EDEXCEL NATIONAL CERTIFICATE UNIT 4 MATHEMATICS FOR TECHNICIANS OUTCOME 1

Size: px
Start display at page:

Download "EDEXCEL NATIONAL CERTIFICATE UNIT 4 MATHEMATICS FOR TECHNICIANS OUTCOME 1"

Transcription

1 Learning outcomes EDEXCEL NATIONAL CERTIFICATE UNIT 4 MATHEMATICS FOR TECHNICIANS OUTCOME 1 TUTORIAL 3 - FACTORISATION AND QUADRATICS On completion of this unit a learner should: 1 Know how to use algebraic methods 2 Be able to use trigonometric methods and standard formula to determine areas and volumes 3 Be able to use statistical methods to display data 4 Know how to use elementary calculus techniques. OUTCOME 1- Know how to use algebraic methods Indices and logarithms: laws of indices (a m x a n = a, = a m+n m a m n, a, (a m ) n = a mn ) n a laws of logarithms (log A + log B = log AB, log A n A = n log A, log A log B log ) B e.g. common logarithms (base 10), natural logarithms (base e), exponential growth and decay Linear equations and straight line graphs: linear equations e.g. y = mx + c; straight line graph (coordinates on a pair of labelled Cartesian axes, positive or negative gradient, intercept, plot of a straight line); experimental data e.g. Ohm s law, pair of simultaneous linear equations in two unknowns Factorisation and quadratics: multiply expressions in brackets by a number, symbol or by another expression in a bracket; by extraction of a common factor e.g. ax + ay, a(x + 2) + b(x + 2); by grouping e.g. ax - ay + bx - by, quadratic expressions e.g. a 2 + 2ab + b 2 ; roots of an equation e.g. quadratic equations with real roots by factorisation, and by the use of formula D.J.Dunn 1

2 ROOTS AND FACTORS Consider y = A x B x C. A, B and C are the factors of y and the process is called factorisation. In the following we will only use factors that are INTEGERS meaning whole numbers. There can be many factors. For example the factors of y = 4 can be (4)(1) or (2)(2) You should know that a negative number multiplied by another negative number is a positive number but a negative number multiplied by a positive number is a negative number so we have other factors of y = 4 such as (-1)(-4) and (-2)(-2). The factors of y = -4 are (-1)(4) or (1)(-4) or (2)(-2) There is a special case when the factors are the same and also the smallest number possible, then we a root. For example the lowest factors of y = 9 are (3)(3) or (-3)(-3) The square root of 9 is 3 or -3 ( y = ±3). For example the lowest factors of y = 8 are (2)(2)(2) then the cube root of 8 is 2 y 2 3. Note that -2 is not a cube root since (-2)(-2)(-2) = -8 so it follows that -2 is the cube root of -8. Note that a positive number can have a square root that is both positive and negative. COMMON FACTORS Consider the equation y = 2A + 2B + 2C. The number 2 is common to each term so we can write the equation as y = 2(A + B + C) and you should know that the bracket indicates that every term inside is multiplied by 2. In the same way in the equation y = ax + az, a is a common factor so we can write y = a(x + z). To reverse the process all we do is multiply every term in the bracket by the factor outside the bracket. WORKED EXAMPLE No. 1 Multiply out the equation y = 3(x + 2). It should be clear that y = 3x + 6 WORKED EXAMPLE No. 2 Find the common factor of the equation y = 2x 2 + 2x - 2. It is clear that 2 appears in every term so we can write the equation as y = 2(x 2 + x - 1) 2 is a common factor. D.J.Dunn 2

3 WORKED EXAMPLE No. 3 Simplify the equation y = ax + 2a - bz + 3b by forming brackets with common factors. Identify a is common to two terms and b is common to two terms so form two brackets with a common factor. y = a(x + 2) + b(-z + 3) or more tidily y = a(x + 2) + b(3 - z) WORKED EXAMPLE No. 4 Multiply out the brackets in the following equation and express y as a series of terms only. z = 3(y + x) - 5 (2y - x) z = 3y + 3x - 10y + 5x = 8x - 7y WORKED EXAMPLE No. 5 Find the factors of y = (3x + 6) If we write the equation as y = (3x + 3x2) we see that 3 is a common factor so: y = 3(x + 2) and the factors of y are 3 and (x-2). D.J.Dunn 3

4 SELF ASSESSMENT EXERCISE No Find the square roots (x) for the following numbers. i. y = x 2 = 9 ii. y = x 2 = 16 iii. y = x 2 = 12 iv. y = x 2 = Find the factors A, B and C of the following numbers where A, B and C are integers (whole numbers) and neither A,B nor C is 1. i. y = A B = -9 ii. y = A B = -15 iii. y = A B = -4 iv. y = A B C = 30 v. y = A B C = Multiply out the brackets in the following equations and express y as a series of terms. i. y = 3(b - 2a) + 5(b - 2a) ii. y = 2(a - 3b) - (2b + a) iii. y = 7(a - b) + 5 (b - 2a) 4. Remove the common factors from the following equations and simplify the equations into two brackets. i. z = ax + by - ay - bx ii. z = ax - 2y + 2ax + 3by iii. z = bx 2 + cx 2 + cx + ax 5. Factorise the following into a number and a bracket. i. y = 2x + 8 ii. y = 5z z + 15 iii. y = 6x 2-3x + 12 D.J.Dunn 4

5 QUADRATIC EQUATIONS and ROOTS Consider the equation y = (a + x)(b + x). The brackets are the factors of y. Consider the equation y = (a + x)(a + x). Because both brackets are the same, it follows that (a + x) must be the square root of y. We could have written y = (a + x) 2 and so y = (a + x) The point is that equations can have square roots and factors as well as numbers. DEFINITION OF A QUADRATIC EQUATION We have already dealt with proportional equations and the linear graphs produced by plotting them. In Engineering and Science, the relationship between two variables is not often proportional and often turns out to be a form of quadratic equation. Quadratic equations have the general form:- y = ax 2 + bx 1 + c x 0 Quadratic simply means that the highest power in the equation is 2 (x 2 in this case). You should know that x 1 is written as x and x 0 = 1 (anything to the power of 0 is 1) so the quadratic equation is more usually written as y = ax 2 + bx + c a, b and c are the coefficients of x 2, x 1 and x o respectively. When b = c = 0 we have the simplest quadratic y = ax 2 ROOT A special case occurs when y = 0. In this case the values of x that make y = 0 are called the roots of the equation. Suppose we have to solve y = ax 2 + bx + c If we rewrite the equation as 0 = ax 2 + bx + (c-y) and solve x, we will be solving the roots of the equation and the same values of x will give the required value of y. WORKED EXAMPLE No. 6 Rearrange the following into a standard quadratic equation ready for finding the roots. 6 = 2x 2 + 5x +2 6 = 2x 2 + 5x +2 0 = 2x 2 + 5x = 2x 2 + 5x - 4 D.J.Dunn 5

6 SOLVING WITH GRAPHS When we plot y and x for a quadratic equation, there are normally two values of x that correspond to any value of y but it is of particular interest to find the values of x when y is zero. These are called the ROOTS OF THE EQUATION. These occur where the graph crosses the x axis (i.e. where y = 0). WORKED EXAMPLE No. 7 Solve the values of x that makes z = 4 z = 2x 2-4x - 2 We are solving the values of x that makes 2x 2-4x - 2 = 4 We could simply plot z against z and get the graph shown. We see that when z = 4 that x has two values, -1 and 3. We could rearrange the equation so that 2x 2-4x = y y = 2x 2-4x - 6 and solve y by finding the roots which are the values at y = 0. These are also -1 and 3. It is always a good idea to check that putting these values into the equation produces y = 0. x = -1 y = 2(-1) 2-4(-1) 6 = = 0 or z = 2x 2-4x - 2 = 2(-1) 2-4(-1) 2 = = 4 x = 3 y = 2(3) 2-4(3) 6 = = 0 or z = 2x 2-4x - 2 = 2(3) 2-4(3) 2 = = 4 Note that if we plotted z and x the answers would be found at It is nice when the roots are whole numbers (integers) but this is not usually the case. Note that quadratic equations do not always cross the x axis and the solution to these requires advanced studies. D.J.Dunn 6

7 SOLVING BY FACTORISATION A quadratic equation often factorises into two parts such that the sum of the two parts produces the original equation. In the case of equations, the factors are not numbers but expressions. Sometimes factors are easy to spot in an equation but generally it is quite difficult. If we know the factors, solving is easy as in this next example. WORKED EXAMPLE No. 8 Solve x in the (2x + 2) (x - 3) = 0 (2x + 2)(x - 3) = 0 If 2x = -2 then (-2 + 2)(x - 3) = (0)(x - 3) = 0 and so x = -1 is a solution (root) If x = 3 then (2x + 2)(3-3) = (2x + 2)(0) = 0 and so x = -3 is a solution (root) We solve the roots by simply equating each bracket to zero. Knowing how to factorise an equation takes practice. The first step in understanding this is see how multiplying two factors gives the original equation. Suppose that y = (2x + 2)(x - 3). The two factor are (2x + 2) and (x - 3). Let s multiply them. Here s how. We can multiply out the brackets as follows. y = x(2x + 2) -3(2x + 2) y = 2x 2 + 2x - 6x - 6 y = 2x 2-4x - 6 This is another way that you might do the multiplication. Factorisation is the reverse process and the bracket method is the easiest. To find the factors, this rule helps us. D.J.Dunn 7

8 Even with this rule, you need to play around with the possibilities before you arrive at the correct answer. If we arrange that a = 1 by dividing every term by 'a' we have a quadratic equation in the form: y = 0 = x 2 + bx + c The factors will be y = 0 = (x + A)(x + B) Multiply out the brackets and y = 0 = x 2 + x(a+b) + AB Comparing coefficients we see that b = A+B and c = AB Let's not lose sight of the object which is to solve quadratic equations. So long as the numbers allow us to factorise easily, then we can solve problems like the following. WORKED EXAMPLE No. 8 Solve the values of x that satisfies the equation y = f(x) = 0 = x 2 + 5x + 6. Assume that the answers are integers. y = 0 = x 2 + 5x + 6 Assuming that the equation factorises we write: y = (x + A)(x + B) = x 2 + (A+B)x + AB Comparing coefficient we see that (A+B) = 5 and AB = 6 Try various combinations of A and B until you hit on the right one (since we are guessing the problem has been designed to give nice numbers) (AB) = 6 so this could be 1 x 6, 6 x 1, 2 x 3, 3 x 2, or The only combination that makes A + B = 5 is A = 3 and B = 2 y = 0 = (x + 3)(x + 2) Solve by equating each bracket to zero so x = -3 and -2 Check the answers x = -3 y = x 2 + 5x + 6 = (-3) 2 + (5)(-3) + 6 = = 0 x = -2 y = x 2 + 5x + 6 = (-2) 2 + (5)(-2) + 6 = = 0 If dividing every term by 'a' produces fractions then you might try the method in the next example. D.J.Dunn 8

9 WORKED EXAMPLE No. 9 Solve f(x) = 0 = 2x 2 + 3x - 5 assuming that the factors only involve integers. Factorise to get two brackets. We know the first term of the two brackets must be 2x and x unless they are fractions. We must have two factors (2x + A)( x - B) = 0 We know AB must be -5 so try 1 and -5 (2x + 1)( x - 5) = 0 The middle term must be the sum of x and -10x and this gives -9x which is wrong. Try 5 and -1 (2x + 5)( x - 1) = 0 The middle term must be the sum of 5x and -2x and this gives 3x which is correct. (2x + 5)( x - 1) = 0 so the roots are x = -5/2 and x = 1 Check it in the original equation. x = -5/2 2(-5/2) 2 + 3(-5/2) - 5 = 25/2 15/2 5 = 0 correct x = 1 2(1) 2 + 3(1) - 5 = = 0 correct SELF ASSESSMENT EXERCISE No. 2 Solve the following by factorisation. 1. 2x 2-5x 3 = 0 2. x 2 + 2x 8 = 0 3. x 2-2x 3 = x 2-20x 3 = 0 PERFECT SQUARE ROOTS AND COMPLETING THE SQUARE When the two factors are the same, we have a perfect square root. Consider the case x 2 6x + 9 = 0 If we factorise x 2 6x + 9 we get (x 3) (x 3). We could write x 2 6x + 9 = (x 3) 2 = 0 and there is only one solution x = 3, and this is the perfect root. Factorisation is easier if we can change the equation so that it has a perfect square root. This is best demonstrated with an example. WORKED EXAMPLE No. 10 Solve x 2 6x + 8 = 0 If the last number was 9 we would have a perfect square root. We can do this by manipulating the equation to: x 2 6x = 0 or x 2 6x + 9 = 1 Factorise the left side into (x - 3)(x - 3) or (x - 3) 2 Now solve by taking the square root. (x - 3) = 1 = ±1 so x = 4 or x = 2 Check x = 4 x 2 6x + 8 = (4) + 8 = = 0 so 4 is the root of the original equation. Check x = (2) + 8 = = 0 so 2 is the root of the original equation. D.J.Dunn 9

10 SELF ASSESSMENT EXERCISE No. 3 Find the roots of the following by completing the square. 1. x 2 + 6x + 5 = 0 2. x x + 20 = 0 3. x 2-8x + 11 = 0 4. x 2-4x - 3 = 0 QUADRATIC FORMULAE A method of finding the solution to quadratic equations that is most reliable and widely used is given here without proof. Arrange the equation into the form ax 2 + bx + c = 0 b b 2 4ac The two solutions are then given by x and this is the quadratic formula that 2a should be memorised. Most scientific/engineering calculators can find the solution direct but this formula is useful in advanced studies. WORKED EXAMPLE No. 11 Solve 2x 2 4x - 5= 0 a = 2 b = -4 c = -5 b x 2 b 4ac 2a (-4) (-4) 2(2) 4(2)(-5) x x or x 2.871or Check the answers 2(2.871) 2 4(2.871) - 5= 0 2(-0.871) 2 4(-0.871) - 5= 0 2 SELF ASSESSMENT EXERCISE No. 4 Find the roots of the following by using the quadratic equation. 1. 3x 2 + 5x + 2 = x 2-2x - 4 = x 2-2x + 5 = x 2 + 3x + 7 = 0 D.J.Dunn 10

EDEXCEL NATIONAL CERTIFICATE UNIT 4 MATHEMATICS FOR TECHNICIANS OUTCOME 1

EDEXCEL NATIONAL CERTIFICATE UNIT 4 MATHEMATICS FOR TECHNICIANS OUTCOME 1 Learning outcomes EDEXCEL NATIONAL CERTIFICATE UNIT 4 MATHEMATICS FOR TECHNICIANS OUTCOME 1 TUTORIAL 2 - LINEAR EQUATIONS AND GRAPHS On completion of this unit a learner should: 1 Know how to use algebraic

More information

PLC Papers. Created For:

PLC Papers. Created For: PLC Papers Created For: Algebra and proof 2 Grade 8 Objective: Use algebra to construct proofs Question 1 a) If n is a positive integer explain why the expression 2n + 1 is always an odd number. b) Use

More information

A Library of Functions

A Library of Functions LibraryofFunctions.nb 1 A Library of Functions Any study of calculus must start with the study of functions. Functions are fundamental to mathematics. In its everyday use the word function conveys to us

More information

1.2. Indices. Introduction. Prerequisites. Learning Outcomes

1.2. Indices. Introduction. Prerequisites. Learning Outcomes Indices 1.2 Introduction Indices, or powers, provide a convenient notation when we need to multiply a number by itself several times. In this Section we explain how indices are written, and state the rules

More information

Finding the Equation of a Graph. I can give the equation of a curve given just the roots.

Finding the Equation of a Graph. I can give the equation of a curve given just the roots. National 5 W 7th August Finding the Equation of a Parabola Starter Sketch the graph of y = x - 8x + 15. On your sketch clearly identify the roots, axis of symmetry, turning point and y intercept. Today

More information

5.6 Logarithmic and Exponential Equations

5.6 Logarithmic and Exponential Equations SECTION 5.6 Logarithmic and Exponential Equations 305 5.6 Logarithmic and Exponential Equations PREPARING FOR THIS SECTION Before getting started, review the following: Solving Equations Using a Graphing

More information

PLC Papers. Created For:

PLC Papers. Created For: PLC Papers Created For: Algebra and proof 2 Grade 8 Objective: Use algebra to construct proofs Question 1 a) If n is a positive integer explain why the expression 2n + 1 is always an odd number. b) Use

More information

Integration - Past Edexcel Exam Questions

Integration - Past Edexcel Exam Questions Integration - Past Edexcel Exam Questions 1. (a) Given that y = 5x 2 + 7x + 3, find i. - ii. - (b) ( 1 + 3 ) x 1 x dx. [4] 2. Question 2b - January 2005 2. The gradient of the curve C is given by The point

More information

1 Solving equations 1.1 Kick off with CAS 1. Polynomials 1. Trigonometric symmetry properties 1.4 Trigonometric equations and general solutions 1.5 Literal and simultaneous equations 1.6 Review 1.1 Kick

More information

EDEXCEL NATIONAL CERTIFICATE UNIT 4 MATHEMATICS FOR TECHNICIANS OUTCOME 4 TUTORIAL 1 - INTEGRATION

EDEXCEL NATIONAL CERTIFICATE UNIT 4 MATHEMATICS FOR TECHNICIANS OUTCOME 4 TUTORIAL 1 - INTEGRATION Learning outcomes EEXCEL NATIONAL CERTIFICATE UNIT MATHEMATICS FOR TECHNICIANS OUTCOME TUTORIAL 1 - INTEGRATION On completion of this unit a learner should: 1 Know how to use algebraic methods e able to

More information

If you buy 4 apples for a total cost of 80 pence, how much does each apple cost?

If you buy 4 apples for a total cost of 80 pence, how much does each apple cost? Introduction If you buy 4 apples for a total cost of 80 pence, how much does each apple cost? Cost of one apple = Total cost Number 80 pence = 4 = 20 pence In maths we often use symbols to represent quantities.

More information

1.2. Indices. Introduction. Prerequisites. Learning Outcomes

1.2. Indices. Introduction. Prerequisites. Learning Outcomes Indices.2 Introduction Indices, or powers, provide a convenient notation when we need to multiply a number by itself several times. In this section we explain how indices are written, and state the rules

More information

In a quadratic expression the highest power term is a square. E.g. x x 2 2x 5x 2 + x - 3

In a quadratic expression the highest power term is a square. E.g. x x 2 2x 5x 2 + x - 3 A. Quadratic expressions B. The difference of two squares In a quadratic expression the highest power term is a square. E.g. x + 3x x 5x + x - 3 If a quadratic expression has no x term and both terms are

More information

JUST THE MATHS UNIT NUMBER 1.5. ALGEBRA 5 (Manipulation of algebraic expressions) A.J.Hobson

JUST THE MATHS UNIT NUMBER 1.5. ALGEBRA 5 (Manipulation of algebraic expressions) A.J.Hobson JUST THE MATHS UNIT NUMBER 1.5 ALGEBRA 5 (Manipulation of algebraic expressions) by A.J.Hobson 1.5.1 Simplification of expressions 1.5.2 Factorisation 1.5.3 Completing the square in a quadratic expression

More information

Chapter Six. Polynomials. Properties of Exponents Algebraic Expressions Addition, Subtraction, and Multiplication Factoring Solving by Factoring

Chapter Six. Polynomials. Properties of Exponents Algebraic Expressions Addition, Subtraction, and Multiplication Factoring Solving by Factoring Chapter Six Polynomials Properties of Exponents Algebraic Expressions Addition, Subtraction, and Multiplication Factoring Solving by Factoring Properties of Exponents The properties below form the basis

More information

Twitter: @Owen134866 www.mathsfreeresourcelibrary.com Prior Knowledge Check 1) Simplify: a) 3x 2 5x 5 b) 5x3 y 2 15x 7 2) Factorise: a) x 2 2x 24 b) 3x 2 17x + 20 15x 2 y 3 3) Use long division to calculate:

More information

Multiplication of Polynomials

Multiplication of Polynomials Summary 391 Chapter 5 SUMMARY Section 5.1 A polynomial in x is defined by a finite sum of terms of the form ax n, where a is a real number and n is a whole number. a is the coefficient of the term. n is

More information

Intermediate Algebra

Intermediate Algebra Intermediate Algebra Anne Gloag Andrew Gloag Mara Landers Remixed by James Sousa Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) www.ck12.org To access a customizable

More information

1 Quadratic Functions

1 Quadratic Functions Unit 1 Quadratic Functions Lecture Notes Introductory Algebra Page 1 of 8 1 Quadratic Functions In this unit we will learn many of the algebraic techniques used to work with the quadratic function fx)

More information

3.3. Solving polynomial equations. Introduction. Prerequisites. Learning Outcomes

3.3. Solving polynomial equations. Introduction. Prerequisites. Learning Outcomes Solving polynomial equations 3.3 Introduction Linear and quadratic equations, dealt within sections 1 and 2 are members of a class of equations called polynomial equations. These have the general form:

More information

Solving equations UNCORRECTED PAGE PROOFS

Solving equations UNCORRECTED PAGE PROOFS 1 Solving equations 1.1 Kick off with CAS 1. Polynomials 1.3 Trigonometric symmetry properties 1.4 Trigonometric equations and general solutions 1.5 Literal equations and simultaneous equations 1.6 Review

More information

Chapter 5 Smartboard Notes

Chapter 5 Smartboard Notes Name Chapter 5 Smartboard Notes 10.1 Graph ax 2 + c Learning Outcome To graph simple quadratic functions Quadratic function A non linear function that can be written in the standard form y = ax 2 + bx

More information

Accel Alg E. L. E. Notes Solving Quadratic Equations. Warm-up

Accel Alg E. L. E. Notes Solving Quadratic Equations. Warm-up Accel Alg E. L. E. Notes Solving Quadratic Equations Warm-up Solve for x. Factor. 1. 12x 36 = 0 2. x 2 8x Factor. Factor. 3. 2x 2 + 5x 7 4. x 2 121 Solving Quadratic Equations Methods: (1. By Inspection)

More information

CONTENTS CHECK LIST ACCURACY FRACTIONS INDICES SURDS RATIONALISING THE DENOMINATOR SUBSTITUTION

CONTENTS CHECK LIST ACCURACY FRACTIONS INDICES SURDS RATIONALISING THE DENOMINATOR SUBSTITUTION CONTENTS CHECK LIST - - ACCURACY - 4 - FRACTIONS - 6 - INDICES - 9 - SURDS - - RATIONALISING THE DENOMINATOR - 4 - SUBSTITUTION - 5 - REMOVING BRACKETS - 7 - FACTORISING - 8 - COMMON FACTORS - 8 - DIFFERENCE

More information

SOLUTIONS FOR PROBLEMS 1-30

SOLUTIONS FOR PROBLEMS 1-30 . Answer: 5 Evaluate x x + 9 for x SOLUTIONS FOR PROBLEMS - 0 When substituting x in x be sure to do the exponent before the multiplication by to get (). + 9 5 + When multiplying ( ) so that ( 7) ( ).

More information

a factors The exponential 0 is a special case. If b is any nonzero real number, then

a factors The exponential 0 is a special case. If b is any nonzero real number, then 0.1 Exponents The expression x a is an exponential expression with base x and exponent a. If the exponent a is a positive integer, then the expression is simply notation that counts how many times the

More information

Time: 1 hour 30 minutes

Time: 1 hour 30 minutes Paper Reference(s) 666/0 Edexcel GCE Core Mathematics C Bronze Level B4 Time: hour 0 minutes Materials required for examination Mathematical Formulae (Green) Items included with question papers Nil Candidates

More information

A polynomial expression is the addition or subtraction of many algebraic terms with positive integer powers.

A polynomial expression is the addition or subtraction of many algebraic terms with positive integer powers. LEAVING CERT Honours Maths notes on Algebra. A polynomial expression is the addition or subtraction of many algebraic terms with positive integer powers. The degree is the highest power of x. 3x 2 + 2x

More information

Intermediate Algebra Textbook for Skyline College

Intermediate Algebra Textbook for Skyline College Intermediate Algebra Textbook for Skyline College Andrew Gloag Anne Gloag Mara Landers Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) www.ck12.org To access a customizable

More information

1.1 Basic Algebra. 1.2 Equations and Inequalities. 1.3 Systems of Equations

1.1 Basic Algebra. 1.2 Equations and Inequalities. 1.3 Systems of Equations 1. Algebra 1.1 Basic Algebra 1.2 Equations and Inequalities 1.3 Systems of Equations 1.1 Basic Algebra 1.1.1 Algebraic Operations 1.1.2 Factoring and Expanding Polynomials 1.1.3 Introduction to Exponentials

More information

1 Solving Algebraic Equations

1 Solving Algebraic Equations Arkansas Tech University MATH 1203: Trigonometry Dr. Marcel B. Finan 1 Solving Algebraic Equations This section illustrates the processes of solving linear and quadratic equations. The Geometry of Real

More information

Roots of quadratic equations

Roots of quadratic equations CHAPTER Roots of quadratic equations Learning objectives After studying this chapter, you should: know the relationships between the sum and product of the roots of a quadratic equation and the coefficients

More information

You must have: Ruler graduated in centimetres and millimetres, pair of compasses, pen, HB pencil, eraser.

You must have: Ruler graduated in centimetres and millimetres, pair of compasses, pen, HB pencil, eraser. Write your name here Surname Other names Pearson Edexcel Award Algebra Level 3 Calculator NOT allowed Centre Number Candidate Number Thursday 12 January 2017 Morning Time: 2 hours Paper Reference AAL30/01

More information

Review 1. 1 Relations and Functions. Review Problems

Review 1. 1 Relations and Functions. Review Problems Review 1 1 Relations and Functions Objectives Relations; represent a relation by coordinate pairs, mappings and equations; functions; evaluate a function; domain and range; operations of functions. Skills

More information

Comparison of Virginia s College and Career Ready Mathematics Performance Expectations with the Common Core State Standards for Mathematics

Comparison of Virginia s College and Career Ready Mathematics Performance Expectations with the Common Core State Standards for Mathematics Comparison of Virginia s College and Career Ready Mathematics Performance Expectations with the Common Core State Standards for Mathematics February 17, 2010 1 Number and Quantity The Real Number System

More information

Time: 1 hour 30 minutes

Time: 1 hour 30 minutes Paper Reference(s) 6663/0 Edexcel GCE Core Mathematics C Gold Level G5 Time: hour 30 minutes Materials required for examination Mathematical Formulae (Green) Items included with question papers Nil Candidates

More information

Mathematics (MEI) Advanced Subsidiary GCE Core 1 (4751) May 2010

Mathematics (MEI) Advanced Subsidiary GCE Core 1 (4751) May 2010 Link to past paper on OCR website: http://www.mei.org.uk/files/papers/c110ju_ergh.pdf These solutions are for your personal use only. DO NOT photocopy or pass on to third parties. If you are a school or

More information

Solving Equations by Factoring. Solve the quadratic equation x 2 16 by factoring. We write the equation in standard form: x

Solving Equations by Factoring. Solve the quadratic equation x 2 16 by factoring. We write the equation in standard form: x 11.1 E x a m p l e 1 714SECTION 11.1 OBJECTIVES 1. Solve quadratic equations by using the square root method 2. Solve quadratic equations by completing the square Here, we factor the quadratic member of

More information

AS PURE MATHS REVISION NOTES

AS PURE MATHS REVISION NOTES AS PURE MATHS REVISION NOTES 1 SURDS A root such as 3 that cannot be written exactly as a fraction is IRRATIONAL An expression that involves irrational roots is in SURD FORM e.g. 2 3 3 + 2 and 3-2 are

More information

Mesaieed International School

Mesaieed International School Mesaieed International School SUBJECT: Mathematics Year: 10H Overview of the year: The contents below reflect the first half of the two-year IGCSE Higher course which provides students with the opportunity

More information

Preliminary algebra. Polynomial equations. and three real roots altogether. Continue an investigation of its properties as follows.

Preliminary algebra. Polynomial equations. and three real roots altogether. Continue an investigation of its properties as follows. 978-0-51-67973- - Student Solutions Manual for Mathematical Methods for Physics and Engineering: 1 Preliminary algebra Polynomial equations 1.1 It can be shown that the polynomial g(x) =4x 3 +3x 6x 1 has

More information

evaluate functions, expressed in function notation, given one or more elements in their domains

evaluate functions, expressed in function notation, given one or more elements in their domains Describing Linear Functions A.3 Linear functions, equations, and inequalities. The student writes and represents linear functions in multiple ways, with and without technology. The student demonstrates

More information

A-Level Maths Induction Summer Work

A-Level Maths Induction Summer Work A-Level Maths Induction Summer Work Name:. (Show workings for every question in this booklet) This booklet contains GCSE Algebra skills that you will need in order to successfully complete the A-Level

More information

Table of Contents. Module 1

Table of Contents. Module 1 Table of Contents Module 1 1.1 Order of Operations 1.6 Signed Numbers 1. Factorization of Integers 1.7 Further Signed Numbers 1.3 Fractions 1.8 Power Laws 1.4 Fractions and Decimals 1.9 Introduction to

More information

Lesson 5: The Graph of the Equation y = f(x)

Lesson 5: The Graph of the Equation y = f(x) Lesson 5: The Graph of the Equation y = f(x) Learning targets: I can identify when a function is increasing, decreasing, positive and negative and use interval notation to describe intervals where the

More information

Algebra 2 Summer Work Packet Review and Study Guide

Algebra 2 Summer Work Packet Review and Study Guide Algebra Summer Work Packet Review and Study Guide This study guide is designed to accompany the Algebra Summer Work Packet. Its purpose is to offer a review of the nine specific concepts covered in the

More information

Math Precalculus I University of Hawai i at Mānoa Spring

Math Precalculus I University of Hawai i at Mānoa Spring Math 135 - Precalculus I University of Hawai i at Mānoa Spring - 2014 Created for Math 135, Spring 2008 by Lukasz Grabarek and Michael Joyce Send comments and corrections to lukasz@math.hawaii.edu Contents

More information

SUMMER REVIEW PACKET. Name:

SUMMER REVIEW PACKET. Name: Wylie East HIGH SCHOOL SUMMER REVIEW PACKET For students entering Regular PRECALCULUS Name: Welcome to Pre-Calculus. The following packet needs to be finished and ready to be turned the first week of the

More information

A-Level Notes CORE 1

A-Level Notes CORE 1 A-Level Notes CORE 1 Basic algebra Glossary Coefficient For example, in the expression x³ 3x² x + 4, the coefficient of x³ is, the coefficient of x² is 3, and the coefficient of x is 1. (The final 4 is

More information

Mathematics 1 Lecture Notes Chapter 1 Algebra Review

Mathematics 1 Lecture Notes Chapter 1 Algebra Review Mathematics 1 Lecture Notes Chapter 1 Algebra Review c Trinity College 1 A note to the students from the lecturer: This course will be moving rather quickly, and it will be in your own best interests to

More information

8.7 MacLaurin Polynomials

8.7 MacLaurin Polynomials 8.7 maclaurin polynomials 67 8.7 MacLaurin Polynomials In this chapter you have learned to find antiderivatives of a wide variety of elementary functions, but many more such functions fail to have an antiderivative

More information

Answers to the problems will be posted on the school website, go to Academics tab, then select Mathematics and select Summer Packets.

Answers to the problems will be posted on the school website, go to Academics tab, then select Mathematics and select Summer Packets. Name Geometry SUMMER PACKET This packet contains Algebra I topics that you have learned before and should be familiar with coming into Geometry. We will use these concepts on a regular basis throughout

More information

P1 Chapter 1 :: Algebraic Expressions

P1 Chapter 1 :: Algebraic Expressions P1 Chapter 1 :: Algebraic Expressions jfrost@tiffin.kingston.sch.uk www.drfrostmaths.com @DrFrostMaths Last modified: 26 th August 2017 Use of DrFrostMaths for practice Register for free at: www.drfrostmaths.com/homework

More information

Sect Polynomial and Rational Inequalities

Sect Polynomial and Rational Inequalities 158 Sect 10.2 - Polynomial and Rational Inequalities Concept #1 Solving Inequalities Graphically Definition A Quadratic Inequality is an inequality that can be written in one of the following forms: ax

More information

Core A-level mathematics reproduced from the QCA s Subject criteria for Mathematics document

Core A-level mathematics reproduced from the QCA s Subject criteria for Mathematics document Core A-level mathematics reproduced from the QCA s Subject criteria for Mathematics document Background knowledge: (a) The arithmetic of integers (including HCFs and LCMs), of fractions, and of real numbers.

More information

Quadratic Functions. Key Terms. Slide 1 / 200. Slide 2 / 200. Slide 3 / 200. Table of Contents

Quadratic Functions. Key Terms. Slide 1 / 200. Slide 2 / 200. Slide 3 / 200. Table of Contents Slide 1 / 200 Quadratic Functions Table of Contents Key Terms Identify Quadratic Functions Explain Characteristics of Quadratic Functions Solve Quadratic Equations by Graphing Solve Quadratic Equations

More information

Quadratic Functions. Key Terms. Slide 2 / 200. Slide 1 / 200. Slide 3 / 200. Slide 4 / 200. Slide 6 / 200. Slide 5 / 200.

Quadratic Functions. Key Terms. Slide 2 / 200. Slide 1 / 200. Slide 3 / 200. Slide 4 / 200. Slide 6 / 200. Slide 5 / 200. Slide 1 / 200 Quadratic Functions Slide 2 / 200 Table of Contents Key Terms Identify Quadratic Functions Explain Characteristics of Quadratic Functions Solve Quadratic Equations by Graphing Solve Quadratic

More information

Slide 1 / 200. Quadratic Functions

Slide 1 / 200. Quadratic Functions Slide 1 / 200 Quadratic Functions Key Terms Slide 2 / 200 Table of Contents Identify Quadratic Functions Explain Characteristics of Quadratic Functions Solve Quadratic Equations by Graphing Solve Quadratic

More information

EDEXCEL NATIONAL CERTIFICATE UNIT 28 FURTHER MATHEMATICS FOR TECHNICIANS OUTCOME 4 - CALCULUS TUTORIAL 2 - INTEGRATION

EDEXCEL NATIONAL CERTIFICATE UNIT 28 FURTHER MATHEMATICS FOR TECHNICIANS OUTCOME 4 - CALCULUS TUTORIAL 2 - INTEGRATION EDEXCEL NATIONAL CERTIFICATE UNIT 8 FURTHER MATHEMATICS FOR TECHNICIANS OUTCOME - CALCULUS TUTORIAL - INTEGRATION CONTENTS Be able to apply calculus Differentiation: review of standard derivatives, differentiation

More information

ADVANCED/HONORS ALGEBRA 2 - SUMMER PACKET

ADVANCED/HONORS ALGEBRA 2 - SUMMER PACKET NAME ADVANCED/HONORS ALGEBRA 2 - SUMMER PACKET Part I. Order of Operations (PEMDAS) Parenthesis and other grouping symbols. Exponential expressions. Multiplication & Division. Addition & Subtraction. Tutorial:

More information

Math 1 Unit 1 EOC Review

Math 1 Unit 1 EOC Review Math 1 Unit 1 EOC Review Name: Solving Equations (including Literal Equations) - Get the variable to show what it equals to satisfy the equation or inequality - Steps (each step only where necessary):

More information

Geometry 21 Summer Work Packet Review and Study Guide

Geometry 21 Summer Work Packet Review and Study Guide Geometry Summer Work Packet Review and Study Guide This study guide is designed to accompany the Geometry Summer Work Packet. Its purpose is to offer a review of the ten specific concepts covered in the

More information

QUADRATIC EQUATIONS M.K. HOME TUITION. Mathematics Revision Guides Level: GCSE Higher Tier

QUADRATIC EQUATIONS M.K. HOME TUITION. Mathematics Revision Guides Level: GCSE Higher Tier Mathematics Revision Guides Quadratic Equations Page 1 of 8 M.K. HOME TUITION Mathematics Revision Guides Level: GCSE Higher Tier QUADRATIC EQUATIONS Version: 3.1 Date: 6-10-014 Mathematics Revision Guides

More information

Lesson 9 Exploring Graphs of Quadratic Functions

Lesson 9 Exploring Graphs of Quadratic Functions Exploring Graphs of Quadratic Functions Graph the following system of linear inequalities: { y > 1 2 x 5 3x + 2y 14 a What are three points that are solutions to the system of inequalities? b Is the point

More information

Algebra Revision Guide

Algebra Revision Guide Algebra Revision Guide Stage 4 S J Cooper 1st Edition Collection of like terms... Solving simple equations... Factorisation... 6 Inequalities... 7 Graphs... 9 1. The straight line... 9. The quadratic curve...

More information

Tuesday, 3/28 : Ch. 9.8 Cubic Functions ~ Ch. 9 Packet p.67 #(1-6) Thursday, 3/30 : Ch. 9.8 Rational Expressions ~ Ch. 9 Packet p.

Tuesday, 3/28 : Ch. 9.8 Cubic Functions ~ Ch. 9 Packet p.67 #(1-6) Thursday, 3/30 : Ch. 9.8 Rational Expressions ~ Ch. 9 Packet p. Ch. 9.8 Cubic Functions & Ch. 9.8 Rational Expressions Learning Intentions: Explore general patterns & characteristics of cubic functions. Learn formulas that model the areas of squares & the volumes of

More information

Mathematics (MEI) Advanced Subsidiary GCE Core 1 (4751) June 2010

Mathematics (MEI) Advanced Subsidiary GCE Core 1 (4751) June 2010 Link to past paper on OCR website: www.ocr.org.uk The above link takes you to OCR s website. From there you click QUALIFICATIONS, QUALIFICATIONS BY TYPE, AS/A LEVEL GCE, MATHEMATICS (MEI), VIEW ALL DOCUMENTS,

More information

Algebra I Assessment. Eligible Texas Essential Knowledge and Skills

Algebra I Assessment. Eligible Texas Essential Knowledge and Skills Algebra I Assessment Eligible Texas Essential Knowledge and Skills STAAR Algebra I Assessment Mathematical Process Standards These student expectations will not be listed under a separate reporting category.

More information

APPENDIX : PARTIAL FRACTIONS

APPENDIX : PARTIAL FRACTIONS APPENDIX : PARTIAL FRACTIONS Appendix : Partial Fractions Given the expression x 2 and asked to find its integral, x + you can use work from Section. to give x 2 =ln( x 2) ln( x + )+c x + = ln k x 2 x+

More information

Suppose we have the set of all real numbers, R, and two operations, +, and *. Then the following are assumed to be true.

Suppose we have the set of all real numbers, R, and two operations, +, and *. Then the following are assumed to be true. Algebra Review In this appendix, a review of algebra skills will be provided. Students sometimes think that there are tricks needed to do algebra. Rather, algebra is a set of rules about what one may and

More information

Algebra III. Mathematics Curriculum Framework. Revised 2004

Algebra III. Mathematics Curriculum Framework. Revised 2004 Algebra III Mathematics Curriculum Framework Revised 2004 Title: Algebra III (Fourth-year Course) Course/Unit Credit: 1 Course Number: Teacher Licensure: Secondary Mathematics Pre-requisite: Algebra II

More information

A summary of factoring methods

A summary of factoring methods Roberto s Notes on Prerequisites for Calculus Chapter 1: Algebra Section 1 A summary of factoring methods What you need to know already: Basic algebra notation and facts. What you can learn here: What

More information

Ch. 7.6 Squares, Squaring & Parabolas

Ch. 7.6 Squares, Squaring & Parabolas Ch. 7.6 Squares, Squaring & Parabolas Learning Intentions: Learn about the squaring & square root function. Graph parabolas. Compare the squaring function with other functions. Relate the squaring function

More information

Math Precalculus I University of Hawai i at Mānoa Spring

Math Precalculus I University of Hawai i at Mānoa Spring Math 135 - Precalculus I University of Hawai i at Mānoa Spring - 2013 Created for Math 135, Spring 2008 by Lukasz Grabarek and Michael Joyce Send comments and corrections to lukasz@math.hawaii.edu Contents

More information

C-1. Snezana Lawrence

C-1. Snezana Lawrence C-1 Snezana Lawrence These materials have been written by Dr. Snezana Lawrence made possible by funding from Gatsby Technical Education projects (GTEP) as part of a Gatsby Teacher Fellowship ad-hoc bursary

More information

Dear Future Pre-Calculus Students,

Dear Future Pre-Calculus Students, Dear Future Pre-Calculus Students, Congratulations on your academic achievements thus far. You have proven your academic worth in Algebra II (CC), but the challenges are not over yet! Not to worry; this

More information

SCHOOL OF MATHEMATICS MATHEMATICS FOR PART I ENGINEERING. Self-paced Course

SCHOOL OF MATHEMATICS MATHEMATICS FOR PART I ENGINEERING. Self-paced Course SCHOOL OF MATHEMATICS MATHEMATICS FOR PART I ENGINEERING Self-paced Course MODULE ALGEBRA Module Topics Simplifying expressions and algebraic functions Rearranging formulae Indices 4 Rationalising a denominator

More information

MULTIPLYING TRINOMIALS

MULTIPLYING TRINOMIALS Name: Date: 1 Math 2 Variable Manipulation Part 4 Polynomials B MULTIPLYING TRINOMIALS Multiplying trinomials is the same process as multiplying binomials except for there are more terms to multiply than

More information

Standards-Based Learning Power Standards. High School- Algebra

Standards-Based Learning Power Standards. High School- Algebra Standards-Based Learning Power Standards Mathematics Algebra 3,4 The high school standards specify the mathematics that all students should study in order to be college and career ready. High School Number

More information

Maths Higher Prelim Content

Maths Higher Prelim Content Maths Higher Prelim Content Straight Line Gradient of a line A(x 1, y 1 ), B(x 2, y 2 ), Gradient of AB m AB = y 2 y1 x 2 x 1 m = tanθ where θ is the angle the line makes with the positive direction of

More information

Chapter 2. Polynomial and Rational Functions. 2.5 Zeros of Polynomial Functions

Chapter 2. Polynomial and Rational Functions. 2.5 Zeros of Polynomial Functions Chapter 2 Polynomial and Rational Functions 2.5 Zeros of Polynomial Functions 1 / 33 23 Chapter 2 Homework 2.5 p335 6, 8, 10, 12, 16, 20, 24, 28, 32, 34, 38, 42, 46, 50, 52 2 / 33 23 3 / 33 23 Objectives:

More information

College Algebra Through Problem Solving (2018 Edition)

College Algebra Through Problem Solving (2018 Edition) City University of New York (CUNY) CUNY Academic Works Open Educational Resources Queensborough Community College Winter 1-25-2018 College Algebra Through Problem Solving (2018 Edition) Danielle Cifone

More information

Chapter 1. Functions 1.1. Functions and Their Graphs

Chapter 1. Functions 1.1. Functions and Their Graphs 1.1 Functions and Their Graphs 1 Chapter 1. Functions 1.1. Functions and Their Graphs Note. We start by assuming that you are familiar with the idea of a set and the set theoretic symbol ( an element of

More information

Edexcel past paper questions. Core Mathematics 4. Parametric Equations

Edexcel past paper questions. Core Mathematics 4. Parametric Equations Edexcel past paper questions Core Mathematics 4 Parametric Equations Edited by: K V Kumaran Email: kvkumaran@gmail.com C4 Maths Parametric equations Page 1 Co-ordinate Geometry A parametric equation of

More information

A Level Maths summer preparation work

A Level Maths summer preparation work A Level Maths summer preparation work Welcome to A Level Maths! We hope you are looking forward to two years of challenging and rewarding learning. You must make sure that you are prepared to study A Level

More information

8th Grade Math Definitions

8th Grade Math Definitions 8th Grade Math Definitions Absolute Value: 1. A number s distance from zero. 2. For any x, is defined as follows: x = x, if x < 0; x, if x 0. Acute Angle: An angle whose measure is greater than 0 and less

More information

MAIDSTONE GRAMMAR SCHOOL FOR GIRLS

MAIDSTONE GRAMMAR SCHOOL FOR GIRLS MAIDSTONE GRAMMAR SCHOOL FOR GIRLS King Edward VI High School DEPARTMENT OF MATHEMATICS Introduction to A level Maths INDUCTION BOOKLET CONTENTS Reading List... 3 Section 1: FRACTIONS... 4 Section : EXPANDING...

More information

Quadratics. SPTA Mathematics Higher Notes

Quadratics. SPTA Mathematics Higher Notes H Quadratics SPTA Mathematics Higher Notes Quadratics are expressions with degree 2 and are of the form ax 2 + bx + c, where a 0. The Graph of a Quadratic is called a Parabola, and there are 2 types as

More information

Preliminaries Lectures. Dr. Abdulla Eid. Department of Mathematics MATHS 101: Calculus I

Preliminaries Lectures. Dr. Abdulla Eid. Department of Mathematics   MATHS 101: Calculus I Preliminaries 2 1 2 Lectures Department of Mathematics http://www.abdullaeid.net/maths101 MATHS 101: Calculus I (University of Bahrain) Prelim 1 / 35 Pre Calculus MATHS 101: Calculus MATHS 101 is all about

More information

Module 4: Equations and Inequalities in One Variable

Module 4: Equations and Inequalities in One Variable Module 1: Relationships between quantities Precision- The level of detail of a measurement, determined by the unit of measure. Dimensional Analysis- A process that uses rates to convert measurements from

More information

What you may need to do: 1. Formulate a quadratic expression or equation. Generate a quadratic expression from a description or diagram.

What you may need to do: 1. Formulate a quadratic expression or equation. Generate a quadratic expression from a description or diagram. Dealing with a quadratic What it is: A quadratic expression is an algebraic expression containing an x 2 term, as well as possibly an x term and/or a number, but nothing else - eg, no x 3 term. The general

More information

A Level Maths. Induction Booklet CONTENTS

A Level Maths. Induction Booklet CONTENTS A Level Maths Induction Booklet CONTENTS Chapter 1 Removing brackets page Chapter Linear equations page 4 Chapter 3 Simultaneous equations page 8 Chapter 4 Factors page 10 Chapter 5 Change the subject

More information

Tropical Polynomials

Tropical Polynomials 1 Tropical Arithmetic Tropical Polynomials Los Angeles Math Circle, May 15, 2016 Bryant Mathews, Azusa Pacific University In tropical arithmetic, we define new addition and multiplication operations on

More information

Radicals: To simplify means that 1) no radicand has a perfect square factor and 2) there is no radical in the denominator (rationalize).

Radicals: To simplify means that 1) no radicand has a perfect square factor and 2) there is no radical in the denominator (rationalize). Summer Review Packet for Students Entering Prealculus Radicals: To simplify means that 1) no radicand has a perfect square factor and ) there is no radical in the denominator (rationalize). Recall the

More information

Algebraic. techniques1

Algebraic. techniques1 techniques Algebraic An electrician, a bank worker, a plumber and so on all have tools of their trade. Without these tools, and a good working knowledge of how to use them, it would be impossible for them

More information

( ) c. m = 0, 1 2, 3 4

( ) c. m = 0, 1 2, 3 4 G Linear Functions Probably the most important concept from precalculus that is required for differential calculus is that of linear functions The formulas you need to know backwards and forwards are:

More information

George Washington Carver Engineering and Science High School 2018 Summer Enrichment

George Washington Carver Engineering and Science High School 2018 Summer Enrichment George Washington Carver Engineering and Science High School 2018 Summer Enrichment CALCULUS ASSIGNMENT #1: SUMMER PROJECT (Due Tuesday September 11 th ) (Worth 100 points for the packet and 100 points

More information

Not drawn accurately

Not drawn accurately Q1. A trapezium has parallel sides of length (x + 1) cm and (x + 2) cm. The perpendicular distance between the parallel sides is x cm. The area of the trapezium is 10 cm 2. Not drawn accurately Find the

More information

Quadratics NOTES.notebook November 02, 2017

Quadratics NOTES.notebook November 02, 2017 1) Find y where y = 2-1 and a) = 2 b) = -1 c) = 0 2) Epand the brackets and simplify: (m + 4)(2m - 3) To find the equation of quadratic graphs using substitution of a point. 3) Fully factorise 4y 2-5y

More information

Math Review for AP Calculus

Math Review for AP Calculus Math Review for AP Calculus This course covers the topics shown below. Students navigate learning paths based on their level of readiness. Institutional users may customize the scope and sequence to meet

More information