A Deterministic Guaranteed Automatic Algorithm for Univariate 2014 June Function 9 1 Approximatio

Size: px
Start display at page:

Download "A Deterministic Guaranteed Automatic Algorithm for Univariate 2014 June Function 9 1 Approximatio"

Transcription

1 A Deterministic Guaranteed Automatic Algorithm for Univariate Function Approximation Yuhan Ding Advisor: Dr. Hickernell Department of Applied Mathematics Illinois Institute of Technology 2014 June 9 A for Univariate 2014 June Function 9 1 Approximatio

2 Outline Introduction Introduction Deterministic Guaranteed Automatic Algorithm A for Univariate 2014 June Function 9 2 Approximatio

3 My Questions Background My Questions for You If you are designing algorithms for others to use or performing numerical simulations Are the algorithms that you design or use automatic, i.e., requiring minimal user intervention to obtain the desired answer? Are your algorithms guaranteed to give the answer to the desired tolerance? A for Univariate 2014 June Function 9 3 Approximatio

4 Basic Assumption on [a, b] My Questions Background We consider the function f W 2, [a, b], where W 2, [a, b] = {u L [a, b] : D α u L [a, b], α 2}. We define a cone function set i.e. { C τ = f W 2, [a, b] : f τ [a,b] b a f f (b) f (a) b a }, where τ [a,b] a parameter depend on the length of interval [a, b], and τ [a,b] : [0, ) [0, ). A for Univariate 2014 June Function 9 4 Approximatio

5 Piecewise Linear Interpolation My Questions Background Goal: Find an algorithm A, such that Evenly spaced data: f A(f ) ε x i = (i 1) b a n 1 + a, f (x i) i = 1,..., n, Algorithm: x [x i, x i+1 ] A n (f )(x) = n 1 b a [f (x i)(x i+1 x) + f (x i+1 )(x x i )] A for Univariate 2014 June Function 9 5 Approximatio

6 Estimate Introduction f f (b) f (a) b a Error Bound Estimation Complexity of Multi-Step Automatic Algorithm Define F n (f ) := Bound f 0 f sup i=1,...,n 1 f (b) f (a) b a n 1 b a [f (x i+1) f (x i )] f (b) f (a) b a For all f C τ, if n > 1 + τ [a,b] /2 f f (b) f (a) b a F n (f ) f (b) f (a) b a b a f 2(n 1) F n (f ) 1 τ [a,b] /(2n 2).. A for Univariate 2014 June Function 9 6 Approximatio

7 Error Bound Estimation Complexity of Multi-Step Automatic Algorithm Bound f Define F n (f ) := For f C τ (n 1)2 (b a) 2 sup f (x i ) 2f (x i+1 ) + f (x i+2 ). i=1,...,n 2 F n (f ) f If n > 1 + τ [a,b] /2 τ min,n = τ [a,b] (b a) F n (f ) 1 τ [a,b] /(2n 2) F n (f ) F n (f )/(b a) + F n (f )/(2n i 2) τ [a,b] A for Univariate 2014 June Function 9 7 Approximatio

8 Error Bound Derivation Error Bound Estimation Complexity of Multi-Step Automatic Algorithm Error Bound Goal: f A n (f ) (b a)2 f 8(n 1) 2 f (b a)τ [a,b] 8(n 1) 2 f (b) f (a) b a τ [a,b] (b a) F n (f ) 4(n 1)(2n 2 τ [a,b] ) τ [a,b] (b a) F n (f ) 4(n 1)(2n 2 τ [a,b] ) ε f A n(f ) ε A for Univariate 2014 June Function 9 8 Approximatio

9 Multi-Step Automatic Algorithm Error Bound Estimation Complexity of Multi-Step Automatic Algorithm Initial Process Set i = 1. Choose n lo, n hi, where n hi n lo { ( ) 1 } nlo 1+b a n 1 = max n hi, 3. n hi Let τ = 2(n 1 1) 1. Given error tolerance ε and input function f. Stage 1. Estimate f f (b) f (a) b a Compute F ni (f ) and F ni (f ) as above. and bound f A for Univariate 2014 June Function 9 9 Approximatio

10 Multi-Step Automatic Algorithm Error Bound Estimation Complexity of Multi-Step Automatic Algorithm Stage 2. Check the necessary condition for f C τ τ min,ni = F ni (f ) F ni (f )/(b a) + F ni (f )/(2n i 2). If τ τ min,ni, go to stage 3. Otherwise, set τ = 2τ min,ni. If n i (τ + 1)/2, go to stage 3. Otherwise, choose τ + 1 n i+1 = 1 + (n i 1). 2n i 2 Go to Stage 1. A for Univariate 2014 June Function 9 10 Approximatio

11 Multi-Step Automatic Algorithm Stage 3. Check for convergence Check whether n i large enough such that Error Bound Estimation Complexity of Multi-Step Automatic Algorithm F ni (f ) 4ε(n i 1)(2n i 2 τ). τ(b a) If true, then return A ni (f ) and terminate the algorithm. If NOT true, choose n i+1 = 1 + (n i 1) max 2, 1 τ(b a) F ni (f ) (n i 1) 8ε Go to Stage 1. A for Univariate 2014 June Function 9 11 Approximatio

12 Error Bound Estimation Complexity of Multi-Step Automatic Algorithm Theorem ( τ ) + 1 (b a) max, 2 f ε max τ + 1 τ(b a) f, 2 8ε τ(b a) f 2ε f (b) f (a) b a cost(a, f ; ε) f (b) f (a) b a + 1 τ(b a) +τ+4 2 f +τ+4. 4ε A for Univariate 2014 June Function 9 12 Approximatio

13 What is GAIL? Introduction about GAIL Introduction about funappx g Syntax of funappx g Documentation and Test Numerical Examples GAIL is Guaranteed Automatic Integration Library A suite of algorithms In one, many, and infinite dimensions Answers guaranteed to be correct A for Univariate 2014 June Function 9 13 Approximatio

14 What is funappx g? Introduction about GAIL Introduction about funappx g Syntax of funappx g Documentation and Test Numerical Examples Built on 1-D guaranteed function recovery On closed interval [a,b] A for Univariate 2014 June Function 9 14 Approximatio

15 How to use funappx g Introduction about GAIL Introduction about funappx g Syntax of funappx g Documentation and Test Numerical Examples pp = funappx g(f ) pp = funappx g(f, a, b, abstol, nlo, nhi, nmax) pp = funappx g(f, a, a, b, b, abstol, abstol, nlo, nlo, nhi, nhi, nmax, nmax) [pp, out param] = funappxab g(f, in param) pp a piecewise polynomial structure out param a structure contained parameters of algorithm A for Univariate 2014 June Function 9 15 Approximatio

16 Introduction about GAIL Introduction about funappx g Syntax of funappx g Documentation and Test Numerical Examples Doc Test, Unit Test, Documentation Doc Test Unit Test Documentation A for Univariate 2014 June Function 9 16 Approximatio

17 f (x) = x 2 Introduction Introduction about GAIL Introduction about funappx g Syntax of funappx g Documentation and Test Numerical Examples Fix ε = 1e 7, nlo = 10, nhigh = 1000, nmax = x 2 ninit npoints errorbound exceedbudget flag [0, 1] e 10 No [ 1, 1] e 10 No [ 10, 10] e 08 Yes A for Univariate 2014 June Function 9 17 Approximatio

18 Fix Parameters Introduction about GAIL Introduction about funappx g Syntax of funappx g Documentation and Test Numerical Examples a = 1, b = 1, ε = 1e 7, nlo = 10, nhigh = 1000, nmax = Funct ninit npoints err bound flag observed err f = x e 10 No e 10 f = e 10000x e 08 Yes e 08 1 f = 1+(10x) e 07 Yes e 06 A for Univariate 2014 June Function 9 18 Approximatio

19 Develop locally adaptive algorithms Automatic algorithms with guaranteed relative error Develop high order algorithms A for Univariate 2014 June Function 9 19 Approximatio

20 Questions Introduction Thank you! A for Univariate 2014 June Function 9 20 Approximatio

Constructing Guaranteed Automatic Numerical Algorithms for U

Constructing Guaranteed Automatic Numerical Algorithms for U Constructing Guaranteed Automatic Numerical Algorithms for Univariate Integration Department of Applied Mathematics, Illinois Institute of Technology July 10, 2014 Contents Introduction.. GAIL What do

More information

A Guaranteed Automatic Integration Library for Monte Carlo Simulation

A Guaranteed Automatic Integration Library for Monte Carlo Simulation A Guaranteed Automatic Integration Library for Monte Carlo Simulation Lan Jiang Department of Applied Mathematics Illinois Institute of Technology Email: ljiang14@hawk.iit.edu Joint work with Prof. Fred

More information

A Guaranteed, Adaptive, Automatic Algorithm for Univariate Function Minimization

A Guaranteed, Adaptive, Automatic Algorithm for Univariate Function Minimization A Guaranteed, Adaptive, Automatic Algorithm for Univariate Function Minimization Xin Tong Department of Applied Mathematics, IIT May 20, 2014 Xin Tong 0/37 Outline Introduction Introduction Conclusion

More information

Some Thoughts on Guaranteed Function Approximation Satisfying Relative Error

Some Thoughts on Guaranteed Function Approximation Satisfying Relative Error Some Thoughts on Guaranteed Function Approximation Satisfying Relative Error Fred J. Hickernell Department of Applied Mathematics, Illinois Institute of Technology hickernell@iit.edu mypages.iit.edu/~hickernell

More information

Reliable Error Estimation for Quasi-Monte Carlo Methods

Reliable Error Estimation for Quasi-Monte Carlo Methods Reliable Error Estimation for Quasi-Monte Carlo Methods Department of Applied Mathematics, Joint work with Fred J. Hickernell July 8, 2014 Outline 1 Motivation Reasons Problem 2 New approach Set-up of

More information

Generalizing the Tolerance Function for Guaranteed Algorithms

Generalizing the Tolerance Function for Guaranteed Algorithms Generalizing the Tolerance Function for Guaranteed Algorithms Lluís Antoni Jiménez Rugama Joint work with Professor Fred J. Hickernell Room 120, Bldg E1, Department of Applied Mathematics Email: lluisantoni@gmail.com

More information

Classes and conversions

Classes and conversions Classes and conversions Regular expressions Syntax: r = ε a r r r + r r Semantics: The language L r of a regular expression r is inductively defined as follows: L =, L ε = {ε}, L a = a L r r = L r L r

More information

First-Order Theorem Proving and Vampire. Laura Kovács (Chalmers University of Technology) Andrei Voronkov (The University of Manchester)

First-Order Theorem Proving and Vampire. Laura Kovács (Chalmers University of Technology) Andrei Voronkov (The University of Manchester) First-Order Theorem Proving and Vampire Laura Kovács (Chalmers University of Technology) Andrei Voronkov (The University of Manchester) Outline Introduction First-Order Logic and TPTP Inference Systems

More information

Loop Convergence. CS 536: Science of Programming, Fall 2018

Loop Convergence. CS 536: Science of Programming, Fall 2018 Solved Loop Convergence CS 536: Science of Programming, Fall 2018 A. Why Diverging programs aren t useful, so it s useful to know how to show that loops terminate. B. Objectives At the end of this lecture

More information

Section 9.7 and 9.10: Taylor Polynomials and Approximations/Taylor and Maclaurin Series

Section 9.7 and 9.10: Taylor Polynomials and Approximations/Taylor and Maclaurin Series Section 9.7 and 9.10: Taylor Polynomials and Approximations/Taylor and Maclaurin Series Power Series for Functions We can create a Power Series (or polynomial series) that can approximate a function around

More information

Sparse Polynomial Interpolation and Berlekamp/Massey algorithms that correct Outlier Errors in Input Values

Sparse Polynomial Interpolation and Berlekamp/Massey algorithms that correct Outlier Errors in Input Values Sparse Polynomial Interpolation and Berlekamp/Massey algorithms that correct Outlier Errors in Input Values Clément PERNET joint work with Matthew T. COMER and Erich L. KALTOFEN : LIG/INRIA-MOAIS, Grenoble

More information

Numerical differentiation by means of Legendre polynomials in the presence of square summable noise

Numerical differentiation by means of Legendre polynomials in the presence of square summable noise www.oeaw.ac.at Numerical differentiation by means of Legendre polynomials in the presence of square summable noise S. Lu, V. Naumova, S. Pereverzyev RICAM-Report 2012-15 www.ricam.oeaw.ac.at Numerical

More information

Exact Arithmetic on a Computer

Exact Arithmetic on a Computer Exact Arithmetic on a Computer Symbolic Computation and Computer Algebra William J. Turner Department of Mathematics & Computer Science Wabash College Crawfordsville, IN 47933 Tuesday 21 September 2010

More information

Automatic Verification of Parameterized Data Structures

Automatic Verification of Parameterized Data Structures Automatic Verification of Parameterized Data Structures Jyotirmoy V. Deshmukh, E. Allen Emerson and Prateek Gupta The University of Texas at Austin The University of Texas at Austin 1 Outline Motivation

More information

Automatic algorithms

Automatic algorithms Automatic algorithms Function approximation using its series decomposition in a basis Lluís Antoni Jiménez Rugama May 30, 2013 Index 1 Introduction Environment Linking H in Example and H out 2 Our algorithms

More information

An inverse problem for a system of steady-state reaction-diffusion equations on a porous domain using a collage-based approach

An inverse problem for a system of steady-state reaction-diffusion equations on a porous domain using a collage-based approach Journal of Physics: Conference Series PAPER OPEN ACCESS An inverse problem for a system of steady-state reaction-diffusion equations on a porous domain using a collage-based approach To cite this article:

More information

Numerical integration in arbitrary-precision ball arithmetic

Numerical integration in arbitrary-precision ball arithmetic / 24 Numerical integration in arbitrary-precision ball arithmetic Fredrik Johansson (LFANT, Bordeaux) Journées FastRelax, Inria Sophia Antipolis 7 June 208 Numerical integration in Arb 2 / 24 New code

More information

Weak Cost Monadic Logic over Infinite Trees

Weak Cost Monadic Logic over Infinite Trees Weak Cost Monadic Logic over Infinite Trees Michael Vanden Boom Department of Computer Science University of Oxford MFCS 011 Warsaw Cost monadic second-order logic (cost MSO) Syntax First-order logic with

More information

Temporal Logic of Actions

Temporal Logic of Actions Advanced Topics in Distributed Computing Dominik Grewe Saarland University March 20, 2008 Outline Basic Concepts Transition Systems Temporal Operators Fairness Introduction Definitions Example TLC - A

More information

Medical Physics & Science Applications

Medical Physics & Science Applications Power Conversion & Electromechanical Devices Medical Physics & Science Applications Transportation Power Systems 1-5: Introduction to the Finite Element Method Introduction Finite Element Method is used

More information

Introductory Numerical Analysis

Introductory Numerical Analysis Introductory Numerical Analysis Lecture Notes December 16, 017 Contents 1 Introduction to 1 11 Floating Point Numbers 1 1 Computational Errors 13 Algorithm 3 14 Calculus Review 3 Root Finding 5 1 Bisection

More information

Probabilistic Model Checking Michaelmas Term Dr. Dave Parker. Department of Computer Science University of Oxford

Probabilistic Model Checking Michaelmas Term Dr. Dave Parker. Department of Computer Science University of Oxford Probabilistic Model Checking Michaelmas Term 20 Dr. Dave Parker Department of Computer Science University of Oxford Overview PCTL for MDPs syntax, semantics, examples PCTL model checking next, bounded

More information

DryVR: Data-driven verification and compositional reasoning for automotive systems

DryVR: Data-driven verification and compositional reasoning for automotive systems DryVR: Data-driven verification and compositional reasoning for automotive systems Chuchu Fan, Bolun Qi, Sayan Mitra, Mahesh Viswannathan University of Illinois at Urbana-Champaign CAV 2017, Heidelberg,

More information

NP Completeness and Approximation Algorithms

NP Completeness and Approximation Algorithms Chapter 10 NP Completeness and Approximation Algorithms Let C() be a class of problems defined by some property. We are interested in characterizing the hardest problems in the class, so that if we can

More information

Selected Examples of CONIC DUALITY AT WORK Robust Linear Optimization Synthesis of Linear Controllers Matrix Cube Theorem A.

Selected Examples of CONIC DUALITY AT WORK Robust Linear Optimization Synthesis of Linear Controllers Matrix Cube Theorem A. . Selected Examples of CONIC DUALITY AT WORK Robust Linear Optimization Synthesis of Linear Controllers Matrix Cube Theorem A. Nemirovski Arkadi.Nemirovski@isye.gatech.edu Linear Optimization Problem,

More information

A first order divided difference

A first order divided difference A first order divided difference For a given function f (x) and two distinct points x 0 and x 1, define f [x 0, x 1 ] = f (x 1) f (x 0 ) x 1 x 0 This is called the first order divided difference of f (x).

More information

Artificial Intelligence. Non-deterministic state model. Model for non-deterministic problems. Solutions. Blai Bonet

Artificial Intelligence. Non-deterministic state model. Model for non-deterministic problems. Solutions. Blai Bonet Artificial Intelligence Blai Bonet Non-deterministic state model Universidad Simón Boĺıvar, Caracas, Venezuela Model for non-deterministic problems Solutions State models with non-deterministic actions

More information

Adaptive decoding for dense and sparse evaluation/interpolation codes

Adaptive decoding for dense and sparse evaluation/interpolation codes Adaptive decoding for dense and sparse evaluation/interpolation codes Clément PERNET INRIA/LIG-MOAIS, Grenoble Université joint work with M. Comer, E. Kaltofen, J-L. Roch, T. Roche Séminaire Calcul formel

More information

Zeros of lacunary random polynomials

Zeros of lacunary random polynomials Zeros of lacunary random polynomials Igor E. Pritsker Dedicated to Norm Levenberg on his 60th birthday Abstract We study the asymptotic distribution of zeros for the lacunary random polynomials. It is

More information

Numerical Integration of Ordinary Differential Equations for Initial Value Problems

Numerical Integration of Ordinary Differential Equations for Initial Value Problems Numerical Integration of Ordinary Differential Equations for Initial Value Problems Gerald Recktenwald Portland State University Department of Mechanical Engineering gerry@me.pdx.edu These slides are a

More information

Testing System Conformance for Cyber-Physical Systems

Testing System Conformance for Cyber-Physical Systems Testing System Conformance for Cyber-Physical Systems Testing systems by walking the dog Rupak Majumdar Max Planck Institute for Software Systems Joint work with Vinayak Prabhu (MPI-SWS) and Jyo Deshmukh

More information

S chauder Theory. x 2. = log( x 1 + x 2 ) + 1 ( x 1 + x 2 ) 2. ( 5) x 1 + x 2 x 1 + x 2. 2 = 2 x 1. x 1 x 2. 1 x 1.

S chauder Theory. x 2. = log( x 1 + x 2 ) + 1 ( x 1 + x 2 ) 2. ( 5) x 1 + x 2 x 1 + x 2. 2 = 2 x 1. x 1 x 2. 1 x 1. Sep. 1 9 Intuitively, the solution u to the Poisson equation S chauder Theory u = f 1 should have better regularity than the right hand side f. In particular one expects u to be twice more differentiable

More information

Distributionally Robust Discrete Optimization with Entropic Value-at-Risk

Distributionally Robust Discrete Optimization with Entropic Value-at-Risk Distributionally Robust Discrete Optimization with Entropic Value-at-Risk Daniel Zhuoyu Long Department of SEEM, The Chinese University of Hong Kong, zylong@se.cuhk.edu.hk Jin Qi NUS Business School, National

More information

Case study: stochastic simulation via Rademacher bootstrap

Case study: stochastic simulation via Rademacher bootstrap Case study: stochastic simulation via Rademacher bootstrap Maxim Raginsky December 4, 2013 In this lecture, we will look at an application of statistical learning theory to the problem of efficient stochastic

More information

Degrees of Streams. Jörg Endrullis Dimitri Hendriks Jan Willem Klop. Streams Seminar Nijmegen, 20th April Vrije Universiteit Amsterdam

Degrees of Streams. Jörg Endrullis Dimitri Hendriks Jan Willem Klop. Streams Seminar Nijmegen, 20th April Vrije Universiteit Amsterdam Degrees of Streams Jörg Endrullis Dimitri Hendriks Jan Willem Klop Vrije Universiteit Amsterdam Streams Seminar Nijmegen, 20th April 2010 Complexity of streams Complexity measures for infinite streams:

More information

PERCOLATION IN SELFISH SOCIAL NETWORKS

PERCOLATION IN SELFISH SOCIAL NETWORKS PERCOLATION IN SELFISH SOCIAL NETWORKS Charles Bordenave UC Berkeley joint work with David Aldous (UC Berkeley) PARADIGM OF SOCIAL NETWORKS OBJECTIVE - Understand better the dynamics of social behaviors

More information

Example. Lemma. Proof Sketch. 1 let A be a formula that expresses that node t is reachable from s

Example. Lemma. Proof Sketch. 1 let A be a formula that expresses that node t is reachable from s Summary Summary Last Lecture Computational Logic Π 1 Γ, x : σ M : τ Γ λxm : σ τ Γ (λxm)n : τ Π 2 Γ N : τ = Π 1 [x\π 2 ] Γ M[x := N] Georg Moser Institute of Computer Science @ UIBK Winter 2012 the proof

More information

1 Convexity, Convex Relaxations, and Global Optimization

1 Convexity, Convex Relaxations, and Global Optimization 1 Conveity, Conve Relaations, and Global Optimization Algorithms 1 1.1 Minima Consider the nonlinear optimization problem in a Euclidean space: where the feasible region. min f(), R n Definition (global

More information

REGRESSION TREE CREDIBILITY MODEL

REGRESSION TREE CREDIBILITY MODEL LIQUN DIAO AND CHENGGUO WENG Department of Statistics and Actuarial Science, University of Waterloo Advances in Predictive Analytics Conference, Waterloo, Ontario Dec 1, 2017 Overview Statistical }{{ Method

More information

Numerical Integration

Numerical Integration Numerical Integration Sanzheng Qiao Department of Computing and Software McMaster University February, 2014 Outline 1 Introduction 2 Rectangle Rule 3 Trapezoid Rule 4 Error Estimates 5 Simpson s Rule 6

More information

Data representation and approximation

Data representation and approximation Representation and approximation of data February 3, 2015 Outline 1 Outline 1 Approximation The interpretation of polynomials as functions, rather than abstract algebraic objects, forces us to reinterpret

More information

Keyframing. CS 448D: Character Animation Prof. Vladlen Koltun Stanford University

Keyframing. CS 448D: Character Animation Prof. Vladlen Koltun Stanford University Keyframing CS 448D: Character Animation Prof. Vladlen Koltun Stanford University Keyframing in traditional animation Master animator draws key frames Apprentice fills in the in-between frames Keyframing

More information

Adaptive Rejection Sampling with fixed number of nodes

Adaptive Rejection Sampling with fixed number of nodes Adaptive Rejection Sampling with fixed number of nodes L. Martino, F. Louzada Institute of Mathematical Sciences and Computing, Universidade de São Paulo, São Carlos (São Paulo). Abstract The adaptive

More information

Efficient Robust Monitoring for STL

Efficient Robust Monitoring for STL 100 120 Efficient Robust Monitoring for STL Alexandre Donzé 1, Thomas Ferrère 2, Oded Maler 2 1 University of California, Berkeley, EECS dept 2 Verimag, CNRS and Grenoble University May 28, 2013 Efficient

More information

Computation of the error functions erf and erfc in arbitrary precision with correct rounding

Computation of the error functions erf and erfc in arbitrary precision with correct rounding Computation of the error functions erf and erfc in arbitrary precision with correct rounding Sylvain Chevillard Arenaire, LIP, ENS-Lyon, France Sylvain.Chevillard@ens-lyon.fr Nathalie Revol INRIA, Arenaire,

More information

1 Piecewise Cubic Interpolation

1 Piecewise Cubic Interpolation Piecewise Cubic Interpolation Typically the problem with piecewise linear interpolation is the interpolant is not differentiable as the interpolation points (it has a kinks at every interpolation point)

More information

Numerical Integration of Functions

Numerical Integration of Functions Numerical Integration of Functions Berlin Chen Department of Computer Science & Information Engineering National Taiwan Normal University Reference: 1. Applied Numerical Methods with MATLAB for Engineers,

More information

Hybrid Systems - Lecture n. 3 Lyapunov stability

Hybrid Systems - Lecture n. 3 Lyapunov stability OUTLINE Focus: stability of equilibrium point Hybrid Systems - Lecture n. 3 Lyapunov stability Maria Prandini DEI - Politecnico di Milano E-mail: prandini@elet.polimi.it continuous systems decribed by

More information

Real Solving on Bivariate Systems with Sturm Sequences and SLV Maple TM library

Real Solving on Bivariate Systems with Sturm Sequences and SLV Maple TM library Real Solving on Bivariate Systems with Sturm Sequences and SLV Maple TM library Dimitris Diochnos University of Illinois at Chicago Dept. of Mathematics, Statistics, and Computer Science September 27,

More information

Real-Time Reactive System - CCS with Time Delays

Real-Time Reactive System - CCS with Time Delays Real-Time Reactive System - CCS with Time Delays Wai Leung Sze (Stephen) Swansea University VINO 18th July 2011 Overview Introduction of real-time reactive system Describing the real-time reactive system

More information

ω-automata Automata that accept (or reject) words of infinite length. Languages of infinite words appear:

ω-automata Automata that accept (or reject) words of infinite length. Languages of infinite words appear: ω-automata ω-automata Automata that accept (or reject) words of infinite length. Languages of infinite words appear: in verification, as encodings of non-terminating executions of a program. in arithmetic,

More information

A New Look At Generalized Rewriting in Type Theory

A New Look At Generalized Rewriting in Type Theory A New Look At Generalized Rewriting in Type Theory Matthieu Sozeau Harvard University TYPES 09 May 13th 2009 Aussois, France Generalized Rewriting Equational reasoning x = y - x + 1 ==> y + 1 Logical reasoning

More information

SPLINE INTERPOLATION

SPLINE INTERPOLATION Spline Background SPLINE INTERPOLATION Problem: high degree interpolating polynomials often have extra oscillations. Example: Runge function f(x = 1 1+4x 2, x [ 1, 1]. 1 1/(1+4x 2 and P 8 (x and P 16 (x

More information

What can be expressed via Conic Quadratic and Semidefinite Programming?

What can be expressed via Conic Quadratic and Semidefinite Programming? What can be expressed via Conic Quadratic and Semidefinite Programming? A. Nemirovski Faculty of Industrial Engineering and Management Technion Israel Institute of Technology Abstract Tremendous recent

More information

Foundations of Informatics: a Bridging Course

Foundations of Informatics: a Bridging Course Foundations of Informatics: a Bridging Course Week 3: Formal Languages and Semantics Thomas Noll Lehrstuhl für Informatik 2 RWTH Aachen University noll@cs.rwth-aachen.de http://www.b-it-center.de/wob/en/view/class211_id948.html

More information

Prediction-based adaptive control of a class of discrete-time nonlinear systems with nonlinear growth rate

Prediction-based adaptive control of a class of discrete-time nonlinear systems with nonlinear growth rate www.scichina.com info.scichina.com www.springerlin.com Prediction-based adaptive control of a class of discrete-time nonlinear systems with nonlinear growth rate WEI Chen & CHEN ZongJi School of Automation

More information

A New Look at Generalized Rewriting in Type Theory

A New Look at Generalized Rewriting in Type Theory A New Look at Generalized Rewriting in Type Theory Matthieu Sozeau Harvard University 1st Coq Workshop August 21th 2009 Munich, Germany Generalized Rewriting Equational reasoning x = y - x + 1 ==> y +

More information

Juan Vicente Gutiérrez Santacreu Rafael Rodríguez Galván. Departamento de Matemática Aplicada I Universidad de Sevilla

Juan Vicente Gutiérrez Santacreu Rafael Rodríguez Galván. Departamento de Matemática Aplicada I Universidad de Sevilla Doc-Course: Partial Differential Equations: Analysis, Numerics and Control Research Unit 3: Numerical Methods for PDEs Part I: Finite Element Method: Elliptic and Parabolic Equations Juan Vicente Gutiérrez

More information

Function Approximation

Function Approximation 1 Function Approximation This is page i Printer: Opaque this 1.1 Introduction In this chapter we discuss approximating functional forms. Both in econometric and in numerical problems, the need for an approximating

More information

Designing a Correct Numerical Algorithm

Designing a Correct Numerical Algorithm Intro Implem Errors Sollya Gappa Norm Conc Christoph Lauter Guillaume Melquiond March 27, 2013 Intro Implem Errors Sollya Gappa Norm Conc Outline 1 Introduction 2 Implementation theory 3 Error analysis

More information

COURSE Numerical integration of functions (continuation) 3.3. The Romberg s iterative generation method

COURSE Numerical integration of functions (continuation) 3.3. The Romberg s iterative generation method COURSE 7 3. Numerical integration of functions (continuation) 3.3. The Romberg s iterative generation method The presence of derivatives in the remainder difficulties in applicability to practical problems

More information

Threshold Autoregressions and NonLinear Autoregressions

Threshold Autoregressions and NonLinear Autoregressions Threshold Autoregressions and NonLinear Autoregressions Original Presentation: Central Bank of Chile October 29-31, 2013 Bruce Hansen (University of Wisconsin) Threshold Regression 1 / 47 Threshold Models

More information

Root Finding (and Optimisation)

Root Finding (and Optimisation) Root Finding (and Optimisation) M.Sc. in Mathematical Modelling & Scientific Computing, Practical Numerical Analysis Michaelmas Term 2018, Lecture 4 Root Finding The idea of root finding is simple we want

More information

Interval Methods and Taylor Model Methods for ODEs

Interval Methods and Taylor Model Methods for ODEs Interval Methods and Taylor Model Methods for ODEs Markus Neher, Dept. of Mathematics KARLSRUHE INSTITUTE OF TECHNOLOGY (KIT) 0 TM VII, Key West KIT University of the State of Baden-Wuerttemberg and Interval

More information

Hybrid systems and computer science a short tutorial

Hybrid systems and computer science a short tutorial Hybrid systems and computer science a short tutorial Eugene Asarin Université Paris 7 - LIAFA SFM 04 - RT, Bertinoro p. 1/4 Introductory equations Hybrid Systems = Discrete+Continuous SFM 04 - RT, Bertinoro

More information

MATH 590: Meshfree Methods

MATH 590: Meshfree Methods MATH 590: Meshfree Methods Chapter 14: The Power Function and Native Space Error Estimates Greg Fasshauer Department of Applied Mathematics Illinois Institute of Technology Fall 2010 fasshauer@iit.edu

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 5 Nonlinear Equations Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction

More information

LIMITED MEMORY BUNDLE METHOD FOR LARGE BOUND CONSTRAINED NONSMOOTH OPTIMIZATION: CONVERGENCE ANALYSIS

LIMITED MEMORY BUNDLE METHOD FOR LARGE BOUND CONSTRAINED NONSMOOTH OPTIMIZATION: CONVERGENCE ANALYSIS LIMITED MEMORY BUNDLE METHOD FOR LARGE BOUND CONSTRAINED NONSMOOTH OPTIMIZATION: CONVERGENCE ANALYSIS Napsu Karmitsa 1 Marko M. Mäkelä 2 Department of Mathematics, University of Turku, FI-20014 Turku,

More information

A NEARLY-OPTIMAL ALGORITHM FOR THE FREDHOLM PROBLEM OF THE SECOND KIND OVER A NON-TENSOR PRODUCT SOBOLEV SPACE

A NEARLY-OPTIMAL ALGORITHM FOR THE FREDHOLM PROBLEM OF THE SECOND KIND OVER A NON-TENSOR PRODUCT SOBOLEV SPACE JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS Volume 27, Number 1, Spring 2015 A NEARLY-OPTIMAL ALGORITHM FOR THE FREDHOLM PROBLEM OF THE SECOND KIND OVER A NON-TENSOR PRODUCT SOBOLEV SPACE A.G. WERSCHULZ

More information

Hilbert Spaces. Hilbert space is a vector space with some extra structure. We start with formal (axiomatic) definition of a vector space.

Hilbert Spaces. Hilbert space is a vector space with some extra structure. We start with formal (axiomatic) definition of a vector space. Hilbert Spaces Hilbert space is a vector space with some extra structure. We start with formal (axiomatic) definition of a vector space. Vector Space. Vector space, ν, over the field of complex numbers,

More information

Econ Lecture 3. Outline. 1. Metric Spaces and Normed Spaces 2. Convergence of Sequences in Metric Spaces 3. Sequences in R and R n

Econ Lecture 3. Outline. 1. Metric Spaces and Normed Spaces 2. Convergence of Sequences in Metric Spaces 3. Sequences in R and R n Econ 204 2011 Lecture 3 Outline 1. Metric Spaces and Normed Spaces 2. Convergence of Sequences in Metric Spaces 3. Sequences in R and R n 1 Metric Spaces and Metrics Generalize distance and length notions

More information

Notes for Numerical Analysis Math 5465 by S. Adjerid Virginia Polytechnic Institute and State University. (A Rough Draft)

Notes for Numerical Analysis Math 5465 by S. Adjerid Virginia Polytechnic Institute and State University. (A Rough Draft) Notes for Numerical Analysis Math 5465 by S. Adjerid Virginia Polytechnic Institute and State University (A Rough Draft) 1 2 Contents 1 Error Analysis 5 2 Nonlinear Algebraic Equations 7 2.1 Convergence

More information

On Computably Enumerable Sets over Function Fields

On Computably Enumerable Sets over Function Fields On Computably Enumerable Sets over Function Fields Alexandra Shlapentokh East Carolina University Joint Meetings 2017 Atlanta January 2017 Some History Outline 1 Some History A Question and the Answer

More information

Numerical Methods I Solving Nonlinear Equations

Numerical Methods I Solving Nonlinear Equations Numerical Methods I Solving Nonlinear Equations Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 MATH-GA 2011.003 / CSCI-GA 2945.003, Fall 2014 October 16th, 2014 A. Donev (Courant Institute)

More information

Lecture 10 Polynomial interpolation

Lecture 10 Polynomial interpolation Lecture 10 Polynomial interpolation Weinan E 1,2 and Tiejun Li 2 1 Department of Mathematics, Princeton University, weinan@princeton.edu 2 School of Mathematical Sciences, Peking University, tieli@pku.edu.cn

More information

Adaptive Rejection Sampling with fixed number of nodes

Adaptive Rejection Sampling with fixed number of nodes Adaptive Rejection Sampling with fixed number of nodes L. Martino, F. Louzada Institute of Mathematical Sciences and Computing, Universidade de São Paulo, Brazil. Abstract The adaptive rejection sampling

More information

Functional Analysis Exercise Class

Functional Analysis Exercise Class Functional Analysis Exercise Class Week 2 November 6 November Deadline to hand in the homeworks: your exercise class on week 9 November 13 November Exercises (1) Let X be the following space of piecewise

More information

MATH 590: Meshfree Methods

MATH 590: Meshfree Methods MATH 590: Meshfree Methods Chapter 5: Completely Monotone and Multiply Monotone Functions Greg Fasshauer Department of Applied Mathematics Illinois Institute of Technology Fall 2010 fasshauer@iit.edu MATH

More information

The Optimal Mechanism in Differential Privacy

The Optimal Mechanism in Differential Privacy The Optimal Mechanism in Differential Privacy Quan Geng Advisor: Prof. Pramod Viswanath 11/07/2013 PhD Final Exam of Quan Geng, ECE, UIUC 1 Outline Background on Differential Privacy ε-differential Privacy:

More information

The ϵ-capacity of a gain matrix and tolerable disturbances: Discrete-time perturbed linear systems

The ϵ-capacity of a gain matrix and tolerable disturbances: Discrete-time perturbed linear systems IOSR Journal of Mathematics (IOSR-JM) e-issn: 2278-5728, p-issn: 2319-765X. Volume 11, Issue 3 Ver. IV (May - Jun. 2015), PP 52-62 www.iosrjournals.org The ϵ-capacity of a gain matrix and tolerable disturbances:

More information

Automated Reasoning Lecture 17: Inductive Proof (in Isabelle)

Automated Reasoning Lecture 17: Inductive Proof (in Isabelle) Automated Reasoning Lecture 17: Inductive Proof (in Isabelle) Jacques Fleuriot jdf@inf.ed.ac.uk Recap Previously: Unification and Rewriting This time: Proof by Induction (in Isabelle) Proof by Mathematical

More information

A Type Theory for Formalising Category Theory

A Type Theory for Formalising Category Theory A Type Theory for Formalising Category Theory Robin Adams 24 July 2012 Robin Adams Type Theory for Category Theory 24 July 2012 1 / 28 1 Introduction The Problem of Notation Category Theory in Five Minutes

More information

Catching Elephants with Mice

Catching Elephants with Mice Catching Elephants with Mice Sparse Sampling for Monitoring Sensor Networks S. Gandhi, S. Suri, E. Welzl M. Schaufelberger, Seminar in Distributed Computing 10.12.2008 Outline Introduction VC-Dimension

More information

Surface Mount Multilayer Ceramic Chip Capacitors with Integrated Resistor for High Pulse Current Applications

Surface Mount Multilayer Ceramic Chip Capacitors with Integrated Resistor for High Pulse Current Applications Surface Mount Multilayer Ceramic Chip Capacitors with Integrated Resistor for High Pulse Current Applications FEATURES Integrated resistor on the surface of the Available capacitor Low electrostrictive

More information

An Introduction to Differential Algebra

An Introduction to Differential Algebra An Introduction to Differential Algebra Alexander Wittig1, P. Di Lizia, R. Armellin, et al. 1 ESA Advanced Concepts Team (TEC-SF) SRL, Milan Dinamica Outline 1 Overview Five Views of Differential Algebra

More information

COMP/MATH 300 Topics for Spring 2017 June 5, Review and Regular Languages

COMP/MATH 300 Topics for Spring 2017 June 5, Review and Regular Languages COMP/MATH 300 Topics for Spring 2017 June 5, 2017 Review and Regular Languages Exam I I. Introductory and review information from Chapter 0 II. Problems and Languages A. Computable problems can be expressed

More information

Semidefinite and Second Order Cone Programming Seminar Fall 2012 Project: Robust Optimization and its Application of Robust Portfolio Optimization

Semidefinite and Second Order Cone Programming Seminar Fall 2012 Project: Robust Optimization and its Application of Robust Portfolio Optimization Semidefinite and Second Order Cone Programming Seminar Fall 2012 Project: Robust Optimization and its Application of Robust Portfolio Optimization Instructor: Farid Alizadeh Author: Ai Kagawa 12/12/2012

More information

Cubic Splines MATH 375. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Cubic Splines

Cubic Splines MATH 375. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Cubic Splines Cubic Splines MATH 375 J. Robert Buchanan Department of Mathematics Fall 2006 Introduction Given data {(x 0, f(x 0 )), (x 1, f(x 1 )),...,(x n, f(x n ))} which we wish to interpolate using a polynomial...

More information

Math 61CM - Solutions to homework 6

Math 61CM - Solutions to homework 6 Math 61CM - Solutions to homework 6 Cédric De Groote November 5 th, 2018 Problem 1: (i) Give an example of a metric space X such that not all Cauchy sequences in X are convergent. (ii) Let X be a metric

More information

Scientific Computing

Scientific Computing 2301678 Scientific Computing Chapter 2 Interpolation and Approximation Paisan Nakmahachalasint Paisan.N@chula.ac.th Chapter 2 Interpolation and Approximation p. 1/66 Contents 1. Polynomial interpolation

More information

CS412: Introduction to Numerical Methods

CS412: Introduction to Numerical Methods CS412: Introduction to Numerical Methods MIDTERM #1 2:30PM - 3:45PM, Tuesday, 03/10/2015 Instructions: This exam is a closed book and closed notes exam, i.e., you are not allowed to consult any textbook,

More information

Vector Spaces. Vector space, ν, over the field of complex numbers, C, is a set of elements a, b,..., satisfying the following axioms.

Vector Spaces. Vector space, ν, over the field of complex numbers, C, is a set of elements a, b,..., satisfying the following axioms. Vector Spaces Vector space, ν, over the field of complex numbers, C, is a set of elements a, b,..., satisfying the following axioms. For each two vectors a, b ν there exists a summation procedure: a +

More information

Root Finding and Optimization

Root Finding and Optimization Root Finding and Optimization Ramses van Zon SciNet, University o Toronto Scientiic Computing Lecture 11 February 11, 2014 Root Finding It is not uncommon in scientiic computing to want solve an equation

More information

Bisected Direct Quadratic Regula Falsi

Bisected Direct Quadratic Regula Falsi Applied Mathematical Sciences, Vol. 4, 2010, no. 15, 709-718 Bisected Direct Quadratic Regula Falsi Robert G. Gottlieb 1 and Blair F. Thompson Odyssey Space Research 1120 NASA Parkway, Suite 505 Houston,

More information

Unranked Tree Automata with Sibling Equalities and Disequalities

Unranked Tree Automata with Sibling Equalities and Disequalities Unranked Tree Automata with Sibling Equalities and Disequalities Wong Karianto Christof Löding Lehrstuhl für Informatik 7, RWTH Aachen, Germany 34th International Colloquium, ICALP 2007 Xu Gao (NFS) Unranked

More information

The Quasi-Synchronous Approach to Distributed Control Systems

The Quasi-Synchronous Approach to Distributed Control Systems The Quasi-Synchronous Approach to Distributed Control Systems Paul Caspi caspi@imag.fr Verimag Laboratory http://www-verimag.imag.fr Crisys Esprit Project http://borneo.gmd.de/ ap/crisys/ The Quasi-Synchronous

More information

Tutorial on quasi-monte Carlo methods

Tutorial on quasi-monte Carlo methods Tutorial on quasi-monte Carlo methods Josef Dick School of Mathematics and Statistics, UNSW, Sydney, Australia josef.dick@unsw.edu.au Comparison: MCMC, MC, QMC Roughly speaking: Markov chain Monte Carlo

More information

Romberg Integration and Gaussian Quadrature

Romberg Integration and Gaussian Quadrature Romberg Integration and Gaussian Quadrature P. Sam Johnson October 17, 014 P. Sam Johnson (NITK) Romberg Integration and Gaussian Quadrature October 17, 014 1 / 19 Overview We discuss two methods for integration.

More information

INVESTIGATION OF STABILITY AND ACCURACY OF HIGH ORDER GENERALIZED FINITE ELEMENT METHODS HAOYANG LI THESIS

INVESTIGATION OF STABILITY AND ACCURACY OF HIGH ORDER GENERALIZED FINITE ELEMENT METHODS HAOYANG LI THESIS c 2014 Haoyang Li INVESTIGATION OF STABILITY AND ACCURACY OF HIGH ORDER GENERALIZED FINITE ELEMENT METHODS BY HAOYANG LI THESIS Submitted in partial fulfillment of the requirements for the degree of Master

More information

Lecture 14. Outline. 1. Finish Polynomials and Secrets. 2. Finite Fields: Abstract Algebra 3. Erasure Coding

Lecture 14. Outline. 1. Finish Polynomials and Secrets. 2. Finite Fields: Abstract Algebra 3. Erasure Coding Lecture 14. Outline. 1. Finish Polynomials and Secrets. 2. Finite Fields: Abstract Algebra 3. Erasure Coding Modular Arithmetic Fact and Secrets Modular Arithmetic Fact: There is exactly 1 polynomial of

More information