Exercise 9, Ex. 6.3 ( submarine )

Size: px
Start display at page:

Download "Exercise 9, Ex. 6.3 ( submarine )"

Transcription

1 Exercise 9, Ex. 6.3 ( submarine The flow around a submarine moving at at velocity V can be described by the flow caused by a source and a sink with strength Q at a distance a from each other. V x Submarine p Q -Q y L a Figure : Coordinate system for submarine problem a If one wants to construct a pressure sensor that will register an approaching submarine at a distance L, what sensitivity is needed for the sensor? Assume an ideal fluid and that a = 8 m, Q = 95 m 3 /s, V = 8 m/s, L = m and ρ = kg/m 3 roughly corresponding to a submarine with length 8.5 meters and 6 m radius. Use a potential flow description ū = φ, u = φ x, v = φ y The flow is always irrotational due to the definition of the velocity potential, ω = ū = φ =, curl(grad= For incompressibility we get, ū = φ = ( φ i x i = φ = The equation is linear and thus superposition can be used. We have freestream plus 3D source plus sink, φ = V freestream + Q 4π r source + Q = V + 4π r sink Q 4π ( + a + x + y + Switch to cylindrical coordinates and notice that x + y = r. This gives Q 4π ( a + x + y + ū = φ = φ r ēr + φ r θ ēθ + φ ē = Qr ē r 4π(( + a + r Qr Q( + a +ē 3/ 4π(( a + r 3/ V + 4π(( + a + r Q( a 3/ 4π(( a + r 3/

2 Use Bernoullis equation to determine the pressure fluctuations at = L a, r =, Evaluate ū noticing that u r =, p ρ + ū = constant = p ρ + V ū( = L a, r = = ē V + Inserting the given values gives ū = and we get, Q 4π(L + Q 4π((L + a p p = ρ(v ū 7. N/m.7 mbar b How long is the submarine? Compute where u = for r =, V + Q ( 4π ( + a ( a = 4πV Q = ( a ( + a ( a ( + a = 4a ( a Solving this system gives = 43., = 36.99, where the second solution lies inside the submarine. The length is then m. c How wide is the submarine? To get this we need to compute the shape of the submarine. The stream-function is constant along streamlines and is useful for this. In spherical coordinates we get, ū ē R = u R = ū ē R ψ R sin θ θ = u R = ūē R ψ R sin θ R = u θ = ūē θ ē r = ē θ cos θ + ē R sin θ notice that u r (ē θ cos θ + ē R sin θ + u (ē R cos θ ē θ sin θ ē = ē R cos θ ē θ sin θ ē R = u r sin θ + u cos θ u R = u r sin θ + u cos θ = r = R sin θ, = R cos θ = sin θ Q 4π R sin θ (R + a + ar cos θ + 3/ (R + a ar cos θ 3/ ( cos θ V + Q R cos θ + a 4π (R + a + ar cos θ R cos θ a 3/ (R + a ar cos θ 3/ = V cos θ + Q ( R + a cos θ 4π (R + a + ar cos θ R a cos θ 3/ (R + a ar cos θ 3/ This is difficult to integrate. Simplify to a Rankine body by neglecting the sink and say that a =, u R = V cos θ + Q 4π R = ψ R sin θ θ Determine C from the stagnation point, Ψ = V R sin θ Q 4π cos θ + C u R (θ = π, R = R = Q 4πV

3 Since Ψ = on the body we get, C = Q 4π. The streamfunction is then, Ψ = V R sin θ Q (cos θ + 4π source In cartesian coordinates we get the streamfunction for a source, Ψ = Q ( 4π x + + The shape is given by Ψ =, As R, θ then R sin θ d. This gives, 5 x Figure : Rankine body for submarine problem V d 4 Q 4π = d = 4Q V π r = 4Q V π There is a simple way of determining the radius as directly. The flow from the source must take up an particular area in the flow an infinity. Since no fluid can cross the streamlines this area must be equal to that of the Rankine body: Q Q = V πr r = V π = m 3

4 We can use the computed streamfunction and displace it a distance, Ψ = Q ( 4π x + ( + Notice that R = in spherical coordinates and change coordinate system, Ψ = Q ( R cos θ R + = 4π R Q ( R cos θ R sin θ + (R cos θ R 4π R + R R R cos θ + The streamfunction for the submarine is then, Ψ = V R sin θ + Q ( R cos θ + a 4π R + a + Ra cos θ + R cos θ a R + a Ra cos θ x Figure 3: Submarine body for submarine problem At = or θ = π/ we get, Ψ = V R + Q ( a 4π R + a + a R + a For the body Ψ = and we get, Multiply by, Computing this, R R + a aq πv = R R + a + aq πv (R 3 + (R a a Q π V = R = 6.3 m 4

5 The complex potential The lines with constant streamfunction Ψ are the streamlines. They are orthogonal to the lines of constant velocity potential φ which are equipotential lines. Since both of them satisfy Laplace s equation we can define a complex function, F ( = φ(x, y + i Ψ(x, y = x + iy Figure 4: Complex potential for submarine problem, solid: Ψ, dotted: φ This is an analytical function since the Cauchy Riemann equation holds, φ x = Ψ y and φ y = Ψ x The velocity is then, w( = df d = φ x + i Ψ x = u iv This enables the use of complex analysis, in particular conformal mapping that can be used to compute the flow over airfoil shapes. 5

6 Example: Flow past a rotating cylinder centered at = λ at an angle of attack α, ] F ( = U [( + λe iα (a + λ + ( + λ eiα iγ log( + λ π ( Mapping by = Z + 4 Z a gives an airfoil shape with the potential F(. A correct flow is not achieved unless the Kutta Joukovski condition is satisfied requiring, Γ = 4πU(a + λ sin α 4 Z=f( =f (Z Figure 5: Conformal mapping from circle to airfoil shape, (a = 3,λ =.5 6

Exercise 9: Model of a Submarine

Exercise 9: Model of a Submarine Fluid Mechanics, SG4, HT3 October 4, 3 Eample : Submarine Eercise 9: Model of a Submarine The flow around a submarine moving at a velocity V can be described by the flow caused by a source and a sink with

More information

Continuum Mechanics Lecture 7 Theory of 2D potential flows

Continuum Mechanics Lecture 7 Theory of 2D potential flows Continuum Mechanics ecture 7 Theory of 2D potential flows Prof. http://www.itp.uzh.ch/~teyssier Outline - velocity potential and stream function - complex potential - elementary solutions - flow past a

More information

Complex functions in the theory of 2D flow

Complex functions in the theory of 2D flow Complex functions in the theory of D flow Martin Scholtz Institute of Theoretical Physics Charles University in Prague scholtz@utf.mff.cuni.cz Faculty of Transportation Sciences Czech Technical University

More information

u = (u, v) = y The velocity field described by ψ automatically satisfies the incompressibility condition, and it should be noted that

u = (u, v) = y The velocity field described by ψ automatically satisfies the incompressibility condition, and it should be noted that 18.354J Nonlinear Dynamics II: Continuum Systems Lecture 1 9 Spring 2015 19 Stream functions and conformal maps There is a useful device for thinking about two dimensional flows, called the stream function

More information

Offshore Hydromechanics Module 1

Offshore Hydromechanics Module 1 Offshore Hydromechanics Module 1 Dr. ir. Pepijn de Jong 4. Potential Flows part 2 Introduction Topics of Module 1 Problems of interest Chapter 1 Hydrostatics Chapter 2 Floating stability Chapter 2 Constant

More information

Do not turn over until you are told to do so by the Invigilator.

Do not turn over until you are told to do so by the Invigilator. UNIVERSITY OF EAST ANGLIA School of Mathematics Main Series UG Examination 2014 15 FLUID DYNAMICS - THEORY AND COMPUTATION MTHA5002Y Time allowed: 3 Hours Attempt QUESTIONS 1 and 2, and THREE other questions.

More information

Chapter 6: Incompressible Inviscid Flow

Chapter 6: Incompressible Inviscid Flow Chapter 6: Incompressible Inviscid Flow 6-1 Introduction 6-2 Nondimensionalization of the NSE 6-3 Creeping Flow 6-4 Inviscid Regions of Flow 6-5 Irrotational Flow Approximation 6-6 Elementary Planar Irrotational

More information

The purpose of this lecture is to present a few applications of conformal mappings in problems which arise in physics and engineering.

The purpose of this lecture is to present a few applications of conformal mappings in problems which arise in physics and engineering. Lecture 16 Applications of Conformal Mapping MATH-GA 451.001 Complex Variables The purpose of this lecture is to present a few applications of conformal mappings in problems which arise in physics and

More information

An Internet Book on Fluid Dynamics. Joukowski Airfoils

An Internet Book on Fluid Dynamics. Joukowski Airfoils An Internet Book on Fluid Dynamics Joukowski Airfoils One of the more important potential flow results obtained using conformal mapping are the solutions of the potential flows past a family of airfoil

More information

Some Basic Plane Potential Flows

Some Basic Plane Potential Flows Some Basic Plane Potential Flows Uniform Stream in the x Direction A uniform stream V = iu, as in the Fig. (Solid lines are streamlines and dashed lines are potential lines), possesses both a stream function

More information

All that begins... peace be upon you

All that begins... peace be upon you All that begins... peace be upon you Faculty of Mechanical Engineering Department of Thermo Fluids SKMM 2323 Mechanics of Fluids 2 «An excerpt (mostly) from White (2011)» ibn Abdullah May 2017 Outline

More information

Vorticity Equation Marine Hydrodynamics Lecture 9. Return to viscous incompressible flow. N-S equation: v. Now: v = v + = 0 incompressible

Vorticity Equation Marine Hydrodynamics Lecture 9. Return to viscous incompressible flow. N-S equation: v. Now: v = v + = 0 incompressible 13.01 Marine Hydrodynamics, Fall 004 Lecture 9 Copyright c 004 MIT - Department of Ocean Engineering, All rights reserved. Vorticity Equation 13.01 - Marine Hydrodynamics Lecture 9 Return to viscous incompressible

More information

Water is sloshing back and forth between two infinite vertical walls separated by a distance L: h(x,t) Water L

Water is sloshing back and forth between two infinite vertical walls separated by a distance L: h(x,t) Water L ME9a. SOLUTIONS. Nov., 29. Due Nov. 7 PROBLEM 2 Water is sloshing back and forth between two infinite vertical walls separated by a distance L: y Surface Water L h(x,t x Tank The flow is assumed to be

More information

MAE 101A. Homework 7 - Solutions 3/12/2018

MAE 101A. Homework 7 - Solutions 3/12/2018 MAE 101A Homework 7 - Solutions 3/12/2018 Munson 6.31: The stream function for a two-dimensional, nonviscous, incompressible flow field is given by the expression ψ = 2(x y) where the stream function has

More information

Inviscid & Incompressible flow

Inviscid & Incompressible flow < 3.1. Introduction and Road Map > Basic aspects of inviscid, incompressible flow Bernoulli s Equation Laplaces s Equation Some Elementary flows Some simple applications 1.Venturi 2. Low-speed wind tunnel

More information

PEMP ACD2505. M.S. Ramaiah School of Advanced Studies, Bengaluru

PEMP ACD2505. M.S. Ramaiah School of Advanced Studies, Bengaluru Two-Dimensional Potential Flow Session delivered by: Prof. M. D. Deshpande 1 Session Objectives -- At the end of this session the delegate would have understood PEMP The potential theory and its application

More information

OUTLINE FOR Chapter 3

OUTLINE FOR Chapter 3 013/4/ OUTLINE FOR Chapter 3 AERODYNAMICS (W-1-1 BERNOULLI S EQUATION & integration BERNOULLI S EQUATION AERODYNAMICS (W-1-1 013/4/ BERNOULLI S EQUATION FOR AN IRROTATION FLOW AERODYNAMICS (W-1-.1 VENTURI

More information

1. Introduction - Tutorials

1. Introduction - Tutorials 1. Introduction - Tutorials 1.1 Physical properties of fluids Give the following fluid and physical properties(at 20 Celsius and standard pressure) with a 4-digit accuracy. Air density : Water density

More information

Offshore Hydromechanics

Offshore Hydromechanics Offshore Hydromechanics Module 1 : Hydrostatics Constant Flows Surface Waves OE4620 Offshore Hydromechanics Ir. W.E. de Vries Offshore Engineering Today First hour: Schedule for remainder of hydromechanics

More information

General Solution of the Incompressible, Potential Flow Equations

General Solution of the Incompressible, Potential Flow Equations CHAPTER 3 General Solution of the Incompressible, Potential Flow Equations Developing the basic methodology for obtaining the elementary solutions to potential flow problem. Linear nature of the potential

More information

18.325: Vortex Dynamics

18.325: Vortex Dynamics 8.35: Vortex Dynamics Problem Sheet. Fluid is barotropic which means p = p(. The Euler equation, in presence of a conservative body force, is Du Dt = p χ. This can be written, on use of a vector identity,

More information

Marine Hydrodynamics Prof.TrilochanSahoo Department of Ocean Engineering and Naval Architecture Indian Institute of Technology, Kharagpur

Marine Hydrodynamics Prof.TrilochanSahoo Department of Ocean Engineering and Naval Architecture Indian Institute of Technology, Kharagpur Marine Hydrodynamics Prof.TrilochanSahoo Department of Ocean Engineering and Naval Architecture Indian Institute of Technology, Kharagpur Lecture - 10 Source, Sink and Doublet Today is the tenth lecture

More information

Simplifications to Conservation Equations

Simplifications to Conservation Equations Chater 5 Simlifications to Conservation Equations 5.1 Steady Flow If fluid roerties at a oint in a field do not change with time, then they are a function of sace only. They are reresented by: ϕ = ϕq 1,

More information

65 Fluid Flows (6/1/2018)

65 Fluid Flows (6/1/2018) 65 Fluid Flows 6//08 Consider a two dimensional fluid flow which we describe by its velocity field, V x, y = p x, y, q x, y = p + iq R. We are only going to consider flows which are incompressible, i.e.

More information

Week 2 Notes, Math 865, Tanveer

Week 2 Notes, Math 865, Tanveer Week 2 Notes, Math 865, Tanveer 1. Incompressible constant density equations in different forms Recall we derived the Navier-Stokes equation for incompressible constant density, i.e. homogeneous flows:

More information

Fluid mechanics, topology, and complex analysis

Fluid mechanics, topology, and complex analysis Fluid mechanics, topology, and complex analysis Takehito Yokoyama Department of Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan (Dated: April 30, 2013 OMPLEX POTENTIAL

More information

Fluid Dynamics Problems M.Sc Mathematics-Second Semester Dr. Dinesh Khattar-K.M.College

Fluid Dynamics Problems M.Sc Mathematics-Second Semester Dr. Dinesh Khattar-K.M.College Fluid Dynamics Problems M.Sc Mathematics-Second Semester Dr. Dinesh Khattar-K.M.College 1. (Example, p.74, Chorlton) At the point in an incompressible fluid having spherical polar coordinates,,, the velocity

More information

II. Ideal fluid flow

II. Ideal fluid flow II. Ideal fluid flow Ideal fluids are Inviscid Incompressible The only ones decently understood mathematically Governing equations u=0 Continuity u 1 +( u ) u= ρ p+ f t Euler Boundary conditions Normal

More information

AA210A Fundamentals of Compressible Flow. Chapter 1 - Introduction to fluid flow

AA210A Fundamentals of Compressible Flow. Chapter 1 - Introduction to fluid flow AA210A Fundamentals of Compressible Flow Chapter 1 - Introduction to fluid flow 1 1.2 Conservation of mass Mass flux in the x-direction [ ρu ] = M L 3 L T = M L 2 T Momentum per unit volume Mass per unit

More information

Detailed Outline, M E 521: Foundations of Fluid Mechanics I

Detailed Outline, M E 521: Foundations of Fluid Mechanics I Detailed Outline, M E 521: Foundations of Fluid Mechanics I I. Introduction and Review A. Notation 1. Vectors 2. Second-order tensors 3. Volume vs. velocity 4. Del operator B. Chapter 1: Review of Basic

More information

F11AE1 1. C = ρν r r. r u z r

F11AE1 1. C = ρν r r. r u z r F11AE1 1 Question 1 20 Marks) Consider an infinite horizontal pipe with circular cross-section of radius a, whose centre line is aligned along the z-axis; see Figure 1. Assume no-slip boundary conditions

More information

MAT389 Fall 2016, Problem Set 4

MAT389 Fall 2016, Problem Set 4 MAT389 Fall 2016, Problem Set 4 Harmonic conjugates 4.1 Check that each of the functions u(x, y) below is harmonic at every (x, y) R 2, and find the unique harmonic conjugate, v(x, y), satisfying v(0,

More information

THE VORTEX PANEL METHOD

THE VORTEX PANEL METHOD THE VORTEX PANEL METHOD y j m α V 4 3 2 panel 1 a) Approimate the contour of the airfoil by an inscribed polygon with m sides, called panels. Number the panels clockwise with panel #1 starting on the lower

More information

Lifting Airfoils in Incompressible Irrotational Flow. AA210b Lecture 3 January 13, AA210b - Fundamentals of Compressible Flow II 1

Lifting Airfoils in Incompressible Irrotational Flow. AA210b Lecture 3 January 13, AA210b - Fundamentals of Compressible Flow II 1 Lifting Airfoils in Incompressible Irrotational Flow AA21b Lecture 3 January 13, 28 AA21b - Fundamentals of Compressible Flow II 1 Governing Equations For an incompressible fluid, the continuity equation

More information

AE301 Aerodynamics I UNIT B: Theory of Aerodynamics

AE301 Aerodynamics I UNIT B: Theory of Aerodynamics AE301 Aerodynamics I UNIT B: Theory of Aerodynamics ROAD MAP... B-1: Mathematics for Aerodynamics B-: Flow Field Representations B-3: Potential Flow Analysis B-4: Applications of Potential Flow Analysis

More information

Math 575-Lecture 19. In this lecture, we continue to investigate the solutions of the Stokes equations.

Math 575-Lecture 19. In this lecture, we continue to investigate the solutions of the Stokes equations. Math 575-Lecture 9 In this lecture, we continue to investigate the solutions of the Stokes equations. Energy balance Rewrite the equation to σ = f. We begin the energy estimate by dotting u in the Stokes

More information

Lecture 13: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay. Poisson s and Laplace s Equations

Lecture 13: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay. Poisson s and Laplace s Equations Poisson s and Laplace s Equations Lecture 13: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay We will spend some time in looking at the mathematical foundations of electrostatics.

More information

Incompressible Flow Over Airfoils

Incompressible Flow Over Airfoils Chapter 7 Incompressible Flow Over Airfoils Aerodynamics of wings: -D sectional characteristics of the airfoil; Finite wing characteristics (How to relate -D characteristics to 3-D characteristics) How

More information

Aero III/IV Conformal Mapping

Aero III/IV Conformal Mapping Aero III/IV Conformal Mapping View complex function as a mapping Unlike a real function, a complex function w = f(z) cannot be represented by a curve. Instead it is useful to view it as a mapping. Write

More information

Chapter 2 Dynamics of Perfect Fluids

Chapter 2 Dynamics of Perfect Fluids hapter 2 Dynamics of Perfect Fluids As discussed in the previous chapter, the viscosity of fluids induces tangential stresses in relatively moving fluids. A familiar example is water being poured into

More information

SPC Aerodynamics Course Assignment Due Date Monday 28 May 2018 at 11:30

SPC Aerodynamics Course Assignment Due Date Monday 28 May 2018 at 11:30 SPC 307 - Aerodynamics Course Assignment Due Date Monday 28 May 2018 at 11:30 1. The maximum velocity at which an aircraft can cruise occurs when the thrust available with the engines operating with the

More information

Computing potential flows around Joukowski airfoils using FFTs

Computing potential flows around Joukowski airfoils using FFTs AB CD EF GH Computing potential flows around Joukowski airfoils using FFTs Frank Brontsema Institute for Mathematics and Computing Science AB CD EF GH Bachelor thesis Computing potential flows around

More information

Appendix: Orthogonal Curvilinear Coordinates. We define the infinitesimal spatial displacement vector dx in a given orthogonal coordinate system with

Appendix: Orthogonal Curvilinear Coordinates. We define the infinitesimal spatial displacement vector dx in a given orthogonal coordinate system with Appendix: Orthogonal Curvilinear Coordinates Notes: Most of the material presented in this chapter is taken from Anupam G (Classical Electromagnetism in a Nutshell 2012 (Princeton: New Jersey)) Chap 2

More information

PART II: 2D Potential Flow

PART II: 2D Potential Flow AERO301:Spring2011 II(a):EulerEqn.& ω = 0 Page1 PART II: 2D Potential Flow II(a): Euler s Equation& Irrotational Flow We have now completed our tour through the fundamental conservation laws that apply

More information

6.1 Momentum Equation for Frictionless Flow: Euler s Equation The equations of motion for frictionless flow, called Euler s

6.1 Momentum Equation for Frictionless Flow: Euler s Equation The equations of motion for frictionless flow, called Euler s Chapter 6 INCOMPRESSIBLE INVISCID FLOW All real fluids possess viscosity. However in many flow cases it is reasonable to neglect the effects of viscosity. It is useful to investigate the dynamics of an

More information

Fundamentals of Fluid Dynamics: Ideal Flow Theory & Basic Aerodynamics

Fundamentals of Fluid Dynamics: Ideal Flow Theory & Basic Aerodynamics Fundamentals of Fluid Dynamics: Ideal Flow Theory & Basic Aerodynamics Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI (after: D.J. ACHESON s Elementary Fluid Dynamics ) bluebox.ippt.pan.pl/

More information

The Aharonov-Bohm Effect: Mathematical Aspects of the Quantum Flow

The Aharonov-Bohm Effect: Mathematical Aspects of the Quantum Flow Applied athematical Sciences, Vol. 1, 2007, no. 8, 383-394 The Aharonov-Bohm Effect: athematical Aspects of the Quantum Flow Luis Fernando ello Instituto de Ciências Exatas, Universidade Federal de Itajubá

More information

3.5 Vorticity Equation

3.5 Vorticity Equation .0 - Marine Hydrodynamics, Spring 005 Lecture 9.0 - Marine Hydrodynamics Lecture 9 Lecture 9 is structured as follows: In paragraph 3.5 we return to the full Navier-Stokes equations (unsteady, viscous

More information

!! +! 2!! +!"!! =!! +! 2!! +!"!! +!!"!"!"

!! +! 2!! +!!! =!! +! 2!! +!!! +!!!! Homework 4 Solutions 1. (15 points) Bernoulli s equation can be adapted for use in evaluating unsteady flow conditions, such as those encountered during start- up processes. For example, consider the large

More information

MATH 566: FINAL PROJECT

MATH 566: FINAL PROJECT MATH 566: FINAL PROJECT December, 010 JAN E.M. FEYS Complex analysis is a standard part of any math curriculum. Less known is the intense connection between the pure complex analysis and fluid dynamics.

More information

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t)

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t) IV. DIFFERENTIAL RELATIONS FOR A FLUID PARTICLE This chapter presents the development and application of the basic differential equations of fluid motion. Simplifications in the general equations and common

More information

Given the water behaves as shown above, which direction will the cylinder rotate?

Given the water behaves as shown above, which direction will the cylinder rotate? water stream fixed but free to rotate Given the water behaves as shown above, which direction will the cylinder rotate? ) Clockwise 2) Counter-clockwise 3) Not enough information F y U 0 U F x V=0 V=0

More information

7 EQUATIONS OF MOTION FOR AN INVISCID FLUID

7 EQUATIONS OF MOTION FOR AN INVISCID FLUID 7 EQUATIONS OF MOTION FOR AN INISCID FLUID iscosity is a measure of the thickness of a fluid, and its resistance to shearing motions. Honey is difficult to stir because of its high viscosity, whereas water

More information

NPTEL web course on Complex Analysis. A. Swaminathan I.I.T. Roorkee, India. and. V.K. Katiyar I.I.T. Roorkee, India

NPTEL web course on Complex Analysis. A. Swaminathan I.I.T. Roorkee, India. and. V.K. Katiyar I.I.T. Roorkee, India NPTEL web course on Complex Analysis A. Swaminathan I.I.T. Roorkee, India and V.K. Katiyar I.I.T. Roorkee, India A.Swaminathan and V.K.Katiyar (NPTEL) Complex Analysis 1 / 16 Complex Analysis Module: 2:

More information

Kirchhoff s Elliptical Vortex

Kirchhoff s Elliptical Vortex 1 Figure 1. An elliptical vortex oriented at an angle φ with respect to the positive x axis. Kirchhoff s Elliptical Vortex In the atmospheric and oceanic context, two-dimensional (height-independent) vortices

More information

except assume the parachute has diameter of 3.5 meters and calculate how long it takes to stop. (Must solve differential equation)

except assume the parachute has diameter of 3.5 meters and calculate how long it takes to stop. (Must solve differential equation) Homework 5 Due date: Thursday, Mar. 3 hapter 7 Problems 1. 7.88. 7.9 except assume the parachute has diameter of 3.5 meters and calculate how long it takes to stop. (Must solve differential equation) 3.

More information

Copyright 2007 N. Komerath. Other rights may be specified with individual items. All rights reserved.

Copyright 2007 N. Komerath. Other rights may be specified with individual items. All rights reserved. Low Speed Aerodynamics Notes 5: Potential ti Flow Method Objective: Get a method to describe flow velocity fields and relate them to surface shapes consistently. Strategy: Describe the flow field as the

More information

1. Fluid Dynamics Around Airfoils

1. Fluid Dynamics Around Airfoils 1. Fluid Dynamics Around Airfoils Two-dimensional flow around a streamlined shape Foces on an airfoil Distribution of pressue coefficient over an airfoil The variation of the lift coefficient with the

More information

F1.9AB2 1. r 2 θ2 + sin 2 α. and. p θ = mr 2 θ. p2 θ. (d) In light of the information in part (c) above, we can express the Hamiltonian in the form

F1.9AB2 1. r 2 θ2 + sin 2 α. and. p θ = mr 2 θ. p2 θ. (d) In light of the information in part (c) above, we can express the Hamiltonian in the form F1.9AB2 1 Question 1 (20 Marks) A cone of semi-angle α has its axis vertical and vertex downwards, as in Figure 1 (overleaf). A point mass m slides without friction on the inside of the cone under the

More information

PHYS463 Electricity& Magnetism III ( ) Solution #1

PHYS463 Electricity& Magnetism III ( ) Solution #1 PHYS463 Electricity& Magnetism III (2003-04) lution #. Problem 3., p.5: Find the average potential over a spherical surface of radius R due to a point charge located inside (same as discussed in 3..4,

More information

Fluid Mechanics Prof. T. I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay

Fluid Mechanics Prof. T. I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay Fluid Mechanics Prof. T. I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay Lecture No. # 35 Boundary Layer Theory and Applications Welcome back to the video course on fluid

More information

Aerodynamics. Basic Aerodynamics. Continuity equation (mass conserved) Some thermodynamics. Energy equation (energy conserved)

Aerodynamics. Basic Aerodynamics. Continuity equation (mass conserved) Some thermodynamics. Energy equation (energy conserved) Flow with no friction (inviscid) Aerodynamics Basic Aerodynamics Continuity equation (mass conserved) Flow with friction (viscous) Momentum equation (F = ma) 1. Euler s equation 2. Bernoulli s equation

More information

Lab Reports Due on Monday, 11/24/2014

Lab Reports Due on Monday, 11/24/2014 AE 3610 Aerodynamics I Wind Tunnel Laboratory: Lab 4 - Pressure distribution on the surface of a rotating circular cylinder Lab Reports Due on Monday, 11/24/2014 Objective In this lab, students will be

More information

Chapter 2. Vector Calculus. 2.1 Directional Derivatives and Gradients. [Bourne, pp ] & [Anton, pp ]

Chapter 2. Vector Calculus. 2.1 Directional Derivatives and Gradients. [Bourne, pp ] & [Anton, pp ] Chapter 2 Vector Calculus 2.1 Directional Derivatives and Gradients [Bourne, pp. 97 104] & [Anton, pp. 974 991] Definition 2.1. Let f : Ω R be a continuously differentiable scalar field on a region Ω R

More information

the Cartesian coordinate system (which we normally use), in which we characterize points by two coordinates (x, y) and

the Cartesian coordinate system (which we normally use), in which we characterize points by two coordinates (x, y) and 2.5.2 Standard coordinate systems in R 2 and R Similarly as for functions of one variable, integrals of functions of two or three variables may become simpler when changing coordinates in an appropriate

More information

21 Laplace s Equation and Harmonic Functions

21 Laplace s Equation and Harmonic Functions 2 Laplace s Equation and Harmonic Functions 2. Introductory Remarks on the Laplacian operator Given a domain Ω R d, then 2 u = div(grad u) = in Ω () is Laplace s equation defined in Ω. If d = 2, in cartesian

More information

Homework Two. Abstract: Liu. Solutions for Homework Problems Two: (50 points total). Collected by Junyu

Homework Two. Abstract: Liu. Solutions for Homework Problems Two: (50 points total). Collected by Junyu Homework Two Abstract: Liu. Solutions for Homework Problems Two: (50 points total). Collected by Junyu Contents 1 BT Problem 13.15 (8 points) (by Nick Hunter-Jones) 1 2 BT Problem 14.2 (12 points: 3+3+3+3)

More information

1. Introduction, tensors, kinematics

1. Introduction, tensors, kinematics 1. Introduction, tensors, kinematics Content: Introduction to fluids, Cartesian tensors, vector algebra using tensor notation, operators in tensor form, Eulerian and Lagrangian description of scalar and

More information

ENGI Gradient, Divergence, Curl Page 5.01

ENGI Gradient, Divergence, Curl Page 5.01 ENGI 94 5. - Gradient, Divergence, Curl Page 5. 5. The Gradient Operator A brief review is provided here for the gradient operator in both Cartesian and orthogonal non-cartesian coordinate systems. Sections

More information

(You may need to make a sin / cos-type trigonometric substitution.) Solution.

(You may need to make a sin / cos-type trigonometric substitution.) Solution. MTHE 7 Problem Set Solutions. As a reminder, a torus with radii a and b is the surface of revolution of the circle (x b) + z = a in the xz-plane about the z-axis (a and b are positive real numbers, with

More information

ASTR 320: Solutions to Problem Set 3

ASTR 320: Solutions to Problem Set 3 ASTR 30: Solutions to Problem Set 3 Problem : The Venturi Meter The venturi meter is used to measure the flow speed in a pipe. An example is shown in Fig., where the venturi meter (indicated by the dashed

More information

Homework 7-8 Solutions. Problems

Homework 7-8 Solutions. Problems Homework 7-8 Solutions Problems 26 A rhombus is a parallelogram with opposite sides of equal length Let us form a rhombus using vectors v 1 and v 2 as two adjacent sides, with v 1 = v 2 The diagonals of

More information

Part A Fluid Dynamics & Waves Draft date: 17 February Conformal mapping

Part A Fluid Dynamics & Waves Draft date: 17 February Conformal mapping Part A Fluid Dynamics & Waves Draft date: 17 February 4 3 1 3 Conformal mapping 3.1 Wedges and channels 3.1.1 The basic idea Suppose we wish to find the flow due to some given singularities (sources, vortices,

More information

Vortex motion. Wasilij Barsukow, July 1, 2016

Vortex motion. Wasilij Barsukow, July 1, 2016 The concept of vorticity We call Vortex motion Wasilij Barsukow, mail@sturzhang.de July, 206 ω = v vorticity. It is a measure of the swirlyness of the flow, but is also present in shear flows where the

More information

FLUID DYNAMICS, THEORY AND COMPUTATION MTHA5002Y

FLUID DYNAMICS, THEORY AND COMPUTATION MTHA5002Y UNIVERSITY OF EAST ANGLIA School of Mathematics Main Series UG Examination 2017 18 FLUID DYNAMICS, THEORY AND COMPUTATION MTHA5002Y Time allowed: 3 Hours Attempt QUESTIONS 1 and 2, and THREE other questions.

More information

Matlab GUI for Elementary Flows as an Educational Tool

Matlab GUI for Elementary Flows as an Educational Tool Matlab GUI for Elementary Flows as an Educational Tool Gabriel A. Heredia Acevedo, Bernardo Restrepo, and Jonathan Holguino Polytechnic University of Puerto Rico Abstract Elementary flows in fluid mechanics

More information

2.25 Advanced Fluid Mechanics

2.25 Advanced Fluid Mechanics MIT Department of Mechanical Engineering 2.25 Advanced Fluid Mechanics Problem 10.3 This problem is from Advanced Fluid Mechanics Problems by A.H. Shapiro and A.A. Sonin Consider the three different, steady,

More information

AER210 VECTOR CALCULUS and FLUID MECHANICS. Quiz 4 Duration: 70 minutes

AER210 VECTOR CALCULUS and FLUID MECHANICS. Quiz 4 Duration: 70 minutes AER210 VECTOR CALCULUS and FLUID MECHANICS Quiz 4 Duration: 70 minutes 26 November 2012 Closed Book, no aid sheets Non-programmable calculators allowed Instructor: Alis Ekmekci Family Name: Given Name:

More information

1.060 Engineering Mechanics II Spring Problem Set 3

1.060 Engineering Mechanics II Spring Problem Set 3 1.060 Engineering Mechanics II Spring 2006 Due on Monday, March 6th Problem Set 3 Important note: Please start a new sheet of paper for each problem in the problem set. Write the names of the group members

More information

Chapter 3 Bernoulli Equation

Chapter 3 Bernoulli Equation 1 Bernoulli Equation 3.1 Flow Patterns: Streamlines, Pathlines, Streaklines 1) A streamline, is a line that is everywhere tangent to the velocity vector at a given instant. Examples of streamlines around

More information

Control Volume. Dynamics and Kinematics. Basic Conservation Laws. Lecture 1: Introduction and Review 1/24/2017

Control Volume. Dynamics and Kinematics. Basic Conservation Laws. Lecture 1: Introduction and Review 1/24/2017 Lecture 1: Introduction and Review Dynamics and Kinematics Kinematics: The term kinematics means motion. Kinematics is the study of motion without regard for the cause. Dynamics: On the other hand, dynamics

More information

Lecture 1: Introduction and Review

Lecture 1: Introduction and Review Lecture 1: Introduction and Review Review of fundamental mathematical tools Fundamental and apparent forces Dynamics and Kinematics Kinematics: The term kinematics means motion. Kinematics is the study

More information

3.1 Definition Physical meaning Streamfunction and vorticity The Rankine vortex Circulation...

3.1 Definition Physical meaning Streamfunction and vorticity The Rankine vortex Circulation... Chapter 3 Vorticity Contents 3.1 Definition.................................. 19 3.2 Physical meaning............................. 19 3.3 Streamfunction and vorticity...................... 21 3.4 The Rankine

More information

HW6. 1. Book problems 8.5, 8.6, 8.9, 8.23, 8.31

HW6. 1. Book problems 8.5, 8.6, 8.9, 8.23, 8.31 HW6 1. Book problems 8.5, 8.6, 8.9, 8.3, 8.31. Add an equal strength sink and a source separated by a small distance, dx, and take the limit of dx approaching zero to obtain the following equations for

More information

Part IB. Fluid Dynamics. Year

Part IB. Fluid Dynamics. Year Part IB Year 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2018 14 Paper 1, Section I 5D Show that the flow with velocity potential φ = q 2π ln r in two-dimensional,

More information

Study fluid dynamics. Understanding Bernoulli s Equation.

Study fluid dynamics. Understanding Bernoulli s Equation. Chapter Objectives Study fluid dynamics. Understanding Bernoulli s Equation. Chapter Outline 1. Fluid Flow. Bernoulli s Equation 3. Viscosity and Turbulence 1. Fluid Flow An ideal fluid is a fluid that

More information

Physics 3323, Fall 2016 Problem Set 2 due Sep 9, 2016

Physics 3323, Fall 2016 Problem Set 2 due Sep 9, 2016 Physics 3323, Fall 26 Problem Set 2 due Sep 9, 26. What s my charge? A spherical region of radius R is filled with a charge distribution that gives rise to an electric field inside of the form E E /R 2

More information

Gauss s Law. Name. I. The Law: , where ɛ 0 = C 2 (N?m 2

Gauss s Law. Name. I. The Law: , where ɛ 0 = C 2 (N?m 2 Name Gauss s Law I. The Law:, where ɛ 0 = 8.8510 12 C 2 (N?m 2 1. Consider a point charge q in three-dimensional space. Symmetry requires the electric field to point directly away from the charge in all

More information

Given a stream function for a cylinder in a uniform flow with circulation: a) Sketch the flow pattern in terms of streamlines.

Given a stream function for a cylinder in a uniform flow with circulation: a) Sketch the flow pattern in terms of streamlines. Question Given a stream function for a cylinder in a uniform flow with circulation: R Γ r ψ = U r sinθ + ln r π R a) Sketch the flow pattern in terms of streamlines. b) Derive an expression for the angular

More information

Rapid Design of Subcritical Airfoils. Prabir Daripa Department of Mathematics Texas A&M University

Rapid Design of Subcritical Airfoils. Prabir Daripa Department of Mathematics Texas A&M University Rapid Design of Subcritical Airfoils Prabir Daripa Department of Mathematics Texas A&M University email: daripa@math.tamu.edu In this paper, we present a fast, efficient and accurate algorithm for rapid

More information

Chapter II. Complex Variables

Chapter II. Complex Variables hapter II. omplex Variables Dates: October 2, 4, 7, 2002. These three lectures will cover the following sections of the text book by Keener. 6.1. omplex valued functions and branch cuts; 6.2.1. Differentiation

More information

Surface Tension Effect on a Two Dimensional. Channel Flow against an Inclined Wall

Surface Tension Effect on a Two Dimensional. Channel Flow against an Inclined Wall Applied Mathematical Sciences, Vol. 1, 007, no. 7, 313-36 Surface Tension Effect on a Two Dimensional Channel Flow against an Inclined Wall A. Merzougui *, H. Mekias ** and F. Guechi ** * Département de

More information

Figure 3: Problem 7. (a) 0.9 m (b) 1.8 m (c) 2.7 m (d) 3.6 m

Figure 3: Problem 7. (a) 0.9 m (b) 1.8 m (c) 2.7 m (d) 3.6 m 1. For the manometer shown in figure 1, if the absolute pressure at point A is 1.013 10 5 Pa, the absolute pressure at point B is (ρ water =10 3 kg/m 3, ρ Hg =13.56 10 3 kg/m 3, ρ oil = 800kg/m 3 ): (a)

More information

ENGI Gradient, Divergence, Curl Page 5.01

ENGI Gradient, Divergence, Curl Page 5.01 ENGI 940 5.0 - Gradient, Divergence, Curl Page 5.0 5. e Gradient Operator A brief review is provided ere for te gradient operator in bot Cartesian and ortogonal non-cartesian coordinate systems. Sections

More information

3 Generation and diffusion of vorticity

3 Generation and diffusion of vorticity Version date: March 22, 21 1 3 Generation and diffusion of vorticity 3.1 The vorticity equation We start from Navier Stokes: u t + u u = 1 ρ p + ν 2 u 1) where we have not included a term describing a

More information

Fluid Mechanics (3) - MEP 303A For THRID YEAR MECHANICS (POWER)

Fluid Mechanics (3) - MEP 303A For THRID YEAR MECHANICS (POWER) كلية الھندسة- جامعة القاھرة قسم ھندسة القوى الميكانيكية معمل التحكم األوتوماتيكى Notes on the course Fluid Mechanics (3) - MEP 303A For THRID YEAR MECHANICS (POWER) Part (3) Frictionless Incompressible

More information

7 Curvilinear coordinates

7 Curvilinear coordinates 7 Curvilinear coordinates Read: Boas sec. 5.4, 0.8, 0.9. 7. Review of spherical and cylindrical coords. First I ll review spherical and cylindrical coordinate systems so you can have them in mind when

More information

PDEs in Spherical and Circular Coordinates

PDEs in Spherical and Circular Coordinates Introduction to Partial Differential Equations part of EM, Scalar and Vector Fields module (PHY2064) This lecture Laplacian in spherical & circular polar coordinates Laplace s PDE in electrostatics Schrödinger

More information

Why airplanes fly, and ships sail

Why airplanes fly, and ships sail Why airplanes fly, and ships sail A. Eremenko April 23, 2013 And windmills rotate and propellers pull, etc.... Denote z = x + iy and let v(z) = v 1 (z) + iv 2 (z) be the velocity field of a stationary

More information

Random Problems. Problem 1 (30 pts)

Random Problems. Problem 1 (30 pts) Random Problems Problem (3 pts) An untwisted wing with an elliptical planform has an aspect ratio of 6 and a span of m. The wing loading (defined as the lift per unit area of the wing) is 9N/m when flying

More information