ECEN 667 Power System Stability Lecture 23:Measurement Based Modal Analysis, FFT

Size: px
Start display at page:

Download "ECEN 667 Power System Stability Lecture 23:Measurement Based Modal Analysis, FFT"

Transcription

1 ECEN 667 Power System Stability Lecture 23:Measurement Based Modal Analysis, FFT Prof. Tom Overbye Dept. of Electrical and Computer Engineering Texas A&M University, 1

2 Announcements Read Chapter 8 Homework 7 is posted; due on Thursday Nov 30 Extended two days due to break Final is as per TAMU schedule. That is, Friday Dec 8 from 3 to 5pm 2

3 Measurement Based Modal Analysis With the advent of large numbers of PMUs, measurement based SSA is increasing used The goal is to determine the damping associated with the dominant oscillatory modes in the system Approaches seek to approximate a sampled signal by a series of exponential functions (usually damped sinusoidals) Several techniques are available with Prony analysis the oldest Method, which was developed by Gaspard Riche de Prony, dates to 1795; power system applications from about 1980's Here we'll consider a newer alternative, based on the variable projection method 3

4 Some Useful References J.F. Hauer, C.J. Demeure, and L.L. Scharf, "Initial results in Prony analysis of power system response signals," IEEE Trans. Power Systems, vol.5, pp 80-89, Feb 1990 D.J. Trudnowski, J.M. Johnson, and J.F. Hauer, "Making Prony analysis more accurate using multiple signals," IEEE Trans. Power Systems, vol.14, pp , Feb 1999 A. Borden, B.C. Lesieutre, J. Gronquist, "Power System Modal Analysis Tool Developed for Industry Use," Proc North American Power Symposium, Manhattan, KS, Sept

5 Variable Projection Method (VPM) Idea of all techniques is to approximate a signal, y org (t), by the sum of other, simpler signals (basis functions) Basis functions are usually exponentials, with linear and quadratic functions also added to detrend the signal Properties of the original signal can be quantified from basis function properties (such as frequency and damping) Signal is considered over an interval with t=0 at the beginning Approaches work by sampling the original signal y org (t) Vector y consists of m uniformly sampled points from y org (t) at a sampling value of DT, starting with t=0, with values y j for j=1 m Times are then t j = (j-1)dt 5

6 Variable Projection Method (VPM) At each time point j, where t j = (j-1)dt the approximation of y j is yˆ ( α) b ( t, α) i j i i j i1 where α n is a vector with the real and imaginary i j eigenvalue components, with ( t, α) e for a corresponding to a real eigenvalue, and it j i j i+1 j i1 i j ( t, α) e cos( t ) and ( α) e sin( i+1t j ) for a complex eigenvector value i j t t 6

7 Variable Projection Method (VPM) Error (residual) value at each point j is r ( t, α) y yˆ ( t, α) j j j j j is the vector containing the optimization variables Function being minimized is 1 1 α r α 2 2 m 2 ( y ˆ j y j ( t j, )) ( ) j1 2 2 r() is the residual vector Method iteratively changes to reduce the minimization function 7

8 Variable Projection Method (VPM) A key insight of the variable projection method is that yˆ( α) Φ( α) b And then the residual is minimized by selecting b Φ( α) y where Φα ( ) is the m by n matrix with values ji t i j ( α) e if corresponds to a real eigenvalue, i it j it j ji α e i 1tj ji1 α e i 1 and ( ) cos( ) and for a complex eigenvalue; t j 1 DT Finally, Φ( α) is the pseudoinverse of Φ( α) j ( ) sin( t ) j 8

9 Pseudoinverse of a Matrix The pseudoinverse of a matrix generalizes concept of a matrix inverse to an m by n matrix, in which m >= n Specifically talking about a Moore-Penrose Matrix Inverse Notation for the pseudoinverse of A is A + Satisfies AA + A = A If A is a square matrix, then A + = A -1 Quite useful for solving the least squares problem since the least squares solution of Ax = b is x = A + b Can be calculated using an SVD A A UΣV T T VΣ U 9

10 Simple Least Squares Example Assume we wish to fix a line (mx + b = y) to three data points: (1,1), (2,4), (6,4) Two unknowns, m and b; hence x = [m b] T Setup in form of Ax = b m 4 so = 2 1 b A We are trying to select m and b to minimize the error in this overdetermined problem 10

11 Simple Least Squares Example Doing an economy SVD T A UΣV Computing the pseudoinverse A A T VΣU T VΣU In an economy SVD the S matrix has dimensions of m by m if m < n or n by n if n < m 11

12 Simple Least Squares Example Computing x = [m b] T gives Ab With the pseudoinverse approach we immediately see the sensitivity of the elements of x to the elements of b New values of m and b can be readily calculated if y changes Computationally the SVD is order m 2 n+n 3 (with n < m) 12

13 VPM Example Assume we'd like to determine the characteristics of the below SMIB angle response Gen Bus 4 #1 Rotor Angle Gen Bus 4 #1 Rotor Angle The signal itself is given from 0 to 5 seconds; we will be sampling it over a shorter time period Time Gen Bus 4 #1 Rotor Angle For simplicity we'll just consider this signal from 1 to 2 seconds, and work with m=6 samples (DT=0.2, from 1 to 2 seconds); hence we'll set our t=0 as 1.0 seconds 13 5

14 VPM Example Assume we know a good approximation of this signal (over the desired range) is y ( t) e 13.58cos 11.97t 8.34sin 11.97t 24.42e org t t Hence the zero error values would be α 11.97, 8.34 b With DT=0.2, m=6 then y How we got the initial will be shown in a few slides 14

15 To verify First row is t=0, second t=0.2, etc Φ Giving Φα VPM Example b Φ( α) y ( α) ( ) 8.34 Which matches b Φ α y the known values! ,1 ( ) e α cos

16 VPM, cont. This is an iterative process, requiring an initial guess of, and then a method to update until the residual vector, r, is minimized min α min r( α) I Φ( α) Φ( α) y α 2 Solved with a gradient method, with the details on finding the gradient direction given in the Borden, Lesieutre, Gronquist 2013 NAPS paper Iterative until a minimum is reached Like any iterative method, its convergence depends on the initial guess, in this case of 2 16

17 VPM: Initial Guess of The initial guesses for are calculated using a Matrix Pencil method First, with m samples, let L=m/2 Then form a Hankel matrix, Y such that y y y y y y Y y y y 1 2 L1 2 3 L2 ml ml1 m And calculate its singular values with an economy SVD Y UΣV T The computational complexity increases with the cube of the number of measurements! 17

18 VPM: Initial Guess of The ratio of each singular value is then compared to the largest singular value s c ; retain the ones with a ratio > than a threshold (e.g., 0.16) This determines the modal order, M Assuming V is ordered by singular values (highest to lowest), let V p be then matrix with the first M columns of V Then form the matrices V 1 and V 2 such that V 1 is the matrix consisting of all but the last row of V p V 2 is the matrix consisting of all but the first row of V p NAPS paper equation is incorrect on this Discrete-time poles are found as the generalized eigenvalues of the pair {V 2T V 1, V 1T V 1 } 18

19 Generalized Eigenvalues Generalized eigenvalue problem for a matrix pair (A,B) consists of determining values k, b k and x k such that b Ax Bx k k k k If B = I then this gives the regular eigenvalues The generalized eigenvalues are then k /b k If B is nonsingular than these are the eigenvalues of B -1 A That is the situation here These eigenvalues are the discrete-time poles, z i,with the modal eigenvalues then ln( z i ) i D T Recall the log of a complex number z=r is ln(r) + j 19

20 With m=6, L=3, and Returning to Example y Y T diag( ) Y UΣV Σ, V In this example we retain all three singular values 20

21 Example Which gives V , V T VV T, VV And generalized eigenvalues of , j Then with DT=0.2 ln( ) ln( ) 23, j

22 Example This initial guess of is very close to the final solution The iteration works by calculating the Jacobian, J() (with details in the paper), and the gradient T r( α) J( α) r( α) 2 A gradient search optimization (such as Golden Section) is used to determine the distance to move in the negative gradient direction For the example T J( α)

23 Comments These techniques only match the signals at the sampled time points The sampling frequency must be at least twice the highest frequency of interest A higher sampling rate is generally better, but there is a computational limitation associated with the size of the Hankel matrix Aliasing is a concern since we are dealing with a time limited signal Detrending can be used to remove a polynomial offset Method can be extended to multiple signals 23

24 VPM: Example 2 Do VPM on speed for generator 2 from previous three bus small signal analysis case Calculated modes were at 1.51 and 2.02 Hz Input data here is the red curve gfedcb Speed_Gen Bus 1 #1 gfedcb Speed_Gen Bus 2 #1 gfedcb Speed_Gen 3 #1 24

25 VPM: Example 2 Below results were obtained from sampling the input data every 0.1 seconds (10 Hz) Values PWDVectorGrid Variables Calculated frequencies were 2.03 and 1.51 Hz with a dc offset; the 2.03 frequency has a value of almost 4 times that of the 1.51 Hz Original Value Reproduced Value 25

26 Example using PowerWorld Modal Analysis Dialog Case is earlier B3_CLS_3Gen_SSA 26

27 Example using PowerWorld Modal Analysis Dialog Details of solution process are available by selecting Show Solution Details. 27

28 VPM: Example 2 Results are quite poor if sampling is reduced to 1.5 Hz PWDVectorGrid Variables Values Original Value Reproduced Value Sampling will be at twice this frequency. With 1.5 Hz we would sample at three times per second, which is too slow. 28

29 Moving Forward with VPM Not all signals exhibit such straightforward oscillations, since there can be other slower dynamics superimposed How can this method be extended to handle these situations? Line (COUL1418) TO (COULEES3) CKT 1 MW To End Line (COUL1418) TO (COULEES3) CKT 1 MW To End Time Line (COUL1418) TO (COULEES3) CKT 1 MW To End

30 Moving Forward with VPM Here are the results PWDVectorGrid Variables Values This is made up of five signals with frequencies from to 1.1 Hz, with the highest magnitude at Hz Original Value Reproduced Value 30

ECEN 667 Power System Stability Lecture 25: FFT, Energy Methods

ECEN 667 Power System Stability Lecture 25: FFT, Energy Methods ECEN 667 Power System Stability Lecture 5: FFT, Energy Methods Prof. Tom Overbye Dept. of Electrical and Computer Engineering Texas A&M University, overbye@tamu.edu 1 Announcements Read Chapter 9 Final

More information

ECEN 667 Power System Stability Lecture 20: Oscillations, Small Signal Stability Analysis

ECEN 667 Power System Stability Lecture 20: Oscillations, Small Signal Stability Analysis ECEN 667 Power System Stability Lecture 20: Oscillations, Small Signal Stability Analysis Prof. Tom Overbye Dept. of Electrical and Computer Engineering Texas A&M University, overbye@tamu.edu 1 Announcements

More information

ECEN 615 Methods of Electric Power Systems Analysis Lecture 18: Least Squares, State Estimation

ECEN 615 Methods of Electric Power Systems Analysis Lecture 18: Least Squares, State Estimation ECEN 615 Methods of Electric Power Systems Analysis Lecture 18: Least Squares, State Estimation Prof. om Overbye Dept. of Electrical and Computer Engineering exas A&M University overbye@tamu.edu Announcements

More information

ECEN 667 Power System Stability Lecture 18: Voltage Stability, Load Models

ECEN 667 Power System Stability Lecture 18: Voltage Stability, Load Models ECEN 667 Power System Stability Lecture 18: Voltage Stability, Load Models Prof. Tom Overbye Dept. of Electrical and Computer Engineering Texas A&M University, overbye@tamu.edu 1 Announcements Read Chapter

More information

Maths for Signals and Systems Linear Algebra in Engineering

Maths for Signals and Systems Linear Algebra in Engineering Maths for Signals and Systems Linear Algebra in Engineering Lectures 13 15, Tuesday 8 th and Friday 11 th November 016 DR TANIA STATHAKI READER (ASSOCIATE PROFFESOR) IN SIGNAL PROCESSING IMPERIAL COLLEGE

More information

Variable Projection Method for Power System Modal Identification

Variable Projection Method for Power System Modal Identification IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 29, NO. 6, NOVEMBER 2014 2613 Variable Projection Method for Power System Modal Identification Alexander R. Borden, Student Member, IEEE, and Bernard C. Lesieutre,

More information

COMP 558 lecture 18 Nov. 15, 2010

COMP 558 lecture 18 Nov. 15, 2010 Least squares We have seen several least squares problems thus far, and we will see more in the upcoming lectures. For this reason it is good to have a more general picture of these problems and how to

More information

ECEN 615 Methods of Electric Power Systems Analysis Lecture 19: State Estimation

ECEN 615 Methods of Electric Power Systems Analysis Lecture 19: State Estimation ECEN 615 Methods of Electric Power Systems Analysis Lecture 19: State Estimation Prof. Tom Overbye Dept. of Electrical and Computer Engineering Texas A&M University overbye@tamu.edu Announcements Homework

More information

ECEN 667 Power System Stability Lecture 17: Transient Stability Solutions, Load Models

ECEN 667 Power System Stability Lecture 17: Transient Stability Solutions, Load Models ECEN 667 Power System Stability Lecture 17: Transient Stability Solutions, Load Models Prof. Tom Overbye Dept. of Electrical and Computer Engineering Texas A&M University, overbye@tamu.edu 1 Announcements

More information

UNIT 6: The singular value decomposition.

UNIT 6: The singular value decomposition. UNIT 6: The singular value decomposition. María Barbero Liñán Universidad Carlos III de Madrid Bachelor in Statistics and Business Mathematical methods II 2011-2012 A square matrix is symmetric if A T

More information

Singular Value Decomposition

Singular Value Decomposition Singular Value Decomposition Motivatation The diagonalization theorem play a part in many interesting applications. Unfortunately not all matrices can be factored as A = PDP However a factorization A =

More information

UCSD ECE269 Handout #8 Prof. Young-Han Kim Wednesday, February 7, Homework Set #4 (Due: Wednesday, February 21, 2018)

UCSD ECE269 Handout #8 Prof. Young-Han Kim Wednesday, February 7, Homework Set #4 (Due: Wednesday, February 21, 2018) UCSD ECE269 Handout #8 Prof. Young-Han Kim Wednesday, February 7, 2018 Homework Set #4 (Due: Wednesday, February 21, 2018) 1. Almost orthonormal basis. Let u 1,u 2,...,u n form an orthonormal basis for

More information

Prediction of Instability Points Using System Identification

Prediction of Instability Points Using System Identification Prediction of Instability Points Using System Identification Hassan Ghasemi laudio A. añizares John Reeve hassan@thunderbox.uwaterloo.ca ccanizar@engmail.uwaterloo.ca J.Reeve@ece.uwaterloo.ca Department

More information

ECE 275A Homework # 3 Due Thursday 10/27/2016

ECE 275A Homework # 3 Due Thursday 10/27/2016 ECE 275A Homework # 3 Due Thursday 10/27/2016 Reading: In addition to the lecture material presented in class, students are to read and study the following: A. The material in Section 4.11 of Moon & Stirling

More information

Bindel, Fall 2009 Matrix Computations (CS 6210) Week 8: Friday, Oct 17

Bindel, Fall 2009 Matrix Computations (CS 6210) Week 8: Friday, Oct 17 Logistics Week 8: Friday, Oct 17 1. HW 3 errata: in Problem 1, I meant to say p i < i, not that p i is strictly ascending my apologies. You would want p i > i if you were simply forming the matrices and

More information

Vector and Matrix Norms. Vector and Matrix Norms

Vector and Matrix Norms. Vector and Matrix Norms Vector and Matrix Norms Vector Space Algebra Matrix Algebra: We let x x and A A, where, if x is an element of an abstract vector space n, and A = A: n m, then x is a complex column vector of length n whose

More information

ECEN 667 Power System Stability Lecture 21: Modal Analysis

ECEN 667 Power System Stability Lecture 21: Modal Analysis ECEN 667 Power System Stablty Lecture 21: Modal Analyss Prof. Tom Overbye Dept. of Electrcal and Computer Engneerng Texas A&M Unversty, overbye@tamu.edu 1 Announcements Read Chapter 8 Homework 7 s posted;

More information

1. Background: The SVD and the best basis (questions selected from Ch. 6- Can you fill in the exercises?)

1. Background: The SVD and the best basis (questions selected from Ch. 6- Can you fill in the exercises?) Math 35 Exam Review SOLUTIONS Overview In this third of the course we focused on linear learning algorithms to model data. summarize: To. Background: The SVD and the best basis (questions selected from

More information

ECEN 667 Power System Stability Lecture 15: PIDs, Governors, Transient Stability Solutions

ECEN 667 Power System Stability Lecture 15: PIDs, Governors, Transient Stability Solutions ECEN 667 Power System Stability Lecture 15: PIDs, Governors, Transient Stability Solutions Prof. Tom Overbye Dept. of Electrical and Computer Engineering Texas A&M University, overbye@tamu.edu 1 Announcements

More information

Numerical Methods I Solving Nonlinear Equations

Numerical Methods I Solving Nonlinear Equations Numerical Methods I Solving Nonlinear Equations Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 MATH-GA 2011.003 / CSCI-GA 2945.003, Fall 2014 October 16th, 2014 A. Donev (Courant Institute)

More information

linearly indepedent eigenvectors as the multiplicity of the root, but in general there may be no more than one. For further discussion, assume matrice

linearly indepedent eigenvectors as the multiplicity of the root, but in general there may be no more than one. For further discussion, assume matrice 3. Eigenvalues and Eigenvectors, Spectral Representation 3.. Eigenvalues and Eigenvectors A vector ' is eigenvector of a matrix K, if K' is parallel to ' and ' 6, i.e., K' k' k is the eigenvalue. If is

More information

Lecture: Face Recognition and Feature Reduction

Lecture: Face Recognition and Feature Reduction Lecture: Face Recognition and Feature Reduction Juan Carlos Niebles and Ranjay Krishna Stanford Vision and Learning Lab 1 Recap - Curse of dimensionality Assume 5000 points uniformly distributed in the

More information

Properties of Matrices and Operations on Matrices

Properties of Matrices and Operations on Matrices Properties of Matrices and Operations on Matrices A common data structure for statistical analysis is a rectangular array or matris. Rows represent individual observational units, or just observations,

More information

Least Squares. Tom Lyche. October 26, Centre of Mathematics for Applications, Department of Informatics, University of Oslo

Least Squares. Tom Lyche. October 26, Centre of Mathematics for Applications, Department of Informatics, University of Oslo Least Squares Tom Lyche Centre of Mathematics for Applications, Department of Informatics, University of Oslo October 26, 2010 Linear system Linear system Ax = b, A C m,n, b C m, x C n. under-determined

More information

Chapter Six. Polynomials. Properties of Exponents Algebraic Expressions Addition, Subtraction, and Multiplication Factoring Solving by Factoring

Chapter Six. Polynomials. Properties of Exponents Algebraic Expressions Addition, Subtraction, and Multiplication Factoring Solving by Factoring Chapter Six Polynomials Properties of Exponents Algebraic Expressions Addition, Subtraction, and Multiplication Factoring Solving by Factoring Properties of Exponents The properties below form the basis

More information

Lecture 10: Powers of Matrices, Difference Equations

Lecture 10: Powers of Matrices, Difference Equations Lecture 10: Powers of Matrices, Difference Equations Difference Equations A difference equation, also sometimes called a recurrence equation is an equation that defines a sequence recursively, i.e. each

More information

MATH 612 Computational methods for equation solving and function minimization Week # 2

MATH 612 Computational methods for equation solving and function minimization Week # 2 MATH 612 Computational methods for equation solving and function minimization Week # 2 Instructor: Francisco-Javier Pancho Sayas Spring 2014 University of Delaware FJS MATH 612 1 / 38 Plan for this week

More information

Distributed Real-Time Electric Power Grid Event Detection and Dynamic Characterization

Distributed Real-Time Electric Power Grid Event Detection and Dynamic Characterization Distributed Real-Time Electric Power Grid Event Detection and Dynamic Characterization Raymond de Callafon, Charles H. Wells University of California, San Diego & OSIsoft CIGRE Grid of the Future Symposium,

More information

Large Scale Data Analysis Using Deep Learning

Large Scale Data Analysis Using Deep Learning Large Scale Data Analysis Using Deep Learning Linear Algebra U Kang Seoul National University U Kang 1 In This Lecture Overview of linear algebra (but, not a comprehensive survey) Focused on the subset

More information

. =. a i1 x 1 + a i2 x 2 + a in x n = b i. a 11 a 12 a 1n a 21 a 22 a 1n. i1 a i2 a in

. =. a i1 x 1 + a i2 x 2 + a in x n = b i. a 11 a 12 a 1n a 21 a 22 a 1n. i1 a i2 a in Vectors and Matrices Continued Remember that our goal is to write a system of algebraic equations as a matrix equation. Suppose we have the n linear algebraic equations a x + a 2 x 2 + a n x n = b a 2

More information

Control Systems I. Lecture 4: Diagonalization, Modal Analysis, Intro to Feedback. Readings: Emilio Frazzoli

Control Systems I. Lecture 4: Diagonalization, Modal Analysis, Intro to Feedback. Readings: Emilio Frazzoli Control Systems I Lecture 4: Diagonalization, Modal Analysis, Intro to Feedback Readings: Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich October 13, 2017 E. Frazzoli (ETH)

More information

ECE 275A Homework #3 Solutions

ECE 275A Homework #3 Solutions ECE 75A Homework #3 Solutions. Proof of (a). Obviously Ax = 0 y, Ax = 0 for all y. To show sufficiency, note that if y, Ax = 0 for all y, then it must certainly be true for the particular value of y =

More information

Singular Value Decomposition

Singular Value Decomposition Chapter 6 Singular Value Decomposition In Chapter 5, we derived a number of algorithms for computing the eigenvalues and eigenvectors of matrices A R n n. Having developed this machinery, we complete our

More information

Solution via Laplace transform and matrix exponential

Solution via Laplace transform and matrix exponential EE263 Autumn 2015 S. Boyd and S. Lall Solution via Laplace transform and matrix exponential Laplace transform solving ẋ = Ax via Laplace transform state transition matrix matrix exponential qualitative

More information

Math 308 Final Exam Practice Problems

Math 308 Final Exam Practice Problems Math 308 Final Exam Practice Problems This review should not be used as your sole source for preparation for the exam You should also re-work all examples given in lecture and all suggested homework problems

More information

Jim Lambers MAT 419/519 Summer Session Lecture 13 Notes

Jim Lambers MAT 419/519 Summer Session Lecture 13 Notes Jim Lambers MAT 419/519 Summer Session 2011-12 Lecture 13 Notes These notes correspond to Section 4.1 in the text. Least Squares Fit One of the most fundamental problems in science and engineering is data

More information

8 The SVD Applied to Signal and Image Deblurring

8 The SVD Applied to Signal and Image Deblurring 8 The SVD Applied to Signal and Image Deblurring We will discuss the restoration of one-dimensional signals and two-dimensional gray-scale images that have been contaminated by blur and noise. After an

More information

18.06 Problem Set 10 - Solutions Due Thursday, 29 November 2007 at 4 pm in

18.06 Problem Set 10 - Solutions Due Thursday, 29 November 2007 at 4 pm in 86 Problem Set - Solutions Due Thursday, 29 November 27 at 4 pm in 2-6 Problem : (5=5+5+5) Take any matrix A of the form A = B H CB, where B has full column rank and C is Hermitian and positive-definite

More information

Numerical Methods I Singular Value Decomposition

Numerical Methods I Singular Value Decomposition Numerical Methods I Singular Value Decomposition Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 MATH-GA 2011.003 / CSCI-GA 2945.003, Fall 2014 October 9th, 2014 A. Donev (Courant Institute)

More information

Math 2142 Homework 5 Part 1 Solutions

Math 2142 Homework 5 Part 1 Solutions Math 2142 Homework 5 Part 1 Solutions Problem 1. For the following homogeneous second order differential equations, give the general solution and the particular solution satisfying the given initial conditions.

More information

Jeffrey D. Ullman Stanford University

Jeffrey D. Ullman Stanford University Jeffrey D. Ullman Stanford University 2 Often, our data can be represented by an m-by-n matrix. And this matrix can be closely approximated by the product of two matrices that share a small common dimension

More information

APPM 2360 Section Exam 3 Wednesday November 19, 7:00pm 8:30pm, 2014

APPM 2360 Section Exam 3 Wednesday November 19, 7:00pm 8:30pm, 2014 APPM 2360 Section Exam 3 Wednesday November 9, 7:00pm 8:30pm, 204 ON THE FRONT OF YOUR BLUEBOOK write: () your name, (2) your student ID number, (3) lecture section, (4) your instructor s name, and (5)

More information

Moore-Penrose Conditions & SVD

Moore-Penrose Conditions & SVD ECE 275AB Lecture 8 Fall 2008 V1.0 c K. Kreutz-Delgado, UC San Diego p. 1/1 Lecture 8 ECE 275A Moore-Penrose Conditions & SVD ECE 275AB Lecture 8 Fall 2008 V1.0 c K. Kreutz-Delgado, UC San Diego p. 2/1

More information

Numerical Methods. Elena loli Piccolomini. Civil Engeneering. piccolom. Metodi Numerici M p. 1/??

Numerical Methods. Elena loli Piccolomini. Civil Engeneering.  piccolom. Metodi Numerici M p. 1/?? Metodi Numerici M p. 1/?? Numerical Methods Elena loli Piccolomini Civil Engeneering http://www.dm.unibo.it/ piccolom elena.loli@unibo.it Metodi Numerici M p. 2/?? Least Squares Data Fitting Measurement

More information

Applied Mathematics 205. Unit II: Numerical Linear Algebra. Lecturer: Dr. David Knezevic

Applied Mathematics 205. Unit II: Numerical Linear Algebra. Lecturer: Dr. David Knezevic Applied Mathematics 205 Unit II: Numerical Linear Algebra Lecturer: Dr. David Knezevic Unit II: Numerical Linear Algebra Chapter II.3: QR Factorization, SVD 2 / 66 QR Factorization 3 / 66 QR Factorization

More information

Orthonormal Transformations and Least Squares

Orthonormal Transformations and Least Squares Orthonormal Transformations and Least Squares Tom Lyche Centre of Mathematics for Applications, Department of Informatics, University of Oslo October 30, 2009 Applications of Qx with Q T Q = I 1. solving

More information

The Singular Value Decomposition

The Singular Value Decomposition The Singular Value Decomposition Philippe B. Laval KSU Fall 2015 Philippe B. Laval (KSU) SVD Fall 2015 1 / 13 Review of Key Concepts We review some key definitions and results about matrices that will

More information

Differential equations

Differential equations Differential equations Math 7 Spring Practice problems for April Exam Problem Use the method of elimination to find the x-component of the general solution of x y = 6x 9x + y = x 6y 9y Soln: The system

More information

6 The SVD Applied to Signal and Image Deblurring

6 The SVD Applied to Signal and Image Deblurring 6 The SVD Applied to Signal and Image Deblurring We will discuss the restoration of one-dimensional signals and two-dimensional gray-scale images that have been contaminated by blur and noise. After an

More information

7x 5 x 2 x + 2. = 7x 5. (x + 1)(x 2). 4 x

7x 5 x 2 x + 2. = 7x 5. (x + 1)(x 2). 4 x Advanced Integration Techniques: Partial Fractions The method of partial fractions can occasionally make it possible to find the integral of a quotient of rational functions. Partial fractions gives us

More information

Numerical Optimization

Numerical Optimization Numerical Optimization Unit 2: Multivariable optimization problems Che-Rung Lee Scribe: February 28, 2011 (UNIT 2) Numerical Optimization February 28, 2011 1 / 17 Partial derivative of a two variable function

More information

Singular Value Decomposition

Singular Value Decomposition Singular Value Decomposition (Com S 477/577 Notes Yan-Bin Jia Sep, 7 Introduction Now comes a highlight of linear algebra. Any real m n matrix can be factored as A = UΣV T where U is an m m orthogonal

More information

The Singular Value Decomposition and Least Squares Problems

The Singular Value Decomposition and Least Squares Problems The Singular Value Decomposition and Least Squares Problems Tom Lyche Centre of Mathematics for Applications, Department of Informatics, University of Oslo September 27, 2009 Applications of SVD solving

More information

Computational Methods CMSC/AMSC/MAPL 460. Eigenvalues and Eigenvectors. Ramani Duraiswami, Dept. of Computer Science

Computational Methods CMSC/AMSC/MAPL 460. Eigenvalues and Eigenvectors. Ramani Duraiswami, Dept. of Computer Science Computational Methods CMSC/AMSC/MAPL 460 Eigenvalues and Eigenvectors Ramani Duraiswami, Dept. of Computer Science Eigen Values of a Matrix Recap: A N N matrix A has an eigenvector x (non-zero) with corresponding

More information

8 The SVD Applied to Signal and Image Deblurring

8 The SVD Applied to Signal and Image Deblurring 8 The SVD Applied to Signal and Image Deblurring We will discuss the restoration of one-dimensional signals and two-dimensional gray-scale images that have been contaminated by blur and noise. After an

More information

Pseudoinverse & Moore-Penrose Conditions

Pseudoinverse & Moore-Penrose Conditions ECE 275AB Lecture 7 Fall 2008 V1.0 c K. Kreutz-Delgado, UC San Diego p. 1/1 Lecture 7 ECE 275A Pseudoinverse & Moore-Penrose Conditions ECE 275AB Lecture 7 Fall 2008 V1.0 c K. Kreutz-Delgado, UC San Diego

More information

Linear Algebra & Geometry why is linear algebra useful in computer vision?

Linear Algebra & Geometry why is linear algebra useful in computer vision? Linear Algebra & Geometry why is linear algebra useful in computer vision? References: -Any book on linear algebra! -[HZ] chapters 2, 4 Some of the slides in this lecture are courtesy to Prof. Octavia

More information

Derivative-Free Trust-Region methods

Derivative-Free Trust-Region methods Derivative-Free Trust-Region methods MTH6418 S. Le Digabel, École Polytechnique de Montréal Fall 2015 (v4) MTH6418: DFTR 1/32 Plan Quadratic models Model Quality Derivative-Free Trust-Region Framework

More information

Linear Algebra. Linear Equations and Matrices. Copyright 2005, W.R. Winfrey

Linear Algebra. Linear Equations and Matrices. Copyright 2005, W.R. Winfrey Copyright 2005, W.R. Winfrey Topics Preliminaries Systems of Linear Equations Matrices Algebraic Properties of Matrix Operations Special Types of Matrices and Partitioned Matrices Matrix Transformations

More information

Least-Squares Fitting of Model Parameters to Experimental Data

Least-Squares Fitting of Model Parameters to Experimental Data Least-Squares Fitting of Model Parameters to Experimental Data Div. of Mathematical Sciences, Dept of Engineering Sciences and Mathematics, LTU, room E193 Outline of talk What about Science and Scientific

More information

Operational modal analysis using forced excitation and input-output autoregressive coefficients

Operational modal analysis using forced excitation and input-output autoregressive coefficients Operational modal analysis using forced excitation and input-output autoregressive coefficients *Kyeong-Taek Park 1) and Marco Torbol 2) 1), 2) School of Urban and Environment Engineering, UNIST, Ulsan,

More information

Math Lecture 18 Notes

Math Lecture 18 Notes Math 1010 - Lecture 18 Notes Dylan Zwick Fall 2009 In our last lecture we talked about how we can add, subtract, and multiply polynomials, and we figured out that, basically, if you can add, subtract,

More information

Computational Methods. Eigenvalues and Singular Values

Computational Methods. Eigenvalues and Singular Values Computational Methods Eigenvalues and Singular Values Manfred Huber 2010 1 Eigenvalues and Singular Values Eigenvalues and singular values describe important aspects of transformations and of data relations

More information

Linear algebra I Homework #1 due Thursday, Oct Show that the diagonals of a square are orthogonal to one another.

Linear algebra I Homework #1 due Thursday, Oct Show that the diagonals of a square are orthogonal to one another. Homework # due Thursday, Oct. 0. Show that the diagonals of a square are orthogonal to one another. Hint: Place the vertices of the square along the axes and then introduce coordinates. 2. Find the equation

More information

Bindel, Fall 2016 Matrix Computations (CS 6210) Notes for

Bindel, Fall 2016 Matrix Computations (CS 6210) Notes for 1 Iteration basics Notes for 2016-11-07 An iterative solver for Ax = b is produces a sequence of approximations x (k) x. We always stop after finitely many steps, based on some convergence criterion, e.g.

More information

Topic 5: The Difference Equation

Topic 5: The Difference Equation Topic 5: The Difference Equation Yulei Luo Economics, HKU October 30, 2017 Luo, Y. (Economics, HKU) ME October 30, 2017 1 / 42 Discrete-time, Differences, and Difference Equations When time is taken to

More information

Chapter 6 Higher Dimensional Linear Systems

Chapter 6 Higher Dimensional Linear Systems hapter 6 Higher Dimensional Linear Systems Linear systems in R n : Observations: X x. x n X X a a n..... a n a nn ; Let T the the coordinate change matrix such that T T is in canonical form ;then Y T X

More information

More Linear Algebra. Edps/Soc 584, Psych 594. Carolyn J. Anderson

More Linear Algebra. Edps/Soc 584, Psych 594. Carolyn J. Anderson More Linear Algebra Edps/Soc 584, Psych 594 Carolyn J. Anderson Department of Educational Psychology I L L I N O I S university of illinois at urbana-champaign c Board of Trustees, University of Illinois

More information

The Normal Equations. For A R m n with m > n, A T A is singular if and only if A is rank-deficient. 1 Proof:

The Normal Equations. For A R m n with m > n, A T A is singular if and only if A is rank-deficient. 1 Proof: Applied Math 205 Homework 1 now posted. Due 5 PM on September 26. Last time: piecewise polynomial interpolation, least-squares fitting Today: least-squares, nonlinear least-squares The Normal Equations

More information

22A-2 SUMMER 2014 LECTURE 5

22A-2 SUMMER 2014 LECTURE 5 A- SUMMER 0 LECTURE 5 NATHANIEL GALLUP Agenda Elimination to the identity matrix Inverse matrices LU factorization Elimination to the identity matrix Previously, we have used elimination to get a system

More information

Computational Methods. Least Squares Approximation/Optimization

Computational Methods. Least Squares Approximation/Optimization Computational Methods Least Squares Approximation/Optimization Manfred Huber 2011 1 Least Squares Least squares methods are aimed at finding approximate solutions when no precise solution exists Find the

More information

x x2 2 + x3 3 x4 3. Use the divided-difference method to find a polynomial of least degree that fits the values shown: (b)

x x2 2 + x3 3 x4 3. Use the divided-difference method to find a polynomial of least degree that fits the values shown: (b) Numerical Methods - PROBLEMS. The Taylor series, about the origin, for log( + x) is x x2 2 + x3 3 x4 4 + Find an upper bound on the magnitude of the truncation error on the interval x.5 when log( + x)

More information

AM 205: lecture 8. Last time: Cholesky factorization, QR factorization Today: how to compute the QR factorization, the Singular Value Decomposition

AM 205: lecture 8. Last time: Cholesky factorization, QR factorization Today: how to compute the QR factorization, the Singular Value Decomposition AM 205: lecture 8 Last time: Cholesky factorization, QR factorization Today: how to compute the QR factorization, the Singular Value Decomposition QR Factorization A matrix A R m n, m n, can be factorized

More information

Preliminary Examination, Numerical Analysis, August 2016

Preliminary Examination, Numerical Analysis, August 2016 Preliminary Examination, Numerical Analysis, August 2016 Instructions: This exam is closed books and notes. The time allowed is three hours and you need to work on any three out of questions 1-4 and any

More information

Dimensionality Reduction: PCA. Nicholas Ruozzi University of Texas at Dallas

Dimensionality Reduction: PCA. Nicholas Ruozzi University of Texas at Dallas Dimensionality Reduction: PCA Nicholas Ruozzi University of Texas at Dallas Eigenvalues λ is an eigenvalue of a matrix A R n n if the linear system Ax = λx has at least one non-zero solution If Ax = λx

More information

7.6 The Inverse of a Square Matrix

7.6 The Inverse of a Square Matrix 7.6 The Inverse of a Square Matrix Copyright Cengage Learning. All rights reserved. What You Should Learn Verify that two matrices are inverses of each other. Use Gauss-Jordan elimination to find inverses

More information

Linear Algebra for Machine Learning. Sargur N. Srihari

Linear Algebra for Machine Learning. Sargur N. Srihari Linear Algebra for Machine Learning Sargur N. srihari@cedar.buffalo.edu 1 Overview Linear Algebra is based on continuous math rather than discrete math Computer scientists have little experience with it

More information

Error estimates for the ESPRIT algorithm

Error estimates for the ESPRIT algorithm Error estimates for the ESPRIT algorithm Daniel Potts Manfred Tasche Let z j := e f j j = 1,..., M) with f j [ ϕ, 0] + i [ π, π) and small ϕ 0 be distinct nodes. With complex coefficients c j 0, we consider

More information

Singular Value Decomposition

Singular Value Decomposition Singular Value Decomposition CS 205A: Mathematical Methods for Robotics, Vision, and Graphics Doug James (and Justin Solomon) CS 205A: Mathematical Methods Singular Value Decomposition 1 / 35 Understanding

More information

Generalized Pencil Of Function Method

Generalized Pencil Of Function Method Generalized Pencil Of Function Method In recent times, the methodology of approximating a function by a sum of complex exponentials has found applications in many areas of electromagnetics For example

More information

Lecture: Face Recognition and Feature Reduction

Lecture: Face Recognition and Feature Reduction Lecture: Face Recognition and Feature Reduction Juan Carlos Niebles and Ranjay Krishna Stanford Vision and Learning Lab Lecture 11-1 Recap - Curse of dimensionality Assume 5000 points uniformly distributed

More information

Singular Value Decomposition (SVD)

Singular Value Decomposition (SVD) School of Computing National University of Singapore CS CS524 Theoretical Foundations of Multimedia More Linear Algebra Singular Value Decomposition (SVD) The highpoint of linear algebra Gilbert Strang

More information

22.3. Repeated Eigenvalues and Symmetric Matrices. Introduction. Prerequisites. Learning Outcomes

22.3. Repeated Eigenvalues and Symmetric Matrices. Introduction. Prerequisites. Learning Outcomes Repeated Eigenvalues and Symmetric Matrices. Introduction In this Section we further develop the theory of eigenvalues and eigenvectors in two distinct directions. Firstly we look at matrices where one

More information

Jim Lambers MAT 419/519 Summer Session Lecture 11 Notes

Jim Lambers MAT 419/519 Summer Session Lecture 11 Notes Jim Lambers MAT 49/59 Summer Session 20-2 Lecture Notes These notes correspond to Section 34 in the text Broyden s Method One of the drawbacks of using Newton s Method to solve a system of nonlinear equations

More information

Linear Least-Squares Data Fitting

Linear Least-Squares Data Fitting CHAPTER 6 Linear Least-Squares Data Fitting 61 Introduction Recall that in chapter 3 we were discussing linear systems of equations, written in shorthand in the form Ax = b In chapter 3, we just considered

More information

Announcements. Topics: Homework:

Announcements. Topics: Homework: Announcements Topics: - sections 7.3 (the definite integral +area), 7.4 (FTC), 7.5 (additional techniques of integration) * Read these sections and study solved examples in your textbook! Homework: - review

More information

Cheat Sheet for MATH461

Cheat Sheet for MATH461 Cheat Sheet for MATH46 Here is the stuff you really need to remember for the exams Linear systems Ax = b Problem: We consider a linear system of m equations for n unknowns x,,x n : For a given matrix A

More information

MATH 5524 MATRIX THEORY Problem Set 4

MATH 5524 MATRIX THEORY Problem Set 4 MATH 5524 MATRIX THEORY Problem Set 4 Posted Tuesday 28 March 217. Due Tuesday 4 April 217. [Corrected 3 April 217.] [Late work is due on Wednesday 5 April.] Complete any four problems, 25 points each.

More information

Announcements. Topics: Homework:

Announcements. Topics: Homework: Announcements Topics: - sections 7.5 (additional techniques of integration), 7.6 (applications of integration), * Read these sections and study solved examples in your textbook! Homework: - review lecture

More information

Even-Numbered Homework Solutions

Even-Numbered Homework Solutions -6 Even-Numbered Homework Solutions Suppose that the matric B has λ = + 5i as an eigenvalue with eigenvector Y 0 = solution to dy = BY Using Euler s formula, we can write the complex-valued solution Y

More information

Transient Stability Analysis with PowerWorld Simulator

Transient Stability Analysis with PowerWorld Simulator Transient Stability Analysis with PowerWorld Simulator T11: Single Machine Infinite Bus Modeling (SMIB) 21 South First Street Champaign, Illinois 6182 +1 (217) 384.633 support@powerworld.com http://www.powerworld.com

More information

Theory and Practice of Rotor Dynamics Prof. Dr. Rajiv Tiwari Department of Mechanical Engineering Indian Institute of Technology Guwahati

Theory and Practice of Rotor Dynamics Prof. Dr. Rajiv Tiwari Department of Mechanical Engineering Indian Institute of Technology Guwahati Theory and Practice of Rotor Dynamics Prof. Dr. Rajiv Tiwari Department of Mechanical Engineering Indian Institute of Technology Guwahati Module - 2 Simpul Rotors Lecture - 2 Jeffcott Rotor Model In the

More information

3 What You Should Know About Complex Numbers

3 What You Should Know About Complex Numbers 3 What You Should Know About Complex Numbers Life is complex it has a real part, and an imaginary part Andrew Koenig. Complex numbers are an extension of the more familiar world of real numbers that make

More information

ESE319 Introduction to Microelectronics. Feedback Basics

ESE319 Introduction to Microelectronics. Feedback Basics Feedback Basics Stability Feedback concept Feedback in emitter follower One-pole feedback and root locus Frequency dependent feedback and root locus Gain and phase margins Conditions for closed loop stability

More information

MITOCW ocw f99-lec23_300k

MITOCW ocw f99-lec23_300k MITOCW ocw-18.06-f99-lec23_300k -- and lift-off on differential equations. So, this section is about how to solve a system of first order, first derivative, constant coefficient linear equations. And if

More information

Announcements Wednesday, November 01

Announcements Wednesday, November 01 Announcements Wednesday, November 01 WeBWorK 3.1, 3.2 are due today at 11:59pm. The quiz on Friday covers 3.1, 3.2. My office is Skiles 244. Rabinoffice hours are Monday, 1 3pm and Tuesday, 9 11am. Section

More information

Statistical Signal Processing Detection, Estimation, and Time Series Analysis

Statistical Signal Processing Detection, Estimation, and Time Series Analysis Statistical Signal Processing Detection, Estimation, and Time Series Analysis Louis L. Scharf University of Colorado at Boulder with Cedric Demeure collaborating on Chapters 10 and 11 A TT ADDISON-WESLEY

More information

Partial Fractions. (Do you see how to work it out? Substitute u = ax + b, so du = a dx.) For example, 1 dx = ln x 7 + C, x x (x 3)(x + 1) = a

Partial Fractions. (Do you see how to work it out? Substitute u = ax + b, so du = a dx.) For example, 1 dx = ln x 7 + C, x x (x 3)(x + 1) = a Partial Fractions 7-9-005 Partial fractions is the opposite of adding fractions over a common denominator. It applies to integrals of the form P(x) dx, wherep(x) and Q(x) are polynomials. Q(x) The idea

More information

Lecture 5 Singular value decomposition

Lecture 5 Singular value decomposition Lecture 5 Singular value decomposition Weinan E 1,2 and Tiejun Li 2 1 Department of Mathematics, Princeton University, weinan@princeton.edu 2 School of Mathematical Sciences, Peking University, tieli@pku.edu.cn

More information