STA261H1.doc. i 1 X n be a random sample. The sample mean is defined by i= 1 X 1 + ( ) X has a N ( σ ) 1 n. N distribution. Then n. distribution.

Size: px
Start display at page:

Download "STA261H1.doc. i 1 X n be a random sample. The sample mean is defined by i= 1 X 1 + ( ) X has a N ( σ ) 1 n. N distribution. Then n. distribution."

Transcription

1 TA6Hdoc tttcl Iferece RADOM AMPLE Defto: Rdom mple clled rdom mple from dtruto wth pdf f ( (or pf ( depedet d hve detcl dtruto wth pdf f (or pf P (depedet-detcll-dtruted P f re It ofte deoted d ote Let f e mple from dtruto wth pdf f ( The ot pdf of ( ( f ( f f f AMPLE MEA Defto: mple Me d mple Vrce Let e rdom mple The mple me defed mple vrce defed ( d the Theorem If re d ech wth ( µ wth me µ ( µ More geerll f dtruto the h orml dtruto µ d vrce ( re depedet d ech orml dtruto me µ µ d vrce h ( µ the h UEFUL DITRIUTIO Theorem uppoe depedet d rdom mple from ( µ ( h χ dtruto dtruto The d ( re Pge of 3

2 TA6Hdoc The t d F Dtruto Two mportt dtruto ueful tttcl ferece re: W If W ~ ( d V ~ χ r re depedet the h t-dtruto V r U r U ~ χ r d V ~ χ r re depedet the h F-dtruto V r THE CETRAL LIMIT THEOREM Let rdom mple wth fte me µ d vrce Let The E( E( µ ( vr( vr( > TATITICAL MODEL Coder rdom mple f θ pdf (or from dtruto wth pdf f θ ( The fml { θ Ω} f (where P θ pf θ uow prmeter Ω prmeter pce tttcl model We ow tht the dtruto uder vetgto the fml ut do t ow whch oe ed o the mple vlue we fd etmte for θ; Oce we fd θ we ow the dtruto θ LIKELIHOOD FUCTIO Defto: The Lelhood Fucto Let e rdom mple from dtruto wth pdf f θ ( (or pf P θ L : Ω R gve L( θ cfθ ( cfθ ( fθ ( ( θ cp ( cp ( P ( defed L θ θ θ The lelhood where c > (or Defto: The Mmum Lelhood Etmte (MLE The fucto ˆ θ : Ω clled the mmum lelhood etmtor ( θˆ clled the mmum lelhood etmte of θ f for ech Ω θ ˆ( ( L( θ L θ The Algorthm Th ugget tht order to ot the MLE of θ we mmum the lelhood fucto ce vero of the lelhood vero wth c gve the me mmum vlue we ue th vero I mot ce th doe dfferetto θ θ Wrte the lelhood fucto L( f Pge of 3

3 TA6Hdoc l θ Wrte the log lelhood fucto defed l( θ l( L( θ f ( 3 Wrte the core fucto ( θ ( θ l θ θ d olve for θ 4 Wrte the core equto 5 Chec tht the oluto the glol mmum If t the t the MLE of θ Theorem ˆ θ the MLE Ω d Ω - φ : Ω the the MLE the ew prmeterzto If ( ˆ θ ( ( ˆ θ ( φ Proof: * L ˆ θ ( ( g ˆ g ˆ ( θ φ θ f L ˆ ˆ θ θ * L( θ fθ ( gθ ( L ( θ * θ L ˆ * θ ( L θ d o ˆ ( Hece for ever Ω of the ew prmeterzto The Algorthm: The Multdmeol Ce θ the MLE I the multdmeol ce the prmeter pce Ω {( θ θ > } Wrte the lelhood fucto L (( θ θ Wrte the log lelhood fucto defed l (( θ l( L( ( θ θ l( ( θ θ 3 Wrte the core fucto ( ( θ θ 4 Wrte the core equto ( ( θ θ θ l( ( θ θ θ (( θ θ l θ θ (( d olve l θ θ θ 5 Chec tht the oluto re the glol mmum (the mtr of the ecod prtl dervtve evluted t ˆ θ ˆ mut e egtve defte or equvletl ll egevlue egtve θ TADARD ERROR AD IA uppoe θˆ the MLE; ˆ φ ( φ ˆ θ ( the etmte of φ ( θ Oe meure of ccurc commol ued ME (me qured error How relle re the etmte? Defto: Me qured Error Pge 3 of 3

4 TA6Hdoc The me qured error defed ME ˆ φ ( ˆ φ φ( θ θ E θ for ech θ Ω Theorem E θ et the ME ( ˆ θ φ vrθ Eθ ( T φ( θ E the ME ( ˆ ( T (ued If φ ( θ R d T : R uch tht ( T ote: Whe ( T φ( θ E ( T φ( θ θ θ θ φ vr θ T Defto: E θ ( T φ( θ clled the the etmte Defto: tdrd Error θ ( T vr ( T TD clled the tdrd error of the etmte θ UFFICIEC The lelhood fucto for model d dt how how the dt upport the vrou pole vlue of the prmeter It ot the ctul lelhood ut the rto of the lelhood t dfferet vlue tht re mportt Defto: tttc A tttc fucto of oe or more rdom vrle tht doe ot deped o the uow prmeter Emple tttc ut µ ot ule µ d re ow ote Although tttc doe ot deped o uow prmeter t dtruto m Defto: uffcet tttc T T L θ cl θ for ome If the tttc T uch tht ( ( ( ( c > tht m deped o ( d ( the T clled uffcet tttc for the model Emple uppoe tht { 34 } Ω { } d the prolt dtruto gve 4 d 3 4 f θ θ θ f θ 6 34 Pge 4 of 3

5 TA6Hdoc the T uffcet tttc ote tht T h ol vlue compred 34 to 4 vlue the orgl model If we defe T T Theorem: Fctorzto Theorem If the det (or prolt fucto for model fctor f ( h( g ( T ( where h d g re o-egtve the T uffcet tttc θ θ θ Proof: uppoe T ( T ( the L( θ cfθ ( ch( gθ ( T ( h( gθ ( T ( c h( gθ ( T ( h( gθ ( T ( h( c h( g ( T ( T ( T ( h( θ c f ( L( θ Hece T uffcet tttc θ Defto: Mml uffcet tttc A mml uffcet tttc T for model uffcet tttc uch tht oce we hve the lelhood fucto L ( θ for the model we c determe T ( Emple Let L e rdom mple from ( µ ( ow The lelhood fucto ( µ ( µ e e the Fctorzto Theorem T ( π ( µ uffcet tttc ecue lelhood fucto potve multple of e whch completel determed t mmum vlue Hece mml uffcet tttc determed from the lelhood fucto of the model COFIDECE ITERVAL Defto: Qurtle For p [ ] the p th qurtle p for the dtruto wth cdf F the mllet umer p uch tht p F Whe F trctl creg d cotuou the F ( p the uque umer p uch tht p F or p F ( p ( p p Prtculr Ce: F 5 5 F 5 5 F clled the med clled the frt qurtle clled the thrd qurtle Pge 5 of 3

6 TA6Hdoc Defto: Cofdece Itervl c l u A tervl ( ( ( ( α-cofdece-tervl for ( θ P ( φ( θ c( P ( l φ( θ u α for ever θ Ω θ tervl θ φ f α referred to the cofdece level of the Cofdece Itervl for µ Let e rdom mple from ( µ α% cofdece tervl for µ c here Φ α α c or Φ ( ow The c where Φ the cdf of ( µ h ( dtruto A c (t clude the prmeter µ wth prolt α; Let e rdom mple from dtruto (ot orml wth fte me µ d fte vrce (ow CLT for µ c 3 Let µ c h lmtg ( dtruto A ppromte α% cofdece tervl ; here Φ e rdom mple from ( µ α α c or Φ c where Φ the cdf of ( ( uow The µ h t dtruto A α% cofdece tervl for µ c c ; here α G c or α c G where G the cdf of t 4 Let e rdom mple from mple from dtruto (ot orml wth fte me µ d fte vrce (uow CLT µ cofdece tervl for µ c of ( h lmtg ( dtruto A ppromte α% c ; here Φ α α c or c Φ where Φ the cdf ote tht P c c µ c o µ µ c c α c µ P c c α µ µ If Z ~ ( the P ( Z c P( c Z c Φ( c Φ( c Φ( c Φ( c ( Z c α Φ( c α Φ( c α P ( Φ( c o Pge 6 of 3

7 TA6Hdoc Cofdece Itervl for p Let oml( p ~ (p uow CLT ppromte α% cofdece tervl for p α c Φ where Φ the cdf of ( p h lmtg ( dtruto A ( ( ( c c ; here Φ α c or Cofdece Itervl for Let e rdom mple from ( µ χ dtruto A α% cofdece tervl for d P ( > Let α where ~ χ e rdom mple from ( µ ( µ ow uow The µ ( µ uow χ dtruto A α% cofdece tervl for d P ( > α where ~ χ µ µ ; here P ( < uow The ( ( ; here P ( < h α h α Tetg tttcl Hpothee Defto: tttcl Hpothe A tttcl hpothe erto out the dtruto of oe or more rdom vrle( If the hpothe completel determe the dtruto t clled mpl hpothe Otherwe t clled compote hpothe Emple H : θ 75 mple hpothe H : θ 75 H : θ 75 re compote hpothe > Defto: Tet A tet of tttcl hpothe rule uch tht whe the epermetl vlue ( hve ee oted led to deco to ccept or reect the hpothe uder coderto Pge 7 of 3

8 TA6Hdoc Defto: Crtcl Rego Let C e tht uet of the mple pce whch ccordce to the precred rule of the tet led to the reecto of the hpothe uder coderto The C clled the crtcl rego Defto: Power Fucto The power fucto of tet of tttcl hpothe of H gt H the prolt of reectg the hpothe uder coderto Defto: gfcce Level The mmum vlue of the power fucto whe H true clled the gfcce level of the tet Defto: et Crtcl Rego A uet C of the mple pce clled et crtcl rego of ze α for tetg H gt H f for ever P A H we hve uet A of wth (( α P( ( C H α P( ( C H P( ( A H Theorem: em-pero Theorem L( θ If we te C ( > L θ H : θ θ gt H : θ θ the C et crtcl rego of ze α for tetg AIC TET z-tet Let : µ µ e rdom mple from H true the Z ~ ( µ where ow Whe the ull hpothe µ We reect H f the P-vlue gve µ µ µ µ Pµ µ µ P Z Φ Φ Φ µ mll If the P-vlue le th α the the reult re d to e tttcll gfct t the ( α % level eroull Model Pge 8 of 3

9 Let TA6Hdoc e rdom mple from eroull ( θ where [ ] H : θ θ Whe H true the ppromte P-vlue P Z mll θ Z θ θ h lmtg ( θ ( θ Φ ( θ θ ( θ θ uow uppoe we wt to tet θ dtruto The the We reect H whe the P-vlue Equvlece etwee z-tet d z-cofdece-itervl Let e rdom mple from ( µ where ow The cofdece tervl α z α z α z α Φ clude µ wth prolt α If we decde tht for P- vlue le th α 5 we declre the reult tttcll gfct the we ow tht the reult re tttcll gfct wheever the 95% cofdece tervl for µ doe t cot µ t-tet Let T P e rdom mple from ( µ µ ~ t ( µ T µ uppoe we wt to tet H : µ µ Whe H true We reect the ull-hpothe H whe the P-vlue gve µ G mll; here G the cdf of t mple ze Clculto We m determe the mple ze o tht the mrg of error for α % cofdece tervl for µ doe ot eceed precred vlue δ > THE METHOD OF MOMET Let e rdom mple wth pdf f ( θ θ ( θ θ r Ω r the th momet of the dtruto The um m The epectto M E[ ] clled the th momet of the mple The Method of Momet A method of pot etmto clled the method of momet c e decred follow: Pge 9 of 3

10 TA6Hdoc Equte M to the epermetl vlue m egg wth d cotug utl there re eough equto to ot θ θ r fucto of m tht θ h ( θ θ r m r e Iferece Coder rdom vrle whoe dtruto deped o θ Ω We hve prevoul loo o θ eg ome uow cott Jut we loo o pole vlue of we ow loo o θ pole vlue of the rdom Θ tht h dtruto Π o the et Ω The Pror Dtruto We hll deote the pdf (or pf of Θ π d defe π ( θ whe θ Ω ( θ Th ecue π ( θ the pdf (or pf of Θ pror to the oervto o π clled the pror pdf of Θ The Poteror Dtruto Let e rdom mple from the dtruto of d let e tttc whch fucto of We c fd the codtol pdf (or pf of gve Θ whch we deote g ( θ ot pdf (or pf of d Θ gve ( θ π ( θ g( θ gve m ( θ dθ π ( θ g( θ Thu the If Θ cotuou the the mrgl pdf of dθ If Θ dcreet the tegrto would e replced ummto I ether ce the codtol pdf (or codtol pf of gve Θ ( θ π ( θ g( θ K θ m K ( θ clled the poteror pdf (or pf of Θ Th ecue m m K θ the pdf (or pf of Θ fter the oervto o h ee mde Model Checg Oe pproch to chooe the dcrepc tttc R D le the rego of low prolt the we reect the hpothe tht the model uder vetgto true I order to compre D ( wth D we eed to compute the P-vlue P ( D > D( Th c e doe v two method: Th method requre tht D e cllr I th method we ue the codtol dtruto of D gve the vlue of uffcet tttc T It c e how tht th codtol prolt the me for ever prmeter θ D : If the oerved vlue of D Defto: Acllr A tttc whoe dtruto doe ot deped o the prmeter θ clled cllr Emple Pge of 3

11 TA6Hdoc We ume µ (µ uow ow It h ee how tht mml uffcet tttc Coder mple vlue ( d defe r r ( ( r r ( It c e how tht: R R R h dtruto tht depedet of µ Hece R rdom mple from cllr R depedet of o the codtol dtruto R Therefore the two method gree th ce Alo ( ( R ~ R ( D R oerved vlue ( R ow coder the dcrepc tttc the me the dtruto of We ow D( R ~ χ Compute ( D( R D( P > to ee f the D rego of low prolt or ot (vlue cloe to d dcte tl of the dtruto d oth ce dcte rego of low prolt If t the we reect the model uder vetgto eg true Emple We ume tht ( rdom mple from ( µ mml uffcet tttc (oth µ d uow It h ee how Coder mple vlue ( d defe r r r r It c e how tht: R R R h dtruto tht depedet of µ d Hece R cllr R depedet of o the codtol dtruto R the me the dtruto of R Therefore the two method gree th ce ow coder the dcrepc tttc R D R l To ue th tttc for model checg we eed to ow the dtruto of the tttc; th c e doe v multo The compute P ( D( R > D( to ee f the oerved vlue D ( rego of low prolt or ot (vlue cloe to d dcte tl of the dtruto d oth ce dcte rego of low prolt If t the we reect the model uder vetgto eg true CHI-QUARED GOODE OF FIT TET Let hve multoml dtruto wth prmeter d Defe Q ( p lmtg χ dtruto Hece Q ppromtel p p where p p p It c e how tht Q h p χ dtruto Pge of 3

12 TA6Hdoc Procedure Let A e the mple pce of rdom epermet A A A A A where A A Let p P( A 3 We repet the epermet tme 4 Let deote the umer of tme the outcome of the rdom epermet h multoml dtruto wth prmeter p p 5 We tet the mple hpothe other ltertve 6 If H true the the tttc ( Q c α H where Q : p p p p ( p h ppromte p A The p p re pecfed vlue gt ll χ dtruto We fd c o tht P where α the dered gfcce level of the tet (the gfcce level of the tet ppromtel equl to α 7 We reect H f the oerved vlue of Q c METHOD OF LEAT QUARE uppoe we wt to etmte E ( ed o mple vlue ( We elect the pot t ( the et of pole vlue of E ( tht mmze ( t( The etmte t ( clled the let qure etmte of ( E ote We hve ( t( (( ( t( ( ( t( ( ( t( ( ( t( ( t( ( ( t( ( t( ( o ( t( ( ( t( Th mmzed whe t( f pole vlue of E ( ; f ot we chooe pole vlue of ( etmte of t ( E tht cloet to the ut Ce of Rdom Vector Pge of 3

13 TA6Hdoc We hve d E E E( t We oerve ( R d fd t ( mmze ( t ( t { pole vlue of E( } tht Regreo Model: The mple Ler Regreo Model We tud the relto etwee the repoe vrle (depedet d the predctor vrle (depedet I the Regreo Model we th the chge the through the codtol me tht chge E chge Defto I the mple Regreo model we ume ( coeffcet E d re clled the regreo Defto: ctter Plot A ctter plot plot of dt pot ( ( d the form of the relto It how whether relto et etwee d LEAT QUARE ETIMATE PREDICTIO AD TADARD ERROR Defto: Let qure Etmte uppoe we oerve the depedet umer ( ( We hve E The lee qure etmte of the codtol me the t the et of pole vlue of the codtol me tht mmze vlue of ( The d tht mmze th clled the let qure etmte of d Theorem uppoe tht E( d we oerve the depedet vlue ( ( ( The the let qure etmte of for Pge 3 of 3

14 TA6Hdoc ( ( wheever ( ote ( ( ( o ( ( ( Theorem If ( d we oerve depedet vlue ( ( the E where ; E E where ( ( ( ( Thu d hve ued propert tht the re ued etmtor Remr A turl predctor of future vlue of whe ( ecue we do ot hve E the vlue of d we ue the etmte d for predcto Tht ue the le Theorem If E( d vr( ( ( the vr( vr( cov( ( d we oerve depedet vlue ( Corollr Pge 4 of 3

15 TA6Hdoc Pge 5 of 3 From the theorem ove we ot vr Proof: cov vr vr vr Theorem If E d vr d we oerve depedet vlue for the E where Thu ued etmte of Therefore the tdrd error of THE AOVA DECOMPOITIO AD THE F TATITIC Lemm If re uch tht the ueful decompoto of clled the regreo um of qure (R clled the error um of qure (E AOVA (Al of Vrce Tle ource DF (degree of freedom um of qure Me qure

16 TA6Hdoc Pge 6 of 3 Error Totl Reult We hve E whch equl to f d ol f I other word ued etmtor of f d ol f Proof: E E E vr Defto: The F-tttc ce ued etmte of hece the F-tttc gve E R F the rto of two ued etmte of whe : H (there ler effect due to true Therefore reect : H whe F lrge THE COEFFICIET OF DETERMIATIO AD CORRELATIO Defto: Coeffcet of Determto

17 TA6Hdoc Pge 7 of 3 Defe R the coeffcet of determto ce we hve tht R o R ote: Whe we ue the model to me predcto vlue of R er me hghl ccurte predcto whle vlue of R er me the predcto wll ot e ver ccurte Defto: Correlto We defe the correlto coeffcet D D cov corr ρ We ow tht ρ d tht c ± ± ρ Defto: mple Correlto We defe the mple correlto r where the mple covrce etmtg cov d d re mple tdrd devto of d We hve tht r d c r ± ± Theorem If re uch tht d the r R Proof: R r COFIDECE ITERVAL AD TETIG HPOTHEE Theorem

18 If dtruted ( TA6Hdoc d we oerve the depedet vlue ( ( ( the the codtol dtruto of d ~ ~ ~ ( ~ χ depedet of ( gve re: for Corollr ( 3 ~ t ( ( ( ~ t ~ t( ( ( ( 4 If F defed F R the E : H true f d ol f ~ F( F Cofdece Itervl A α% cofdece tervl for t ( A α% cofdece tervl for α α ( t t ( α t ( ( ( α Tetg Hpothe We c tet the hpothe H : computg the P-vlue P F ~ F F to ee whether or ot the oerved vlue le rego of low prolt ( Pge 8 of 3

19 TA6Hdoc otce tht we c lo tet the hpothe H computg the P-vlue : ( P T T ~ t( It c e how tht thee two P-vlue re equl AALI OF REIDUAL Model checg ed o the redul dcued erler Corollr E vr( Defto: tdrdzed Redul We defe the th tdrdzed redul ( ( ote If the codtol dtruto of orml the ( ( ppromtel true for ( ( for lrge ~ ( Th THE REIDUAL AD PROAILIT PLOT Oe pproch to model checg to ee f the vlue of the tdrdzed redul loo le mple from For th we ue the redul d prolt plot Redul Plot We defed the redul erler r ( r r ( where ( from It c e how tht ( ( R ~ µ We tdrdze R R * mple vlue d depedet of ( * The ~ ( R h me d vrce Pge 9 of 3

20 TA6Hdoc Whe * The plot of ( r uow we etmte t ppromtel dtruted ( I th ce R * ( hould ot how dcerle ptter Mot of the vlue hould le ( 33 A dcerle ptter wth everl etreme vlue evdece gt the model umpto to e correct multg orml rdom vrle d plottg t gve good de of how the plot hould loo Prolt Plot uppoe rdom mple from ( µ Φ tht the we cll ( µ Φ dcte tht f we plot the pot ( Φ e how tht the epectto of the th order tttc tfe E correpod to the order tttc E tercept µ d lope We cll uch plot prolt plot ; uppoe mple vlue The t c µ If the dt Φ the orml core of The the hould le o le wth Regreo Model: Oe Ctegorcl Predctor (Oe-W AOVA ow uppoe tht the predctor te vlue Let E( the me repoe whe te the vlue Defe We hve E( ce ol oe of the d the ret re we ot the mple ler regreo model d hece ll the reult prevoul oted hold Let qure Etmte ow uppoe we hve let qure etmte of It c e how tht vlue ( whe d ll repoe vlue re depedet The re oted mmzg ( ued etmtor of o the let qure etmte of tht E( E( mple Vrce Aumg ll hve codtol vrce vr tht vr( The ( vr ( vr( vr( ( cov whe codtol covrce d the Pge of 3

21 TA6Hdoc Pge of 3 We hve ued etmte of Cofdece Itervl d Tetg If we ume tht ~ the ~ depedet of ~ χ ow ~ d hece ( defto t T ~ ce α α < < < < P P hece α% cofdece tervl for t t α α Alo we c tet the ull hpothe : H computg the P-vlue G T P ; where G the cdf of the t dtruto IFERECE AOUT DIFFERECE OF MEA We ow tud ferece out Epectto d Vrce We hve E E E d vr vr vr ce d re depedet Cofdece Itervl ce ~ d ~ o ~ We hve ~ depedet of ~ χ Thu t T ~

22 TA6Hdoc Pge of 3 ce α α < < < < P P hece α% cofdece tervl for t t α α Alo we c tet the ull hpothe H : computg the P-vlue G T P ; where G the cdf of the t dtruto ote If te o ol vlue I th ce T clled the two-mple t-tttc the cofdece tervl clled the two-mple t-cofdece-tervl d the t-tet clled the two-mple t-tet I th ce f we coclude tht the reltohp et etwee d I geerl whe to tet the ull hpothe tht there o reltohp etwee the repoe d the predctor equvlet to H : If H true the let qure etmte of AOVA Tle We hve the compoto ource DF (degree of freedom um of qure Me qure Error Totl F-tttc To e H we ue the F-tttc Wth ormlt umpto we hve F F ~ d o we compute > F P d ee f the oerved vlue of F rego of low prolt or ot Whe th P-vlue equl to the P-vlue we oted for the two-mple t-tet

23 TA6Hdoc Model Checg To chec the model we loo t the tdrdzed redul gve efore d loo t the redul plot Pge 3 of 3

Module 2: Introduction to Numerical Analysis

Module 2: Introduction to Numerical Analysis CY00 Itroducto to Computtol Chemtr Autum 00-0 Module : Itroducto to umercl Al Am of the preet module. Itroducto to c umercl l. Developg mple progrm to mplemet the umercl method opc of teret. Iterpolto:

More information

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n 0. Sere I th ecto, we wll troduce ere tht wll be dcug for the ret of th chpter. Wht ere? If we dd ll term of equece, we get whch clled fte ere ( or jut ere) d deoted, for hort, by the ymbol or Doe t mke

More information

PubH 7405: REGRESSION ANALYSIS REGRESSION IN MATRIX TERMS

PubH 7405: REGRESSION ANALYSIS REGRESSION IN MATRIX TERMS PubH 745: REGRESSION ANALSIS REGRESSION IN MATRIX TERMS A mtr s dspl of umbers or umercl quttes ld out rectgulr rr of rows d colums. The rr, or two-w tble of umbers, could be rectgulr or squre could be

More information

Reaction Time VS. Drug Percentage Subject Amount of Drug Times % Reaction Time in Seconds 1 Mary John Carl Sara William 5 4

Reaction Time VS. Drug Percentage Subject Amount of Drug Times % Reaction Time in Seconds 1 Mary John Carl Sara William 5 4 CHAPTER Smple Lear Regreo EXAMPLE A expermet volvg fve ubject coducted to determe the relatohp betwee the percetage of a certa drug the bloodtream ad the legth of tme t take the ubject to react to a tmulu.

More information

Department of Economics University of Toronto. ECO2408F M.A. Econometrics. Lecture Notes on Simple Regression Model

Department of Economics University of Toronto. ECO2408F M.A. Econometrics. Lecture Notes on Simple Regression Model Deprtmet f Ecmc Uvert f Trt ECO48F M.A. Ecmetrc Lecture Nte Smple Regre Mdel Smple Regre Mdel I the frt lecture we lked t fttg le t ctter f pt. I th chpter we eme regre methd f eplrg the prbbltc tructure

More information

Simple Linear Regression Analysis

Simple Linear Regression Analysis LINEAR REGREION ANALYSIS MODULE II Lecture - 5 Smple Lear Regreo Aaly Dr Shalabh Departmet of Mathematc Stattc Ida Ittute of Techology Kapur Jot cofdece rego for A jot cofdece rego for ca alo be foud Such

More information

Chapter 2 Intro to Math Techniques for Quantum Mechanics

Chapter 2 Intro to Math Techniques for Quantum Mechanics Wter 3 Chem 356: Itroductory Qutum Mechcs Chpter Itro to Mth Techques for Qutum Mechcs... Itro to dfferetl equtos... Boudry Codtos... 5 Prtl dfferetl equtos d seprto of vrbles... 5 Itroducto to Sttstcs...

More information

Soo King Lim Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: Figure 8: Figure 9: Figure 10: Figure 11:

Soo King Lim Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: Figure 8: Figure 9: Figure 10: Figure 11: Soo Kg Lm 1.0 Nested Fctorl Desg... 1.1 Two-Fctor Nested Desg... 1.1.1 Alss of Vrce... Exmple 1... 5 1.1. Stggered Nested Desg for Equlzg Degree of Freedom... 7 1.1. Three-Fctor Nested Desg... 8 1.1..1

More information

3. REVIEW OF PROPERTIES OF EIGENVALUES AND EIGENVECTORS

3. REVIEW OF PROPERTIES OF EIGENVALUES AND EIGENVECTORS . REVIEW OF PROPERTIES OF EIGENVLUES ND EIGENVECTORS. EIGENVLUES ND EIGENVECTORS We hll ow revew ome bc fct from mtr theory. Let be mtr. clr clled egevlue of f there et ozero vector uch tht Emle: Let 9

More information

REVIEW OF SIMPLE LINEAR REGRESSION SIMPLE LINEAR REGRESSION

REVIEW OF SIMPLE LINEAR REGRESSION SIMPLE LINEAR REGRESSION REVIEW OF SIMPLE LINEAR REGRESSION SIMPLE LINEAR REGRESSION I lear regreo, we coder the frequecy dtrbuto of oe varable (Y) at each of everal level of a ecod varable (X). Y kow a the depedet varable. The

More information

Linear Open Loop Systems

Linear Open Loop Systems Colordo School of Me CHEN43 Trfer Fucto Ler Ope Loop Sytem Ler Ope Loop Sytem... Trfer Fucto for Smple Proce... Exmple Trfer Fucto Mercury Thermometer... 2 Derblty of Devto Vrble... 3 Trfer Fucto for Proce

More information

DATA FITTING. Intensive Computation 2013/2014. Annalisa Massini

DATA FITTING. Intensive Computation 2013/2014. Annalisa Massini DATA FITTING Itesve Computto 3/4 Als Mss Dt fttg Dt fttg cocers the problem of fttg dscrete dt to obt termedte estmtes. There re two geerl pproches two curve fttg: Iterpolto Dt s ver precse. The strteg

More information

Introduction to mathematical Statistics

Introduction to mathematical Statistics Itroducto to mthemtcl ttstcs Fl oluto. A grou of bbes ll of whom weghed romtely the sme t brth re rdomly dvded to two grous. The bbes smle were fed formul A; those smle were fed formul B. The weght gs

More information

Linear Regression. Can height information be used to predict weight of an individual? How long should you wait till next eruption?

Linear Regression. Can height information be used to predict weight of an individual? How long should you wait till next eruption? Iter-erupto Tme Weght Correlato & Regreo 1 1 Lear Regreo 0 80 70 80 Heght 1 Ca heght formato be ued to predct weght of a dvdual? How log hould ou wat tll et erupto? Weght: Repoe varable (Outcome, Depedet)

More information

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ]

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ] Are d the Defte Itegrl 1 Are uder Curve We wt to fd the re uder f (x) o [, ] y f (x) x The Prtto We eg y prttog the tervl [, ] to smller su-tervls x 0 x 1 x x - x -1 x 1 The Bsc Ide We the crete rectgles

More information

r y Simple Linear Regression How To Study Relation Between Two Quantitative Variables? Scatter Plot Pearson s Sample Correlation Correlation

r y Simple Linear Regression How To Study Relation Between Two Quantitative Variables? Scatter Plot Pearson s Sample Correlation Correlation Maatee Klled Correlato & Regreo How To Study Relato Betwee Two Quattatve Varable? Smple Lear Regreo 6.11 A Smple Regreo Problem 1 I there relato betwee umber of power boat the area ad umber of maatee klled?

More information

Simple Linear Regression. How To Study Relation Between Two Quantitative Variables? Scatter Plot. Pearson s Sample Correlation.

Simple Linear Regression. How To Study Relation Between Two Quantitative Variables? Scatter Plot. Pearson s Sample Correlation. Correlato & Regreo How To Study Relato Betwee Two Quattatve Varable? Smple Lear Regreo 6. A Smple Regreo Problem I there relato betwee umber of power boat the area ad umber of maatee klled? Year NPB( )

More information

Stats & Summary

Stats & Summary Stts 443.3 & 85.3 Summr The Woodbur Theorem BCD B C D B D where the verses C C D B, d est. Block Mtrces Let the m mtr m q q m be rttoed to sub-mtrces,,,, Smlrl rtto the m k mtr B B B mk m B B l kl Product

More information

Density estimation II

Density estimation II CS 750 Mche Lerg Lecture 6 esty estmto II Mlos Husrecht mlos@tt.edu 539 Seott Squre t: esty estmto {.. } vector of ttrute vlues Ojectve: estmte the model of the uderlyg rolty dstruto over vrles X X usg

More information

CURVE FITTING LEAST SQUARES METHOD

CURVE FITTING LEAST SQUARES METHOD Nuercl Alss for Egeers Ger Jord Uverst CURVE FITTING Although, the for of fucto represetg phscl sste s kow, the fucto tself ot be kow. Therefore, t s frequetl desred to ft curve to set of dt pots the ssued

More information

Chapter 10 An Introduction to the Analysis of Variance

Chapter 10 An Introduction to the Analysis of Variance Chpter 0 A Itroducto to the Aly of Vrce The ly of vrce (ANOVA) oe of the mot powerful tool the the tttc' toolkt. The purpoe of ANOVA to ue vlble etmte of populto vrce to determe f there re megful dfferece

More information

Summary of the lecture in Biostatistics

Summary of the lecture in Biostatistics Summary of the lecture Bostatstcs Probablty Desty Fucto For a cotuos radom varable, a probablty desty fucto s a fucto such that: 0 dx a b) b a dx A probablty desty fucto provdes a smple descrpto of the

More information

Quiz 1- Linear Regression Analysis (Based on Lectures 1-14)

Quiz 1- Linear Regression Analysis (Based on Lectures 1-14) Quz - Lear Regreo Aaly (Baed o Lecture -4). I the mple lear regreo model y = β + βx + ε, wth Tme: Hour Ε ε = Ε ε = ( ) 3, ( ), =,,...,, the ubaed drect leat quare etmator ˆβ ad ˆβ of β ad β repectvely,

More information

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ]

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ] Atervtves The Itegrl Atervtves Ojectve: Use efte tegrl otto for tervtves. Use sc tegrto rules to f tervtves. Aother mportt questo clculus s gve ervtve f the fucto tht t cme from. Ths s the process kow

More information

Differential Entropy 吳家麟教授

Differential Entropy 吳家麟教授 Deretl Etropy 吳家麟教授 Deto Let be rdom vrble wt cumultve dstrbuto ucto I F s cotuous te r.v. s sd to be cotuous. Let = F we te dervtve s deed. I te s clled te pd or. Te set were > 0 s clled te support set

More information

Chapter 3 Supplemental Text Material

Chapter 3 Supplemental Text Material S3-. The Defto of Fctor Effects Chpter 3 Supplemetl Text Mterl As oted Sectos 3- d 3-3, there re two wys to wrte the model for sglefctor expermet, the mes model d the effects model. We wll geerlly use

More information

Numerical Analysis Topic 4: Least Squares Curve Fitting

Numerical Analysis Topic 4: Least Squares Curve Fitting Numerl Alss Top 4: Lest Squres Curve Fttg Red Chpter 7 of the tetook Alss_Numerk Motvto Gve set of epermetl dt: 3 5. 5.9 6.3 The reltoshp etwee d m ot e ler. Fd futo f tht est ft the dt 3 Alss_Numerk Motvto

More information

under the curve in the first quadrant.

under the curve in the first quadrant. NOTES 5: INTEGRALS Nme: Dte: Perod: LESSON 5. AREAS AND DISTANCES Are uder the curve Are uder f( ), ove the -s, o the dom., Prctce Prolems:. f ( ). Fd the re uder the fucto, ove the - s, etwee,.. f ( )

More information

Section 7.2 Two-way ANOVA with random effect(s)

Section 7.2 Two-way ANOVA with random effect(s) Secto 7. Two-wy ANOVA wth rdom effect(s) 1 1. Model wth Two Rdom ffects The fctors hgher-wy ANOVAs c g e cosdered fxed or rdom depedg o the cotext of the study. or ech fctor: Are the levels of tht fctor

More information

Econometric Methods. Review of Estimation

Econometric Methods. Review of Estimation Ecoometrc Methods Revew of Estmato Estmatg the populato mea Radom samplg Pot ad terval estmators Lear estmators Ubased estmators Lear Ubased Estmators (LUEs) Effcecy (mmum varace) ad Best Lear Ubased Estmators

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 Mtr Trsformtos usg Egevectors September 8, Mtr Trsformtos Usg Egevectors Lrry Cretto Mechcl Egeerg A Semr Egeerg Alyss September 8, Outle Revew lst lecture Trsformtos wth mtr of egevectors: = - A ermt

More information

x z Increasing the size of the sample increases the power (reduces the probability of a Type II error) when the significance level remains fixed.

x z Increasing the size of the sample increases the power (reduces the probability of a Type II error) when the significance level remains fixed. ] z-tet for the mea, μ If the P-value i a mall or maller tha a pecified value, the data are tatitically igificat at igificace level. Sigificace tet for the hypothei H 0: = 0 cocerig the ukow mea of a populatio

More information

The z-transform. LTI System description. Prof. Siripong Potisuk

The z-transform. LTI System description. Prof. Siripong Potisuk The -Trsform Prof. Srpog Potsuk LTI System descrpto Prevous bss fucto: ut smple or DT mpulse The put sequece s represeted s ler combto of shfted DT mpulses. The respose s gve by covoluto sum of the put

More information

Statistical Inference Procedures

Statistical Inference Procedures Statitical Iferece Procedure Cofidece Iterval Hypothei Tet Statitical iferece produce awer to pecific quetio about the populatio of iteret baed o the iformatio i a ample. Iferece procedure mut iclude a

More information

Comments on Discussion Sheet 18 and Worksheet 18 ( ) An Introduction to Hypothesis Testing

Comments on Discussion Sheet 18 and Worksheet 18 ( ) An Introduction to Hypothesis Testing Commet o Dicuio Sheet 18 ad Workheet 18 ( 9.5-9.7) A Itroductio to Hypothei Tetig Dicuio Sheet 18 A Itroductio to Hypothei Tetig We have tudied cofidece iterval for a while ow. Thee are method that allow

More information

CS473-Algorithms I. Lecture 12b. Dynamic Tables. CS 473 Lecture X 1

CS473-Algorithms I. Lecture 12b. Dynamic Tables. CS 473 Lecture X 1 CS473-Algorthm I Lecture b Dyamc Table CS 473 Lecture X Why Dyamc Table? I ome applcato: We do't kow how may object wll be tored a table. We may allocate pace for a table But, later we may fd out that

More information

The Mathematical Appendix

The Mathematical Appendix The Mathematcal Appedx Defto A: If ( Λ, Ω, where ( λ λ λ whch the probablty dstrbutos,,..., Defto A. uppose that ( Λ,,..., s a expermet type, the σ-algebra o λ λ λ are defed s deoted by ( (,,...,, σ Ω.

More information

Strategies for the AP Calculus Exam

Strategies for the AP Calculus Exam Strteges for the AP Clculus Em Strteges for the AP Clculus Em Strtegy : Kow Your Stuff Ths my seem ovous ut t ees to e metoe. No mout of cochg wll help you o the em f you o t kow the mterl. Here s lst

More information

MTH 146 Class 7 Notes

MTH 146 Class 7 Notes 7.7- Approxmte Itegrto Motvto: MTH 46 Clss 7 Notes I secto 7.5 we lered tht some defte tegrls, lke x e dx, cot e wrtte terms of elemetry fuctos. So, good questo to sk would e: How c oe clculte somethg

More information

Collapsing to Sample and Remainder Means. Ed Stanek. In order to collapse the expanded random variables to weighted sample and remainder

Collapsing to Sample and Remainder Means. Ed Stanek. In order to collapse the expanded random variables to weighted sample and remainder Collapg to Saple ad Reader Mea Ed Staek Collapg to Saple ad Reader Average order to collape the expaded rado varable to weghted aple ad reader average, we pre-ultpled by ( M C C ( ( M C ( M M M ( M M M,

More information

Chapter Linear Regression

Chapter Linear Regression Chpte 6.3 Le Regesso Afte edg ths chpte, ou should be ble to. defe egesso,. use sevel mmzg of esdul cte to choose the ght cteo, 3. deve the costts of le egesso model bsed o lest sques method cteo,. use

More information

Chapter 9. Key Ideas Hypothesis Test (Two Populations)

Chapter 9. Key Ideas Hypothesis Test (Two Populations) Chapter 9 Key Idea Hypothei Tet (Two Populatio) Sectio 9-: Overview I Chapter 8, dicuio cetered aroud hypothei tet for the proportio, mea, ad tadard deviatio/variace of a igle populatio. However, ofte

More information

Optimality of Strategies for Collapsing Expanded Random Variables In a Simple Random Sample Ed Stanek

Optimality of Strategies for Collapsing Expanded Random Variables In a Simple Random Sample Ed Stanek Optmlt of Strteges for Collpsg Expe Rom Vrles Smple Rom Smple E Stek troucto We revew the propertes of prectors of ler comtos of rom vrles se o rom vrles su-spce of the orgl rom vrles prtculr, we ttempt

More information

CS321. Numerical Analysis

CS321. Numerical Analysis CS3 Nuercl Alss Lecture 7 Lest Sures d Curve Fttg Professor Ju Zhg Deprtet of Coputer Scece Uverst of Ketuc Legto KY 456 633 Deceer 4 Method of Lest Sures Coputer ded dt collectos hve produced treedous

More information

Objectives of Multiple Regression

Objectives of Multiple Regression Obectves of Multple Regresso Establsh the lear equato that best predcts values of a depedet varable Y usg more tha oe eplaator varable from a large set of potetal predctors {,,... k }. Fd that subset of

More information

STA 4032 Final Exam Formula Sheet

STA 4032 Final Exam Formula Sheet Chapter 2. Probability STA 4032 Fial Eam Formula Sheet Some Baic Probability Formula: (1) P (A B) = P (A) + P (B) P (A B). (2) P (A ) = 1 P (A) ( A i the complemet of A). (3) If S i a fiite ample pace

More information

Available online through

Available online through Avlble ole through wwwmfo FIXED POINTS FOR NON-SELF MAPPINGS ON CONEX ECTOR METRIC SPACES Susht Kumr Moht* Deprtmet of Mthemtcs West Begl Stte Uverst Brst 4 PrgsNorth) Kolt 76 West Begl Id E-ml: smwbes@yhoo

More information

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y 4. Le Itegrls I ths secto we defe tegrl tht s smlr to sgle tegrl except tht sted of tegrtg over tervl [ ] we tegrte over curve. Such tegrls re clled le tegrls lthough curve tegrls would e etter termology.

More information

Tables and Formulas for Sullivan, Fundamentals of Statistics, 2e Pearson Education, Inc.

Tables and Formulas for Sullivan, Fundamentals of Statistics, 2e Pearson Education, Inc. Table ad Formula for Sulliva, Fudametal of Statitic, e. 008 Pearo Educatio, Ic. CHAPTER Orgaizig ad Summarizig Data Relative frequecy frequecy um of all frequecie Cla midpoit: The um of coecutive lower

More information

Chapter 2 Intro to Math Techniques for Quantum Mechanics

Chapter 2 Intro to Math Techniques for Quantum Mechanics Fll 4 Chem 356: Itroductory Qutum Mechcs Chpter Itro to Mth Techques for Qutum Mechcs... Itro to dfferetl equtos... Boudry Codtos... 5 Prtl dfferetl equtos d seprto of vrbles... 5 Itroducto to Sttstcs...

More information

MATRIX AND VECTOR NORMS

MATRIX AND VECTOR NORMS Numercl lyss for Egeers Germ Jord Uversty MTRIX ND VECTOR NORMS vector orm s mesure of the mgtude of vector. Smlrly, mtr orm s mesure of the mgtude of mtr. For sgle comoet etty such s ordry umers, the

More information

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is Mth Sprg 08 L Approxmtg Dete Itegrls I Itroducto We hve studed severl methods tht llow us to d the exct vlues o dete tegrls However, there re some cses whch t s ot possle to evlute dete tegrl exctly I

More information

Cooper and McGillem Chapter 4: Moments Linear Regression

Cooper and McGillem Chapter 4: Moments Linear Regression Cooper d McGllem Chpter 4: Momets Ler Regresso Chpter 4: lemets of Sttstcs 4-6 Curve Fttg d Ler Regresso 4-7 Correlto Betwee Two Sets of Dt Cocepts How close re the smple vlues to the uderlg pdf vlues?

More information

b. There appears to be a positive relationship between X and Y; that is, as X increases, so does Y.

b. There appears to be a positive relationship between X and Y; that is, as X increases, so does Y. .46. a. The frst varable (X) s the frst umber the par ad s plotted o the horzotal axs, whle the secod varable (Y) s the secod umber the par ad s plotted o the vertcal axs. The scatterplot s show the fgure

More information

Mathematics HL and further mathematics HL formula booklet

Mathematics HL and further mathematics HL formula booklet Dplom Progrmme Mthemtcs HL d further mthemtcs HL formul boolet For use durg the course d the emtos Frst emtos 04 Edted 05 (verso ) Itertol Bcclurete Orgzto 0 5048 Cotets Pror lerg Core 3 Topc : Algebr

More information

Summarizing Bivariate Data. Correlation. Scatter Plot. Pearson s Sample Correlation. Summarizing Bivariate Data SBD - 1

Summarizing Bivariate Data. Correlation. Scatter Plot. Pearson s Sample Correlation. Summarizing Bivariate Data SBD - 1 Summarzg Bvarate Data Summarzg Bvarate Data - Eamg relato betwee two quattatve varable I there relato betwee umber of hadgu regtered the area ad umber of people klled? Ct NGR ) Nkll ) 447 3 4 3 48 4 4

More information

Chapter #5 EEE Control Systems

Chapter #5 EEE Control Systems Sprig EEE Chpter #5 EEE Cotrol Sytem Deig Bed o Root Locu Chpter / Sprig EEE Deig Bed Root Locu Led Cotrol (equivlet to PD cotrol) Ued whe the tedy tte propertie of the ytem re ok but there i poor performce,

More information

Lecture Notes Types of economic variables

Lecture Notes Types of economic variables Lecture Notes 3 1. Types of ecoomc varables () Cotuous varable takes o a cotuum the sample space, such as all pots o a le or all real umbers Example: GDP, Polluto cocetrato, etc. () Dscrete varables fte

More information

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model Lecture 7. Cofdece Itervals ad Hypothess Tests the Smple CLR Model I lecture 6 we troduced the Classcal Lear Regresso (CLR) model that s the radom expermet of whch the data Y,,, K, are the outcomes. The

More information

Mathematics HL and further mathematics HL formula booklet

Mathematics HL and further mathematics HL formula booklet Dplom Progrmme Mthemtcs HL d further mthemtcs HL formul boolet For use durg the course d the emtos Frst emtos 04 Publshed Jue 0 Itertol Bcclurete Orgzto 0 5048 Mthemtcs HL d further mthemtcs formul boolet

More information

Last time: Completed solution to the optimum linear filter in real-time operation

Last time: Completed solution to the optimum linear filter in real-time operation 6.3 tochatic Etimatio ad Cotrol, Fall 4 ecture at time: Completed olutio to the oimum liear filter i real-time operatio emi-free cofiguratio: t D( p) F( p) i( p) dte dp e π F( ) F( ) ( ) F( p) ( p) 4444443

More information

Chapter 4 Multiple Random Variables

Chapter 4 Multiple Random Variables Revew for the prevous lecture: Theorems ad Examples: How to obta the pmf (pdf) of U = g (, Y) ad V = g (, Y) Chapter 4 Multple Radom Varables Chapter 44 Herarchcal Models ad Mxture Dstrbutos Examples:

More information

Chapter 7. , and is unknown and n 30 then X ~ t n

Chapter 7. , and is unknown and n 30 then X ~ t n Chpter 7 Sectio 7. t-ditributio ( 3) Summry: C.L.T. : If the rdom mple of ize 3 come from ukow popultio with me d S.D. where i kow or ukow, the X ~ N,. Note: The hypothei tetig d cofidece itervl re built

More information

ITERATIVE METHODS FOR SOLVING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS

ITERATIVE METHODS FOR SOLVING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS Numercl Alyss for Egeers Germ Jord Uversty ITERATIVE METHODS FOR SOLVING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS Numercl soluto of lrge systems of ler lgerc equtos usg drect methods such s Mtr Iverse, Guss

More information

Complex Variables. Chapter 19 Series and Residues. March 26, 2013 Lecturer: Shih-Yuan Chen

Complex Variables. Chapter 19 Series and Residues. March 26, 2013 Lecturer: Shih-Yuan Chen omplex Vrble hpter 9 Sere d Redue Mrch 6, Lecturer: Shh-Yu he Except where otherwe oted, cotet lceed uder BY-N-SA. TW Lcee. otet Sequece & ere Tylor ere Luret ere Zero & pole Redue & redue theorem Evluto

More information

IntroEcono. Discrete RV. Continuous RV s

IntroEcono. Discrete RV. Continuous RV s ItroEcoo Aoc. Prof. Poga Porchaiwiekul, Ph.D... ก ก e-mail: Poga.P@chula.ac.th Homepage: http://pioeer.chula.ac.th/~ppoga (c) Poga Porchaiwiekul, Chulalogkor Uiverity Quatitative, e.g., icome, raifall

More information

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses Johs Hopks Uverst Departmet of Bostatstcs Math Revew for Itroductor Courses Ratoale Bostatstcs courses wll rel o some fudametal mathematcal relatoshps, fuctos ad otato. The purpose of ths Math Revew s

More information

Multiple Choice Test. Chapter Adequacy of Models for Regression

Multiple Choice Test. Chapter Adequacy of Models for Regression Multple Choce Test Chapter 06.0 Adequac of Models for Regresso. For a lear regresso model to be cosdered adequate, the percetage of scaled resduals that eed to be the rage [-,] s greater tha or equal to

More information

8 The independence problem

8 The independence problem Noparam Stat 46/55 Jame Kwo 8 The depedece problem 8.. Example (Tua qualty) ## Hollader & Wolfe (973), p. 87f. ## Aemet of tua qualty. We compare the Huter L meaure of ## lghte to the average of coumer

More information

KR20 & Coefficient Alpha Their equivalence for binary scored items

KR20 & Coefficient Alpha Their equivalence for binary scored items KR0 & Coeffcet Alpha Ther equvalece for bary cored tem Jue, 007 http://www.pbarrett.et/techpaper/r0.pdf f of 7 Iteral Cotecy Relablty for Dchotomou Item KR 0 & Alpha There apparet cofuo wth ome dvdual

More information

Linear Approximating to Integer Addition

Linear Approximating to Integer Addition Lear Approxmatg to Iteger Addto L A-Pg Bejg 00085, P.R. Cha apl000@a.com Abtract The teger addto ofte appled cpher a a cryptographc mea. I th paper we wll preet ome reult about the lear approxmatg for

More information

Lecture 2: The Simple Regression Model

Lecture 2: The Simple Regression Model Lectre Notes o Advaced coometrcs Lectre : The Smple Regresso Model Takash Yamao Fall Semester 5 I ths lectre we revew the smple bvarate lear regresso model. We focs o statstcal assmptos to obta based estmators.

More information

ANOTHER INTEGER NUMBER ALGORITHM TO SOLVE LINEAR EQUATIONS (USING CONGRUENCY)

ANOTHER INTEGER NUMBER ALGORITHM TO SOLVE LINEAR EQUATIONS (USING CONGRUENCY) ANOTHER INTEGER NUMBER ALGORITHM TO SOLVE LINEAR EQUATIONS (USING CONGRUENCY) Floet Smdche, Ph D Aocte Pofeo Ch of Deptmet of Mth & Scece Uvety of New Mexco 2 College Rod Gllup, NM 873, USA E-ml: md@um.edu

More information

THE ROYAL STATISTICAL SOCIETY 2010 EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA MODULE 2 STATISTICAL INFERENCE

THE ROYAL STATISTICAL SOCIETY 2010 EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA MODULE 2 STATISTICAL INFERENCE THE ROYAL STATISTICAL SOCIETY 00 EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA MODULE STATISTICAL INFERENCE The Socety provdes these solutos to assst caddates preparg for the examatos future years ad for the

More information

Chapter 13, Part A Analysis of Variance and Experimental Design. Introduction to Analysis of Variance. Introduction to Analysis of Variance

Chapter 13, Part A Analysis of Variance and Experimental Design. Introduction to Analysis of Variance. Introduction to Analysis of Variance Chapter, Part A Aalyss of Varace ad Epermetal Desg Itroducto to Aalyss of Varace Aalyss of Varace: Testg for the Equalty of Populato Meas Multple Comparso Procedures Itroducto to Aalyss of Varace Aalyss

More information

Simulation Output Analysis

Simulation Output Analysis Smulato Output Aalyss Summary Examples Parameter Estmato Sample Mea ad Varace Pot ad Iterval Estmato ermatg ad o-ermatg Smulato Mea Square Errors Example: Sgle Server Queueg System x(t) S 4 S 4 S 3 S 5

More information

Regression. By Jugal Kalita Based on Chapter 17 of Chapra and Canale, Numerical Methods for Engineers

Regression. By Jugal Kalita Based on Chapter 17 of Chapra and Canale, Numerical Methods for Engineers Regresso By Jugl Klt Bsed o Chpter 7 of Chpr d Cle, Numercl Methods for Egeers Regresso Descrbes techques to ft curves (curve fttg) to dscrete dt to obt termedte estmtes. There re two geerl pproches two

More information

Convergence Rates of Density Estimation in Besov Spaces

Convergence Rates of Density Estimation in Besov Spaces Aed Mthemtc 58-6 do:436/m75 Pubhed Oe October (htt://wwwscrpor/our/m) Coverece Rte of Dety Etmto Beov Sce Abtrct Huy W Dertmet of Aed Mthemtc Be Uverty of Techooy Be Ch E-m: b865@embuteduc Receved Juy

More information

Preliminary Examinations: Upper V Mathematics Paper 1

Preliminary Examinations: Upper V Mathematics Paper 1 relmr Emtos: Upper V Mthemtcs per Jul 03 Emer: G Evs Tme: 3 hrs Modertor: D Grgortos Mrks: 50 INSTRUCTIONS ND INFORMTION Ths questo pper sts of 0 pges, cludg swer Sheet pge 8 d Iformto Sheet pges 9 d 0

More information

TESTS OF SIGNIFICANCE

TESTS OF SIGNIFICANCE TESTS OF SIGNIFICANCE Seema Jaggi I.A.S.R.I., Library Aveue, New Delhi eema@iari.re.i I applied ivetigatio, oe i ofte itereted i comparig ome characteritic (uch a the mea, the variace or a meaure of aociatio

More information

REVIEW OF SIMPLE LINEAR REGRESSION SIMPLE LINEAR REGRESSION

REVIEW OF SIMPLE LINEAR REGRESSION SIMPLE LINEAR REGRESSION REVIEW OF SIMPLE LINEAR REGRESSION SIMPLE LINEAR REGRESSION I liear regreio, we coider the frequecy ditributio of oe variable (Y) at each of everal level of a ecod variable (X). Y i kow a the depedet variable.

More information

Lecture 3-4 Solutions of System of Linear Equations

Lecture 3-4 Solutions of System of Linear Equations Lecture - Solutos of System of Ler Equtos Numerc Ler Alger Revew of vectorsd mtrces System of Ler Equtos Guss Elmto (drect solver) LU Decomposto Guss-Sedel method (tertve solver) VECTORS,,, colum vector

More information

Limit of a function:

Limit of a function: - Limit of fuctio: We sy tht f ( ) eists d is equl with (rel) umer L if f( ) gets s close s we wt to L if is close eough to (This defiitio c e geerlized for L y syig tht f( ) ecomes s lrge (or s lrge egtive

More information

TI-83/84 Calculator Instructions for Math Elementary Statistics

TI-83/84 Calculator Instructions for Math Elementary Statistics TI-83/84 Calculator Itructio for Math 34- Elemetary Statitic. Eterig Data: Data oit are tored i Lit o the TI-83/84. If you have't ued the calculator before, you may wat to erae everythig that wa there.

More information

UNIT #5 SEQUENCES AND SERIES COMMON CORE ALGEBRA II

UNIT #5 SEQUENCES AND SERIES COMMON CORE ALGEBRA II Awer Key Nme: Dte: UNIT # SEQUENCES AND SERIES COMMON CORE ALGEBRA II Prt I Quetio. For equece defied by f? () () 08 6 6 f d f f, which of the followig i the vlue of f f f f f f 0 6 6 08 (). I the viul

More information

Chapter 5 Properties of a Random Sample

Chapter 5 Properties of a Random Sample Lecture 6 o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for the prevous lecture Cocepts: t-dstrbuto, F-dstrbuto Theorems: Dstrbutos of sample mea ad sample varace, relatoshp betwee sample mea ad sample

More information

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses Johs Hopks Uverst Departmet of Bostatstcs Math Revew for Itroductor Courses Ratoale Bostatstcs courses wll rel o some fudametal mathematcal relatoshps, fuctos ad otato. The purpose of ths Math Revew s

More information

12 Iterative Methods. Linear Systems: Gauss-Seidel Nonlinear Systems Case Study: Chemical Reactions

12 Iterative Methods. Linear Systems: Gauss-Seidel Nonlinear Systems Case Study: Chemical Reactions HK Km Slghtly moded //9 /8/6 Frstly wrtte t Mrch 5 Itertve Methods er Systems: Guss-Sedel Noler Systems Cse Study: Chemcl Rectos Itertve or ppromte methods or systems o equtos cosst o guessg vlue d the

More information

Chapter Gauss-Seidel Method

Chapter Gauss-Seidel Method Chpter 04.08 Guss-Sedel Method After redg ths hpter, you should be ble to:. solve set of equtos usg the Guss-Sedel method,. reogze the dvtges d ptflls of the Guss-Sedel method, d. determe uder wht odtos

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Postpoed exam: ECON430 Statstcs Date of exam: Jauary 0, 0 Tme for exam: 09:00 a.m. :00 oo The problem set covers 5 pages Resources allowed: All wrtte ad prted

More information

X ε ) = 0, or equivalently, lim

X ε ) = 0, or equivalently, lim Revew for the prevous lecture Cocepts: order statstcs Theorems: Dstrbutos of order statstcs Examples: How to get the dstrbuto of order statstcs Chapter 5 Propertes of a Radom Sample Secto 55 Covergece

More information

Linear Algebra Concepts

Linear Algebra Concepts Ler Algebr Cocepts Ke Kreutz-Delgdo (Nuo Vscocelos) ECE 75A Wter 22 UCSD Vector spces Defto: vector spce s set H where ddto d sclr multplcto re defed d stsf: ) +( + ) (+ )+ 5) l H 2) + + H 6) 3) H, + 7)

More information

S T A T R a c h e l L. W e b b, P o r t l a n d S t a t e U n i v e r s i t y P a g e 1. = Population Variance

S T A T R a c h e l L. W e b b, P o r t l a n d S t a t e U n i v e r s i t y P a g e 1. = Population Variance S T A T 4 - R a c h e l L. W e b b, P o r t l a d S t a t e U i v e r i t y P a g e Commo Symbol = Sample Size x = Sample Mea = Sample Stadard Deviatio = Sample Variace pˆ = Sample Proportio r = Sample

More information

Mathematically, integration is just finding the area under a curve from one point to another. It is b

Mathematically, integration is just finding the area under a curve from one point to another. It is b Numerl Metods or Eg [ENGR 9] [Lyes KADEM 7] CHAPTER VI Numerl Itegrto Tops - Rem sums - Trpezodl rule - Smpso s rule - Rrdso s etrpolto - Guss qudrture rule Mtemtlly, tegrto s just dg te re uder urve rom

More information

Calculus of One Variable

Calculus of One Variable Clculu of Oe Vrble Summry Th em wll ddre fudmetl topc from gle-rble clculu cludg the cocept of cotuty d dfferetblty d the eplct clculto of lmt derte d tegrl. Smple Queto Here emple of coceptul queto tht

More information

Point Estimation: definition of estimators

Point Estimation: definition of estimators Pot Estmato: defto of estmators Pot estmator: ay fucto W (X,..., X ) of a data sample. The exercse of pot estmato s to use partcular fuctos of the data order to estmate certa ukow populato parameters.

More information

STA302/1001-Fall 2008 Midterm Test October 21, 2008

STA302/1001-Fall 2008 Midterm Test October 21, 2008 STA3/-Fall 8 Mdterm Test October, 8 Last Name: Frst Name: Studet Number: Erolled (Crcle oe) STA3 STA INSTRUCTIONS Tme allowed: hour 45 mutes Ads allowed: A o-programmable calculator A table of values from

More information

STK4011 and STK9011 Autumn 2016

STK4011 and STK9011 Autumn 2016 STK4 ad STK9 Autum 6 Pot estmato Covers (most of the followg materal from chapter 7: Secto 7.: pages 3-3 Secto 7..: pages 3-33 Secto 7..: pages 35-3 Secto 7..3: pages 34-35 Secto 7.3.: pages 33-33 Secto

More information

Problem Set 3: Model Solutions

Problem Set 3: Model Solutions Ecoomc 73 Adaced Mcroecoomc Problem et 3: Model oluto. Coder a -bdder aucto wth aluato deedetly ad detcally dtrbuted accordg to F( ) o uort [,]. Let the hghet bdder ay the rce ( - k)b f + kb to the eller,

More information

Lecture 3. Sampling, sampling distributions, and parameter estimation

Lecture 3. Sampling, sampling distributions, and parameter estimation Lecture 3 Samplg, samplg dstrbutos, ad parameter estmato Samplg Defto Populato s defed as the collecto of all the possble observatos of terest. The collecto of observatos we take from the populato s called

More information