 Math 542 Midterm Exam, Spring 2016 Prof: Paul Terwilliger Your Name (please print) SOLUTIONS NO CALCULATORS/ELECTRONIC DEVICES ALLOWED. MAKE SURE YOUR CELL PHONE IS OFF. Problem Value 1 10 2 10 3 10 4

More information

1. If 1, ω, ω 2, -----, ω 9 are the 10 th roots of unity, then (1 + ω) (1 + ω 2 ) (1 + ω 9 ) is A) 1 B) 1 C) 10 D) 0

1. If 1, ω, ω 2, -----, ω 9 are the 10 th roots of unity, then (1 + ω) (1 + ω 2 ) (1 + ω 9 ) is A) 1 B) 1 C) 10 D) 0 4 INUTES. If, ω, ω, -----, ω 9 are the th roots of unity, then ( + ω) ( + ω ) ----- ( + ω 9 ) is B) D) 5. i If - i = a + ib, then a =, b = B) a =, b = a =, b = D) a =, b= 3. Find the integral values for

More information

Math 322. Spring 2015 Review Problems for Midterm 2

Math 322. Spring 2015 Review Problems for Midterm 2 Linear Algebra: Topic: Linear Independence of vectors. Question. Math 3. Spring Review Problems for Midterm Explain why if A is not square, then either the row vectors or the column vectors of A are linearly

More information

x = π m (a 0 + a 1 π + a 2 π ) where a i R, a 0 = 0, m Z.

x = π m (a 0 + a 1 π + a 2 π ) where a i R, a 0 = 0, m Z. ALGEBRAIC NUMBER THEORY LECTURE 7 NOTES Material covered: Local fields, Hensel s lemma. Remark. The non-archimedean topology: Recall that if K is a field with a valuation, then it also is a metric space

More information

Ph.D. Katarína Bellová Page 1 Mathematics 2 (10-PHY-BIPMA2) EXAM - Solutions, 20 July 2017, 10:00 12:00 All answers to be justified.

Ph.D. Katarína Bellová Page 1 Mathematics 2 (10-PHY-BIPMA2) EXAM - Solutions, 20 July 2017, 10:00 12:00 All answers to be justified. PhD Katarína Bellová Page 1 Mathematics 2 (10-PHY-BIPMA2 EXAM - Solutions, 20 July 2017, 10:00 12:00 All answers to be justified Problem 1 [ points]: For which parameters λ R does the following system

More information

REAL AND COMPLEX ANALYSIS

REAL AND COMPLEX ANALYSIS REAL AND COMPLE ANALYSIS Third Edition Walter Rudin Professor of Mathematics University of Wisconsin, Madison Version 1.1 No rights reserved. Any part of this work can be reproduced or transmitted in any

More information

Determine for which real numbers s the series n>1 (log n)s /n converges, giving reasons for your answer.

Determine for which real numbers s the series n>1 (log n)s /n converges, giving reasons for your answer. Problem A. Determine for which real numbers s the series n> (log n)s /n converges, giving reasons for your answer. Solution: It converges for s < and diverges otherwise. To see this use the integral test,

More information

Analysis Qualifying Exam

Analysis Qualifying Exam Analysis Qualifying Exam Spring 2017 Problem 1: Let f be differentiable on R. Suppose that there exists M > 0 such that f(k) M for each integer k, and f (x) M for all x R. Show that f is bounded, i.e.,

More information

Your first day at work MATH 806 (Fall 2015)

Your first day at work MATH 806 (Fall 2015) Your first day at work MATH 806 (Fall 2015) 1. Let X be a set (with no particular algebraic structure). A function d : X X R is called a metric on X (and then X is called a metric space) when d satisfies

More information

QUALIFYING EXAMINATION Harvard University Department of Mathematics Tuesday August 31, 2010 (Day 1)

QUALIFYING EXAMINATION Harvard University Department of Mathematics Tuesday August 31, 2010 (Day 1) QUALIFYING EXAMINATION Harvard University Department of Mathematics Tuesday August 31, 21 (Day 1) 1. (CA) Evaluate sin 2 x x 2 dx Solution. Let C be the curve on the complex plane from to +, which is along

More information

Maths 212: Homework Solutions

Maths 212: Homework Solutions Maths 212: Homework Solutions 1. The definition of A ensures that x π for all x A, so π is an upper bound of A. To show it is the least upper bound, suppose x < π and consider two cases. If x < 1, then

More information

= F (b) F (a) F (x i ) F (x i+1 ). a x 0 x 1 x n b i

= F (b) F (a) F (x i ) F (x i+1 ). a x 0 x 1 x n b i Real Analysis Problem 1. If F : R R is a monotone function, show that F T V ([a,b]) = F (b) F (a) for any interval [a, b], and that F has bounded variation on R if and only if it is bounded. Here F T V

More information

Math Subject GRE Questions

Math Subject GRE Questions Math Subject GRE Questions Calculus and Differential Equations 1. If f() = e e, then [f ()] 2 [f()] 2 equals (a) 4 (b) 4e 2 (c) 2e (d) 2 (e) 2e 2. An integrating factor for the ordinary differential equation

More information

LINEAR ALGEBRA W W L CHEN

LINEAR ALGEBRA W W L CHEN LINEAR ALGEBRA W W L CHEN c W W L Chen, 1997, 2008. This chapter is available free to all individuals, on the understanding that it is not to be used for financial gain, and may be downloaded and/or photocopied,

More information

Introductory Analysis I Fall 2014 Homework #9 Due: Wednesday, November 19

Introductory Analysis I Fall 2014 Homework #9 Due: Wednesday, November 19 Introductory Analysis I Fall 204 Homework #9 Due: Wednesday, November 9 Here is an easy one, to serve as warmup Assume M is a compact metric space and N is a metric space Assume that f n : M N for each

More information

Answer Keys For Math 225 Final Review Problem

Answer Keys For Math 225 Final Review Problem Answer Keys For Math Final Review Problem () For each of the following maps T, Determine whether T is a linear transformation. If T is a linear transformation, determine whether T is -, onto and/or bijective.

More information

Paul Schrimpf. October 18, UBC Economics 526. Unconstrained optimization. Paul Schrimpf. Notation and definitions. First order conditions

Paul Schrimpf. October 18, UBC Economics 526. Unconstrained optimization. Paul Schrimpf. Notation and definitions. First order conditions Unconstrained UBC Economics 526 October 18, 2013 .1.2.3.4.5 Section 1 Unconstrained problem x U R n F : U R. max F (x) x U Definition F = max x U F (x) is the maximum of F on U if F (x) F for all x U and

More information

Introduction to Topology

Introduction to Topology Introduction to Topology Randall R. Holmes Auburn University Typeset by AMS-TEX Chapter 1. Metric Spaces 1. Definition and Examples. As the course progresses we will need to review some basic notions about

More information

Definitions. Notations. Injective, Surjective and Bijective. Divides. Cartesian Product. Relations. Equivalence Relations

Definitions. Notations. Injective, Surjective and Bijective. Divides. Cartesian Product. Relations. Equivalence Relations Page 1 Definitions Tuesday, May 8, 2018 12:23 AM Notations " " means "equals, by definition" the set of all real numbers the set of integers Denote a function from a set to a set by Denote the image of

More information

4. Linear transformations as a vector space 17

4. Linear transformations as a vector space 17 4 Linear transformations as a vector space 17 d) 1 2 0 0 1 2 0 0 1 0 0 0 1 2 3 4 32 Let a linear transformation in R 2 be the reflection in the line = x 2 Find its matrix 33 For each linear transformation

More information

1 Directional Derivatives and Differentiability

1 Directional Derivatives and Differentiability Wednesday, January 18, 2012 1 Directional Derivatives and Differentiability Let E R N, let f : E R and let x 0 E. Given a direction v R N, let L be the line through x 0 in the direction v, that is, L :=

More information

18. Cyclotomic polynomials II

18. Cyclotomic polynomials II 18. Cyclotomic polynomials II 18.1 Cyclotomic polynomials over Z 18.2 Worked examples Now that we have Gauss lemma in hand we can look at cyclotomic polynomials again, not as polynomials with coefficients

More information

Rambo s Math GRE Practice Test. Charles Rambo

Rambo s Math GRE Practice Test. Charles Rambo Rambo s Math GRE Practice Test Charles Rambo Preface Thank you for checking out my practice exam! This was heavily influenced by the GR1268, GR0568, and GR8767 exams. I also used Rudin s Principles of

More information

LINEAR ALGEBRA QUESTION BANK

LINEAR ALGEBRA QUESTION BANK LINEAR ALGEBRA QUESTION BANK () ( points total) Circle True or False: TRUE / FALSE: If A is any n n matrix, and I n is the n n identity matrix, then I n A = AI n = A. TRUE / FALSE: If A, B are n n matrices,

More information

Math 113 Winter 2013 Prof. Church Midterm Solutions

Math 113 Winter 2013 Prof. Church Midterm Solutions Math 113 Winter 2013 Prof. Church Midterm Solutions Name: Student ID: Signature: Question 1 (20 points). Let V be a finite-dimensional vector space, and let T L(V, W ). Assume that v 1,..., v n is a basis

More information

Linear Analysis Lecture 5

Linear Analysis Lecture 5 Linear Analysis Lecture 5 Inner Products and V Let dim V < with inner product,. Choose a basis B and let v, w V have coordinates in F n given by x 1. x n and y 1. y n, respectively. Let A F n n be the

More information

Homework I, Solutions

Homework I, Solutions Homework I, Solutions I: (15 points) Exercise on lower semi-continuity: Let X be a normed space and f : X R be a function. We say that f is lower semi - continuous at x 0 if for every ε > 0 there exists

More information

Solutions to Homework #3, Math 116

Solutions to Homework #3, Math 116 Solutions to Homework #, Math 6 Keziah Cook and Michael McElroy November 5, Problem Goroff) In each of the following cases, determine the supremum of f over its domain D. If there are points x D for which

More information

Iowa State University. Instructor: Alex Roitershtein Summer Homework #5. Solutions

Iowa State University. Instructor: Alex Roitershtein Summer Homework #5. Solutions Math 50 Iowa State University Introduction to Real Analysis Department of Mathematics Instructor: Alex Roitershtein Summer 205 Homework #5 Solutions. Let α and c be real numbers, c > 0, and f is defined

More information

Math 113 Final Exam: Solutions

Math 113 Final Exam: Solutions Math 113 Final Exam: Solutions Thursday, June 11, 2013, 3.30-6.30pm. 1. (25 points total) Let P 2 (R) denote the real vector space of polynomials of degree 2. Consider the following inner product on P

More information

August 2015 Qualifying Examination Solutions

August 2015 Qualifying Examination Solutions August 2015 Qualifying Examination Solutions If you have any difficulty with the wording of the following problems please contact the supervisor immediately. All persons responsible for these problems,

More information

PRACTICE PROBLEMS FOR MIDTERM I

PRACTICE PROBLEMS FOR MIDTERM I Problem. Find the limits or explain why they do not exist (i) lim x,y 0 x +y 6 x 6 +y ; (ii) lim x,y,z 0 x 6 +y 6 +z 6 x +y +z. (iii) lim x,y 0 sin(x +y ) x +y Problem. PRACTICE PROBLEMS FOR MIDTERM I

More information

Fourier Series. 1. Review of Linear Algebra

Fourier Series. 1. Review of Linear Algebra Fourier Series In this section we give a short introduction to Fourier Analysis. If you are interested in Fourier analysis and would like to know more detail, I highly recommend the following book: Fourier

More information

Math 118B Solutions. Charles Martin. March 6, d i (x i, y i ) + d i (y i, z i ) = d(x, y) + d(y, z). i=1

Math 118B Solutions. Charles Martin. March 6, d i (x i, y i ) + d i (y i, z i ) = d(x, y) + d(y, z). i=1 Math 8B Solutions Charles Martin March 6, Homework Problems. Let (X i, d i ), i n, be finitely many metric spaces. Construct a metric on the product space X = X X n. Proof. Denote points in X as x = (x,

More information

Solutions to Practice Final

Solutions to Practice Final s to Practice Final 1. (a) What is φ(0 100 ) where φ is Euler s φ-function? (b) Find an integer x such that 140x 1 (mod 01). Hint: gcd(140, 01) = 7. (a) φ(0 100 ) = φ(4 100 5 100 ) = φ( 00 5 100 ) = (

More information

MATH 310 Course Objectives

MATH 310 Course Objectives MATH 310 Course Objectives Upon successful completion of MATH 310, the student should be able to: Apply the addition, subtraction, multiplication, and division principles to solve counting problems. Apply

More information

Factorization in Polynomial Rings

Factorization in Polynomial Rings Factorization in Polynomial Rings Throughout these notes, F denotes a field. 1 Long division with remainder We begin with some basic definitions. Definition 1.1. Let f, g F [x]. We say that f divides g,

More information

MASTERS EXAMINATION IN MATHEMATICS

MASTERS EXAMINATION IN MATHEMATICS MASTERS EXAMINATION IN MATHEMATICS PURE MATH OPTION, Spring 018 Full points can be obtained for correct answers to 8 questions. Each numbered question (which may have several parts) is worth 0 points.

More information

(1) Consider the space S consisting of all continuous real-valued functions on the closed interval [0, 1]. For f, g S, define

(1) Consider the space S consisting of all continuous real-valued functions on the closed interval [0, 1]. For f, g S, define Homework, Real Analysis I, Fall, 2010. (1) Consider the space S consisting of all continuous real-valued functions on the closed interval [0, 1]. For f, g S, define ρ(f, g) = 1 0 f(x) g(x) dx. Show that

More information

SOLUTIONS OF VARIATIONS, PRACTICE TEST 4

SOLUTIONS OF VARIATIONS, PRACTICE TEST 4 SOLUTIONS OF VARIATIONS, PRATIE TEST 4 5-. onsider the following system of linear equations over the real numbers, where x, y and z are variables and b is a real constant. x + y + z = 0 x + 4y + 3z = 0

More information

Problem set 5, Real Analysis I, Spring, otherwise. (a) Verify that f is integrable. Solution: Compute since f is even, 1 x (log 1/ x ) 2 dx 1

Problem set 5, Real Analysis I, Spring, otherwise. (a) Verify that f is integrable. Solution: Compute since f is even, 1 x (log 1/ x ) 2 dx 1 Problem set 5, Real Analysis I, Spring, 25. (5) Consider the function on R defined by f(x) { x (log / x ) 2 if x /2, otherwise. (a) Verify that f is integrable. Solution: Compute since f is even, R f /2

More information

Quadratic forms. Here. Thus symmetric matrices are diagonalizable, and the diagonalization can be performed by means of an orthogonal matrix.

Quadratic forms. Here. Thus symmetric matrices are diagonalizable, and the diagonalization can be performed by means of an orthogonal matrix. Quadratic forms 1. Symmetric matrices An n n matrix (a ij ) n ij=1 with entries on R is called symmetric if A T, that is, if a ij = a ji for all 1 i, j n. We denote by S n (R) the set of all n n symmetric

More information

List of Symbols, Notations and Data

List of Symbols, Notations and Data List of Symbols, Notations and Data, : Binomial distribution with trials and success probability ; 1,2, and 0, 1, : Uniform distribution on the interval,,, : Normal distribution with mean and variance,,,

More information

McGill University Department of Mathematics and Statistics. Ph.D. preliminary examination, PART A. PURE AND APPLIED MATHEMATICS Paper BETA

McGill University Department of Mathematics and Statistics. Ph.D. preliminary examination, PART A. PURE AND APPLIED MATHEMATICS Paper BETA McGill University Department of Mathematics and Statistics Ph.D. preliminary examination, PART A PURE AND APPLIED MATHEMATICS Paper BETA 17 August, 2018 1:00 p.m. - 5:00 p.m. INSTRUCTIONS: (i) This paper

More information

Math 581 Problem Set 3 Solutions

Math 581 Problem Set 3 Solutions Math 581 Problem Set 3 Solutions 1. Prove that complex conjugation is a isomorphism from C to C. Proof: First we prove that it is a homomorphism. Define : C C by (z) = z. Note that (1) = 1. The other properties

More information

Math 328 Course Notes

Math 328 Course Notes Math 328 Course Notes Ian Robertson March 3, 2006 3 Properties of C[0, 1]: Sup-norm and Completeness In this chapter we are going to examine the vector space of all continuous functions defined on the

More information