Nonlinear Regression. Chapter 2 of Bates and Watts. Dave Campbell 2009

Size: px
Start display at page:

Download "Nonlinear Regression. Chapter 2 of Bates and Watts. Dave Campbell 2009"

Transcription

1 Nonlinear Regression Chapter 2 of Bates and Watts Dave Campbell 2009

2 So far we ve considered linear models Here the expectation surface is a plane spanning a subspace of the observation space. Our expectation surface has a flat shape. Our model has a linear shape When things are flat projections are easy to do and understand.

3 nonlinear least squares Gauss-Newton Geometry Matlab Functions

4 The N observations are modeled by Y n = f (X n,θ) + Z n Where f (X n,θ) might be: Y 0 e α X + β / α θ 1 X θ 2 + X e β 0 β 1 X

5 We will define the expectation function η(θ) = f (X n,θ) And the observation process Y n = η(θ) + Z n And again assume E(Z) = 0 var(z) = E(Z 'Z) = σ 2 I

6 Lipoprotein problem from Bates and Watts % of the original tracer observations by time (days)

7 Consider the 1 compartment model: η(θ) = f (X n,θ) η(θ) = θ 1 e θ 2 X Although we could transform the data into the model: log(y n ) = log(θ 1 ) θ 2 X n + error n We will ignore this linearization and use the nonlinear model as a simple example

8 The response surface is defined by changing values of the single parameter in η(θ) = 100e θ 2 X Our expectation surface is then a one dimensional manifold

9 Lipoprotein observation and response surface

10 Again we wish to minimize the residual vector But there may be more than 1 location where the angle between the residual vector and the tangent to the expectation surface are orthogonal

11 The problem is even worse in the 2 dimensional model where initial conditions are unknown η(θ) = f (X n,θ) η(θ) = θ 1 e θ 2 X

12 Lipoprotein observation and 2 parameter response surface lines show the response surface where theta 1 is fixed but altering theta2 dot connecting spreading lines making the kinks show changes in theta1 with fixed theta 2

13 steps: 1. Find the point on the expectation surface closest to ˆη = ˆ Y Y ˆθ 2. Find corresponding to this point

14 Gauss-Newton Method Use a linear approximation to the expectation surface to iteratively improve an initial guess for θ We will use a linear Taylor approximation to the expectation surface, and then use linear regression methods. We will need to keep updating the Taylor expansion and keep updating our estimate. θ (0)

15 The expectation function η(θ) = θ 1 e θ 2 X For a single observation the Taylor expansion for the p dimensional parameter vector: η(θ) η(θ (0) ) + p k =1 η(θ) θ θ (0) θ k k θ =θ (0 ) Including all observations we get η(θ) η(θ (0) ) + V (0) (θ θ (0) ) where V (0) = η(x 1,θ) θ 1... η(x 1,θ) θ p η(x n,θ) η(x... n,θ) θ 1 θ p θ =θ (0 )

16 The model η(θ) = θ 1 e θ 2 X V (0) = e θ 2 X θ 1 Xe θ 2 X θ =θ (0 )

17 The fit to the observations on the response surface and the Gauss Newton path

18 The first step jump really far away from the region where the linear Taylor approximation is valid. We can improve the Gauss Newton algorithm by enforcing the condition SSE(θ (i+1) ) < SSE(θ (i) ) This means that at each step we have to adjust the step size so that it doesn t take us to a worse location in the response surface

19 We adjust the algorithm by halving if the SSE condition is not met and trying again.

20

21 Geometry 1. Approximate the expectation surface η(θ (0) ) by an expectation plane at the current value ˆη(θ (0) ) 2. generate a residual vector z = y η(θ (0) ) 3. Project the residual onto the tangent plane to get new value of expectation surface ˆη(θ (1) ) 4. Map the move to ˆη(θ (1) ) through the linear approximation to get a step δ 5. move to the point on the actual expectation surface η(θ (0) + δ )

22 Gauss Newton Convergence

23 Gauss Newton Convergence In Matlab code I told it when to stop

24 Gauss Newton Convergence In Matlab code I told it when to stop Ideal convergence is based on the angle of the residual vector

25 Inference Inference is based on a linear approximation to the expectation surface then we project a disk onto the approximated expectation plane Then transform the values back to the parameter space to get an inference region

26 Other Intervals Marginal intervals: Use the same linear approximation and apply the linear marginal inference regions Inference bands for expected response x 0 ˆβ f (x 0, ˆθ) Replace in linear case with and replace the matrix X by ˆV and the derivative vector x 0 with the corresponding derivative matrix entry v 0

27 1. Why is it so wide near time 0? 2. Why is it so narrow near time 10? 3. Why is it so wide generally everywhere? 4. why is it wavy?

28 Using 3 or 12 observations

29 Using 3 or 12 observations

30 Matlab NLS function [beta,r,j,covb,mse] = nlinfit(x,y,fun,beta0) X is the same as our X y is a vector of observations fun is a function handle for the nonlinear function, the function takes inputs (beta,x) and gives Yhat as an output beta0 is the starting point for the iterative estimates

31 Matlab NLS function [beta,r,j,covb,mse] = nlinfit(x,y,fun,beta0) beta is NLS point estimate r is a residual vector J is the Jacobian of the function fun evaluated at each observation: this is our V COVB is the estimated covariance matrix for parameters mse is an estimate of the error variance term: our s 2

32 Marginal Confidence intervals for parameters CI_NLS = nlparci(beta,resids,'jacobian',j) beta is the parameter estimate output from nlinfit resids is the residual vector output from nlinfit J is the Jacobian output from nlinfit

33 Confidence interval for a new value or x [ypred,delta] = nlpredci(fun,x,beta,resid,'jacobian',j) beta is the parameter estimate output from nlinfit resids is the residual vector output from nlinfit J is the Jacobian output from nlinfit ypred ± delta is the CI

34 Or do it all using a GUI nlintool(x,y,@lipomodel_xlast,theta) Give it your data, the model and a starting point and it will give you point estimates for parameters confidence bounds for single points, the response function, and future observations bounds - simultaneous are for all points simultaneously, non-simultaneous are for individual points

35 The downside to the Matlab built-in functions: They do not produce joint interval estimate ellipses for parameters. We must use the QR decomposition for this.

36 Nonlinear Least Squares for ODEs Simplest method: Combine NLS and ODE solvers, Just use a solver built into fun [beta,r,j,covb,mse] = nlinfit(x,y,fun,beta0)

37 dv ( ) dt = γ V V3 / 3 + R dr ( ) dt = 1 γ βr + α V

38 dv ( ) dt = γ V V3 / 3 + R dr ( ) dt = 1 γ βr + α V

39 Inputs to fun must be ß and X but in our case X is time. X must a vector with the same length as data Y The output of fun must be the fit to the data, (the expectation surface at the current parameter point), we have to make it a vector. function [yfit] = NLS_FhN(pars,time) odefn odeopts = odeset('reltol',1e-13); [junk,path] = ode45(odefn,time(1:401),pars(4:5),odeopts,pars(1:3)); yfit=[path(:,1);path(:,2)];

40 To run this program: clear load(strcat('/volumes/iamdavecampbell/mcmc many times/',... '1000 random data sets/fhn MCMC data set_38.mat')) time=[time;time]; % stack time Y=[Ydata(:,1);Ydata(:,2)]; % stack data beta0=[.5,.5,1,-.5,.5]; fun=@nls_fhn [beta,r,j,covb,mse] = nlinfit(time,y,fun,beta0);

41 To run this program: [Ypred,delta] = nlpredci(fun,time,beta,r,'jacobian',j) n=length(ydata(:,1)); CI_Y=repmat(Ypred,1,3)+[-delta,zeros(2*n,1),delta]; plot(time(1:n),ci_y(1:n,:),'b',time(1:n),ydata(:,1),'.b',... time(1:n),ci_y(n+1:2*n,:),'k',time(1:n),ydata(:,2),'.k')

42 CI for the expectation function

43 To run this program: CI_NLS = nlparci(beta,r,'jacobian',j) [CI_NLS(:,1),beta',CI_NLS(:,2)] >> [CI_NLS(:,1),beta',CI_NLS(:,2)] ans =

44 nlinfit uses a numerical Jacobian to produce the Taylor approximation to the response surface. There are other functions that let you include the formula for the Jacobian: lsqnonlin

Statistical Models. ref: chapter 1 of Bates, D and D. Watts (1988) Nonlinear Regression Analysis and its Applications, Wiley. Dave Campbell 2009

Statistical Models. ref: chapter 1 of Bates, D and D. Watts (1988) Nonlinear Regression Analysis and its Applications, Wiley. Dave Campbell 2009 Statistical Models ref: chapter 1 of Bates, D and D. Watts (1988) Nonlinear Regression Analysis and its Applications, Wiley Dave Campbell 2009 Today linear regression in terms of the response surface geometry

More information

LECTURE 18: NONLINEAR MODELS

LECTURE 18: NONLINEAR MODELS LECTURE 18: NONLINEAR MODELS The basic point is that smooth nonlinear models look like linear models locally. Models linear in parameters are no problem even if they are nonlinear in variables. For example:

More information

13. Nonlinear least squares

13. Nonlinear least squares L. Vandenberghe ECE133A (Fall 2018) 13. Nonlinear least squares definition and examples derivatives and optimality condition Gauss Newton method Levenberg Marquardt method 13.1 Nonlinear least squares

More information

Linear Regression Models. Based on Chapter 3 of Hastie, Tibshirani and Friedman

Linear Regression Models. Based on Chapter 3 of Hastie, Tibshirani and Friedman Linear Regression Models Based on Chapter 3 of Hastie, ibshirani and Friedman Linear Regression Models Here the X s might be: p f ( X = " + " 0 j= 1 X j Raw predictor variables (continuous or coded-categorical

More information

Numerical Methods for Inverse Kinematics

Numerical Methods for Inverse Kinematics Numerical Methods for Inverse Kinematics Niels Joubert, UC Berkeley, CS184 2008-11-25 Inverse Kinematics is used to pose models by specifying endpoints of segments rather than individual joint angles.

More information

Nonlinear Regression

Nonlinear Regression Nonlinear Regression 28.11.2012 Goals of Today s Lecture Understand the difference between linear and nonlinear regression models. See that not all functions are linearizable. Get an understanding of the

More information

Non-linear least squares

Non-linear least squares Non-linear least squares Concept of non-linear least squares We have extensively studied linear least squares or linear regression. We see that there is a unique regression line that can be determined

More information

Estimating σ 2. We can do simple prediction of Y and estimation of the mean of Y at any value of X.

Estimating σ 2. We can do simple prediction of Y and estimation of the mean of Y at any value of X. Estimating σ 2 We can do simple prediction of Y and estimation of the mean of Y at any value of X. To perform inferences about our regression line, we must estimate σ 2, the variance of the error term.

More information

MS&E 226: Small Data. Lecture 11: Maximum likelihood (v2) Ramesh Johari

MS&E 226: Small Data. Lecture 11: Maximum likelihood (v2) Ramesh Johari MS&E 226: Small Data Lecture 11: Maximum likelihood (v2) Ramesh Johari ramesh.johari@stanford.edu 1 / 18 The likelihood function 2 / 18 Estimating the parameter This lecture develops the methodology behind

More information

Applied Mathematics 205. Unit I: Data Fitting. Lecturer: Dr. David Knezevic

Applied Mathematics 205. Unit I: Data Fitting. Lecturer: Dr. David Knezevic Applied Mathematics 205 Unit I: Data Fitting Lecturer: Dr. David Knezevic Unit I: Data Fitting Chapter I.4: Nonlinear Least Squares 2 / 25 Nonlinear Least Squares So far we have looked at finding a best

More information

POLI 8501 Introduction to Maximum Likelihood Estimation

POLI 8501 Introduction to Maximum Likelihood Estimation POLI 8501 Introduction to Maximum Likelihood Estimation Maximum Likelihood Intuition Consider a model that looks like this: Y i N(µ, σ 2 ) So: E(Y ) = µ V ar(y ) = σ 2 Suppose you have some data on Y,

More information

Economics 620, Lecture 18: Nonlinear Models

Economics 620, Lecture 18: Nonlinear Models Economics 620, Lecture 18: Nonlinear Models Nicholas M. Kiefer Cornell University Professor N. M. Kiefer (Cornell University) Lecture 18: Nonlinear Models 1 / 18 The basic point is that smooth nonlinear

More information

Answer Key for STAT 200B HW No. 8

Answer Key for STAT 200B HW No. 8 Answer Key for STAT 200B HW No. 8 May 8, 2007 Problem 3.42 p. 708 The values of Ȳ for x 00, 0, 20, 30 are 5/40, 0, 20/50, and, respectively. From Corollary 3.5 it follows that MLE exists i G is identiable

More information

CS281 Section 4: Factor Analysis and PCA

CS281 Section 4: Factor Analysis and PCA CS81 Section 4: Factor Analysis and PCA Scott Linderman At this point we have seen a variety of machine learning models, with a particular emphasis on models for supervised learning. In particular, we

More information

Introduction to Optimization

Introduction to Optimization Introduction to Optimization The maximizing or minimizing of a given function subject to some type of constraints. Make your processes as effective as possible. In a typical chemical plant, there are many

More information

8 Nonlinear Regression

8 Nonlinear Regression 8 Nonlinear Regression Nonlinear regression relates to models, where the mean response is not linear in the parameters of the model. A MLRM Y = β 0 + β 1 x 1 + β 2 x 2 + + β k x k + ε, ε N (0, σ 2 ) has

More information

MCMC algorithms for fitting Bayesian models

MCMC algorithms for fitting Bayesian models MCMC algorithms for fitting Bayesian models p. 1/1 MCMC algorithms for fitting Bayesian models Sudipto Banerjee sudiptob@biostat.umn.edu University of Minnesota MCMC algorithms for fitting Bayesian models

More information

Lecture 17: Numerical Optimization October 2014

Lecture 17: Numerical Optimization October 2014 Lecture 17: Numerical Optimization 36-350 22 October 2014 Agenda Basics of optimization Gradient descent Newton s method Curve-fitting R: optim, nls Reading: Recipes 13.1 and 13.2 in The R Cookbook Optional

More information

Nonlinear Regression

Nonlinear Regression Nonlinear Regression James H. Steiger Department of Psychology and Human Development Vanderbilt University James H. Steiger (Vanderbilt University) Nonlinear Regression 1 / 36 Nonlinear Regression 1 Introduction

More information

Finite Elements for Nonlinear Problems

Finite Elements for Nonlinear Problems Finite Elements for Nonlinear Problems Computer Lab 2 In this computer lab we apply finite element method to nonlinear model problems and study two of the most common techniques for solving the resulting

More information

COMP 558 lecture 18 Nov. 15, 2010

COMP 558 lecture 18 Nov. 15, 2010 Least squares We have seen several least squares problems thus far, and we will see more in the upcoming lectures. For this reason it is good to have a more general picture of these problems and how to

More information

Proportional hazards regression

Proportional hazards regression Proportional hazards regression Patrick Breheny October 8 Patrick Breheny Survival Data Analysis (BIOS 7210) 1/28 Introduction The model Solving for the MLE Inference Today we will begin discussing regression

More information

The linear model is the most fundamental of all serious statistical models encompassing:

The linear model is the most fundamental of all serious statistical models encompassing: Linear Regression Models: A Bayesian perspective Ingredients of a linear model include an n 1 response vector y = (y 1,..., y n ) T and an n p design matrix (e.g. including regressors) X = [x 1,..., x

More information

Chapter 3 Numerical Methods

Chapter 3 Numerical Methods Chapter 3 Numerical Methods Part 3 3.4 Differential Algebraic Systems 3.5 Integration of Differential Equations 1 Outline 3.4 Differential Algebraic Systems 3.4.1 Constrained Dynamics 3.4.2 First and Second

More information

From last time... The equations

From last time... The equations This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this

More information

Modeling and Solving Constraints. Erin Catto Blizzard Entertainment

Modeling and Solving Constraints. Erin Catto Blizzard Entertainment Modeling and Solving Constraints Erin Catto Blizzard Entertainment Basic Idea Constraints are used to simulate joints, contact, and collision. We need to solve the constraints to stack boxes and to keep

More information

Outline of GLMs. Definitions

Outline of GLMs. Definitions Outline of GLMs Definitions This is a short outline of GLM details, adapted from the book Nonparametric Regression and Generalized Linear Models, by Green and Silverman. The responses Y i have density

More information

Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017

Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017 Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017 Put your solution to each problem on a separate sheet of paper. Problem 1. (5106) Let X 1, X 2,, X n be a sequence of i.i.d. observations from a

More information

Numerical Methods I Solving Nonlinear Equations

Numerical Methods I Solving Nonlinear Equations Numerical Methods I Solving Nonlinear Equations Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 MATH-GA 2011.003 / CSCI-GA 2945.003, Fall 2014 October 16th, 2014 A. Donev (Courant Institute)

More information

SECTION 7: CURVE FITTING. MAE 4020/5020 Numerical Methods with MATLAB

SECTION 7: CURVE FITTING. MAE 4020/5020 Numerical Methods with MATLAB SECTION 7: CURVE FITTING MAE 4020/5020 Numerical Methods with MATLAB 2 Introduction Curve Fitting 3 Often have data,, that is a function of some independent variable,, but the underlying relationship is

More information

Linear Models Review

Linear Models Review Linear Models Review Vectors in IR n will be written as ordered n-tuples which are understood to be column vectors, or n 1 matrices. A vector variable will be indicted with bold face, and the prime sign

More information

Overview Scatter Plot Example

Overview Scatter Plot Example Overview Topic 22 - Linear Regression and Correlation STAT 5 Professor Bruce Craig Consider one population but two variables For each sampling unit observe X and Y Assume linear relationship between variables

More information

Next is material on matrix rank. Please see the handout

Next is material on matrix rank. Please see the handout B90.330 / C.005 NOTES for Wednesday 0.APR.7 Suppose that the model is β + ε, but ε does not have the desired variance matrix. Say that ε is normal, but Var(ε) σ W. The form of W is W w 0 0 0 0 0 0 w 0

More information

Peter Hoff Linear and multilinear models April 3, GLS for multivariate regression 5. 3 Covariance estimation for the GLM 8

Peter Hoff Linear and multilinear models April 3, GLS for multivariate regression 5. 3 Covariance estimation for the GLM 8 Contents 1 Linear model 1 2 GLS for multivariate regression 5 3 Covariance estimation for the GLM 8 4 Testing the GLH 11 A reference for some of this material can be found somewhere. 1 Linear model Recall

More information

Computational methods for mixed models

Computational methods for mixed models Computational methods for mixed models Douglas Bates Department of Statistics University of Wisconsin Madison March 27, 2018 Abstract The lme4 package provides R functions to fit and analyze several different

More information

STAT 350: Geometry of Least Squares

STAT 350: Geometry of Least Squares The Geometry of Least Squares Mathematical Basics Inner / dot product: a and b column vectors a b = a T b = a i b i a b a T b = 0 Matrix Product: A is r s B is s t (AB) rt = s A rs B st Partitioned Matrices

More information

Linear models. Rasmus Waagepetersen Department of Mathematics Aalborg University Denmark. October 5, 2016

Linear models. Rasmus Waagepetersen Department of Mathematics Aalborg University Denmark. October 5, 2016 Linear models Rasmus Waagepetersen Department of Mathematics Aalborg University Denmark October 5, 2016 1 / 16 Outline for today linear models least squares estimation orthogonal projections estimation

More information

A First Course on Kinetics and Reaction Engineering Supplemental Unit S4. Numerically Fitting Models to Data

A First Course on Kinetics and Reaction Engineering Supplemental Unit S4. Numerically Fitting Models to Data Supplemental Unit S4. Numerically Fitting Models to Data Defining the Problem Many software routines for fitting a model to experimental data can only be used when the model is of a pre-defined mathematical

More information

401 Review. 6. Power analysis for one/two-sample hypothesis tests and for correlation analysis.

401 Review. 6. Power analysis for one/two-sample hypothesis tests and for correlation analysis. 401 Review Major topics of the course 1. Univariate analysis 2. Bivariate analysis 3. Simple linear regression 4. Linear algebra 5. Multiple regression analysis Major analysis methods 1. Graphical analysis

More information

ECS130 Scientific Computing Handout E February 13, 2017

ECS130 Scientific Computing Handout E February 13, 2017 ECS130 Scientific Computing Handout E February 13, 2017 1. The Power Method (a) Pseudocode: Power Iteration Given an initial vector u 0, t i+1 = Au i u i+1 = t i+1 / t i+1 2 (approximate eigenvector) θ

More information

K. Model Diagnostics. residuals ˆɛ ij = Y ij ˆµ i N = Y ij Ȳ i semi-studentized residuals ω ij = ˆɛ ij. studentized deleted residuals ɛ ij =

K. Model Diagnostics. residuals ˆɛ ij = Y ij ˆµ i N = Y ij Ȳ i semi-studentized residuals ω ij = ˆɛ ij. studentized deleted residuals ɛ ij = K. Model Diagnostics We ve already seen how to check model assumptions prior to fitting a one-way ANOVA. Diagnostics carried out after model fitting by using residuals are more informative for assessing

More information

Review for Exam 2 Ben Wang and Mark Styczynski

Review for Exam 2 Ben Wang and Mark Styczynski Review for Exam Ben Wang and Mark Styczynski This is a rough approximation of what we went over in the review session. This is actually more detailed in portions than what we went over. Also, please note

More information

Bayesian Linear Models

Bayesian Linear Models Bayesian Linear Models Sudipto Banerjee 1 and Andrew O. Finley 2 1 Department of Forestry & Department of Geography, Michigan State University, Lansing Michigan, U.S.A. 2 Biostatistics, School of Public

More information

Chapter 6. Order Statistics and Quantiles. 6.1 Extreme Order Statistics

Chapter 6. Order Statistics and Quantiles. 6.1 Extreme Order Statistics Chapter 6 Order Statistics and Quantiles 61 Extreme Order Statistics Suppose we have a finite sample X 1,, X n Conditional on this sample, we define the values X 1),, X n) to be a permutation of X 1,,

More information

Design and Optimization of Energy Systems Prof. C. Balaji Department of Mechanical Engineering Indian Institute of Technology, Madras

Design and Optimization of Energy Systems Prof. C. Balaji Department of Mechanical Engineering Indian Institute of Technology, Madras Design and Optimization of Energy Systems Prof. C. Balaji Department of Mechanical Engineering Indian Institute of Technology, Madras Lecture No. # 10 Convergence Characteristics of Newton-Raphson Method

More information

The Simple Linear Regression Model

The Simple Linear Regression Model The Simple Linear Regression Model Lesson 3 Ryan Safner 1 1 Department of Economics Hood College ECON 480 - Econometrics Fall 2017 Ryan Safner (Hood College) ECON 480 - Lesson 3 Fall 2017 1 / 77 Bivariate

More information

IV. Matrix Approximation using Least-Squares

IV. Matrix Approximation using Least-Squares IV. Matrix Approximation using Least-Squares The SVD and Matrix Approximation We begin with the following fundamental question. Let A be an M N matrix with rank R. What is the closest matrix to A that

More information

Linear Methods for Prediction

Linear Methods for Prediction Chapter 5 Linear Methods for Prediction 5.1 Introduction We now revisit the classification problem and focus on linear methods. Since our prediction Ĝ(x) will always take values in the discrete set G we

More information

Module 6 : Solving Ordinary Differential Equations - Initial Value Problems (ODE-IVPs) Section 1 : Introduction

Module 6 : Solving Ordinary Differential Equations - Initial Value Problems (ODE-IVPs) Section 1 : Introduction Module 6 : Solving Ordinary Differential Equations - Initial Value Problems (ODE-IVPs) Section 1 : Introduction 1 Introduction In this module, we develop solution techniques for numerically solving ordinary

More information

Part 6: Multivariate Normal and Linear Models

Part 6: Multivariate Normal and Linear Models Part 6: Multivariate Normal and Linear Models 1 Multiple measurements Up until now all of our statistical models have been univariate models models for a single measurement on each member of a sample of

More information

Economics 583: Econometric Theory I A Primer on Asymptotics

Economics 583: Econometric Theory I A Primer on Asymptotics Economics 583: Econometric Theory I A Primer on Asymptotics Eric Zivot January 14, 2013 The two main concepts in asymptotic theory that we will use are Consistency Asymptotic Normality Intuition consistency:

More information

The Expectation-Maximization Algorithm

The Expectation-Maximization Algorithm 1/29 EM & Latent Variable Models Gaussian Mixture Models EM Theory The Expectation-Maximization Algorithm Mihaela van der Schaar Department of Engineering Science University of Oxford MLE for Latent Variable

More information

Nonlinear GMM. Eric Zivot. Winter, 2013

Nonlinear GMM. Eric Zivot. Winter, 2013 Nonlinear GMM Eric Zivot Winter, 2013 Nonlinear GMM estimation occurs when the GMM moment conditions g(w θ) arenonlinearfunctionsofthe model parameters θ The moment conditions g(w θ) may be nonlinear functions

More information

10.34 Numerical Methods Applied to Chemical Engineering

10.34 Numerical Methods Applied to Chemical Engineering 10.34 Numerical Methods Applied to Chemical Engineering Quiz 1 This quiz consists of three problems worth 0, 40 and 40 points respectively. The problem statements are found on pages, 3 and 5 in this exam

More information

4 Gaussian Mixture Models

4 Gaussian Mixture Models 4 Gaussian Mixture Models Once you have a collection of feature vectors you will need to describe their distribution. You will do this using a Gaussian Mixture Model. The GMM comprises a collection of

More information

Bayesian Linear Models

Bayesian Linear Models Bayesian Linear Models Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of Forestry & Department

More information

ESTIMATION THEORY. Chapter Estimation of Random Variables

ESTIMATION THEORY. Chapter Estimation of Random Variables Chapter ESTIMATION THEORY. Estimation of Random Variables Suppose X,Y,Y 2,...,Y n are random variables defined on the same probability space (Ω, S,P). We consider Y,...,Y n to be the observed random variables

More information

Categorical Predictor Variables

Categorical Predictor Variables Categorical Predictor Variables We often wish to use categorical (or qualitative) variables as covariates in a regression model. For binary variables (taking on only 2 values, e.g. sex), it is relatively

More information

Statistical Inference

Statistical Inference Statistical Inference Robert L. Wolpert Institute of Statistics and Decision Sciences Duke University, Durham, NC, USA. Asymptotic Inference in Exponential Families Let X j be a sequence of independent,

More information

Estimation and Model Selection in Mixed Effects Models Part I. Adeline Samson 1

Estimation and Model Selection in Mixed Effects Models Part I. Adeline Samson 1 Estimation and Model Selection in Mixed Effects Models Part I Adeline Samson 1 1 University Paris Descartes Summer school 2009 - Lipari, Italy These slides are based on Marc Lavielle s slides Outline 1

More information

Lecture 12 : Graph Laplacians and Cheeger s Inequality

Lecture 12 : Graph Laplacians and Cheeger s Inequality CPS290: Algorithmic Foundations of Data Science March 7, 2017 Lecture 12 : Graph Laplacians and Cheeger s Inequality Lecturer: Kamesh Munagala Scribe: Kamesh Munagala Graph Laplacian Maybe the most beautiful

More information

Solutions - Homework #2

Solutions - Homework #2 Solutions - Homework #2 1. Problem 1: Biological Recovery (a) A scatterplot of the biological recovery percentages versus time is given to the right. In viewing this plot, there is negative, slightly nonlinear

More information

Linear Algebra and Robot Modeling

Linear Algebra and Robot Modeling Linear Algebra and Robot Modeling Nathan Ratliff Abstract Linear algebra is fundamental to robot modeling, control, and optimization. This document reviews some of the basic kinematic equations and uses

More information

Linear Models A linear model is defined by the expression

Linear Models A linear model is defined by the expression Linear Models A linear model is defined by the expression x = F β + ɛ. where x = (x 1, x 2,..., x n ) is vector of size n usually known as the response vector. β = (β 1, β 2,..., β p ) is the transpose

More information

Econ 583 Final Exam Fall 2008

Econ 583 Final Exam Fall 2008 Econ 583 Final Exam Fall 2008 Eric Zivot December 11, 2008 Exam is due at 9:00 am in my office on Friday, December 12. 1 Maximum Likelihood Estimation and Asymptotic Theory Let X 1,...,X n be iid random

More information

QR Decomposition. When solving an overdetermined system by projection (or a least squares solution) often the following method is used:

QR Decomposition. When solving an overdetermined system by projection (or a least squares solution) often the following method is used: (In practice not Gram-Schmidt, but another process Householder Transformations are used.) QR Decomposition When solving an overdetermined system by projection (or a least squares solution) often the following

More information

CS168: The Modern Algorithmic Toolbox Lecture #8: How PCA Works

CS168: The Modern Algorithmic Toolbox Lecture #8: How PCA Works CS68: The Modern Algorithmic Toolbox Lecture #8: How PCA Works Tim Roughgarden & Gregory Valiant April 20, 206 Introduction Last lecture introduced the idea of principal components analysis (PCA). The

More information

Dynamics Final Report

Dynamics Final Report Dynamics Final Report Sophie Li and Hannah Wilk 1 Abstract We set out to develop a n-rigid body solver in MatLab. We wanted a user to define how many rigid bodies there are, and our system creates the

More information

1 What a Neural Network Computes

1 What a Neural Network Computes Neural Networks 1 What a Neural Network Computes To begin with, we will discuss fully connected feed-forward neural networks, also known as multilayer perceptrons. A feedforward neural network consists

More information

1 Cricket chirps: an example

1 Cricket chirps: an example Notes for 2016-09-26 1 Cricket chirps: an example Did you know that you can estimate the temperature by listening to the rate of chirps? The data set in Table 1 1. represents measurements of the number

More information

Ordinary Least Squares Regression Explained: Vartanian

Ordinary Least Squares Regression Explained: Vartanian Ordinary Least Squares Regression Explained: Vartanian When to Use Ordinary Least Squares Regression Analysis A. Variable types. When you have an interval/ratio scale dependent variable.. When your independent

More information

ANOVA: Analysis of Variation

ANOVA: Analysis of Variation ANOVA: Analysis of Variation The basic ANOVA situation Two variables: 1 Categorical, 1 Quantitative Main Question: Do the (means of) the quantitative variables depend on which group (given by categorical

More information

MATH 3795 Lecture 13. Numerical Solution of Nonlinear Equations in R N.

MATH 3795 Lecture 13. Numerical Solution of Nonlinear Equations in R N. MATH 3795 Lecture 13. Numerical Solution of Nonlinear Equations in R N. Dmitriy Leykekhman Fall 2008 Goals Learn about different methods for the solution of F (x) = 0, their advantages and disadvantages.

More information

LINEAR ALGEBRA KNOWLEDGE SURVEY

LINEAR ALGEBRA KNOWLEDGE SURVEY LINEAR ALGEBRA KNOWLEDGE SURVEY Instructions: This is a Knowledge Survey. For this assignment, I am only interested in your level of confidence about your ability to do the tasks on the following pages.

More information

Inference for the Regression Coefficient

Inference for the Regression Coefficient Inference for the Regression Coefficient Recall, b 0 and b 1 are the estimates of the slope β 1 and intercept β 0 of population regression line. We can shows that b 0 and b 1 are the unbiased estimates

More information

Non-polynomial Least-squares fitting

Non-polynomial Least-squares fitting Applied Math 205 Last time: piecewise polynomial interpolation, least-squares fitting Today: underdetermined least squares, nonlinear least squares Homework 1 (and subsequent homeworks) have several parts

More information

A measurement error model approach to small area estimation

A measurement error model approach to small area estimation A measurement error model approach to small area estimation Jae-kwang Kim 1 Spring, 2015 1 Joint work with Seunghwan Park and Seoyoung Kim Ouline Introduction Basic Theory Application to Korean LFS Discussion

More information

Chapter 3 Numerical Methods

Chapter 3 Numerical Methods Chapter 3 Numerical Methods Part 2 3.2 Systems of Equations 3.3 Nonlinear and Constrained Optimization 1 Outline 3.2 Systems of Equations 3.3 Nonlinear and Constrained Optimization Summary 2 Outline 3.2

More information

CLASS NOTES Models, Algorithms and Data: Introduction to computing 2018

CLASS NOTES Models, Algorithms and Data: Introduction to computing 2018 CLASS NOTES Models, Algorithms and Data: Introduction to computing 2018 Petros Koumoutsakos, Jens Honore Walther (Last update: April 16, 2018) IMPORTANT DISCLAIMERS 1. REFERENCES: Much of the material

More information

Regression. Estimation of the linear function (straight line) describing the linear component of the joint relationship between two variables X and Y.

Regression. Estimation of the linear function (straight line) describing the linear component of the joint relationship between two variables X and Y. Regression Bivariate i linear regression: Estimation of the linear function (straight line) describing the linear component of the joint relationship between two variables and. Generally describe as a

More information

Some general observations.

Some general observations. Modeling and analyzing data from computer experiments. Some general observations. 1. For simplicity, I assume that all factors (inputs) x1, x2,, xd are quantitative. 2. Because the code always produces

More information

Bayesian linear regression

Bayesian linear regression Bayesian linear regression Linear regression is the basis of most statistical modeling. The model is Y i = X T i β + ε i, where Y i is the continuous response X i = (X i1,..., X ip ) T is the corresponding

More information

Generalized Linear Models

Generalized Linear Models Generalized Linear Models Advanced Methods for Data Analysis (36-402/36-608 Spring 2014 1 Generalized linear models 1.1 Introduction: two regressions So far we ve seen two canonical settings for regression.

More information

Math 416, Spring 2010 Gram-Schmidt, the QR-factorization, Orthogonal Matrices March 4, 2010 GRAM-SCHMIDT, THE QR-FACTORIZATION, ORTHOGONAL MATRICES

Math 416, Spring 2010 Gram-Schmidt, the QR-factorization, Orthogonal Matrices March 4, 2010 GRAM-SCHMIDT, THE QR-FACTORIZATION, ORTHOGONAL MATRICES Math 46, Spring 00 Gram-Schmidt, the QR-factorization, Orthogonal Matrices March 4, 00 GRAM-SCHMIDT, THE QR-FACTORIZATION, ORTHOGONAL MATRICES Recap Yesterday we talked about several new, important concepts

More information

Topic 12 Overview of Estimation

Topic 12 Overview of Estimation Topic 12 Overview of Estimation Classical Statistics 1 / 9 Outline Introduction Parameter Estimation Classical Statistics Densities and Likelihoods 2 / 9 Introduction In the simplest possible terms, the

More information

Statistical Estimation

Statistical Estimation Statistical Estimation Use data and a model. The plug-in estimators are based on the simple principle of applying the defining functional to the ECDF. Other methods of estimation: minimize residuals from

More information

TAKEHOME FINAL EXAM e iω e 2iω e iω e 2iω

TAKEHOME FINAL EXAM e iω e 2iω e iω e 2iω ECO 513 Spring 2015 TAKEHOME FINAL EXAM (1) Suppose the univariate stochastic process y is ARMA(2,2) of the following form: y t = 1.6974y t 1.9604y t 2 + ε t 1.6628ε t 1 +.9216ε t 2, (1) where ε is i.i.d.

More information

Math 411 Preliminaries

Math 411 Preliminaries Math 411 Preliminaries Provide a list of preliminary vocabulary and concepts Preliminary Basic Netwon s method, Taylor series expansion (for single and multiple variables), Eigenvalue, Eigenvector, Vector

More information

Getting Started with Communications Engineering

Getting Started with Communications Engineering 1 Linear algebra is the algebra of linear equations: the term linear being used in the same sense as in linear functions, such as: which is the equation of a straight line. y ax c (0.1) Of course, if we

More information

ST505/S697R: Fall Homework 2 Solution.

ST505/S697R: Fall Homework 2 Solution. ST505/S69R: Fall 2012. Homework 2 Solution. 1. 1a; problem 1.22 Below is the summary information (edited) from the regression (using R output); code at end of solution as is code and output for SAS. a)

More information

10.34: Numerical Methods Applied to Chemical Engineering. Lecture 7: Solutions of nonlinear equations Newton-Raphson method

10.34: Numerical Methods Applied to Chemical Engineering. Lecture 7: Solutions of nonlinear equations Newton-Raphson method 10.34: Numerical Methods Applied to Chemical Engineering Lecture 7: Solutions of nonlinear equations Newton-Raphson method 1 Recap Singular value decomposition Iterative solutions to linear equations 2

More information

Asymptotic standard errors of MLE

Asymptotic standard errors of MLE Asymptotic standard errors of MLE Suppose, in the previous example of Carbon and Nitrogen in soil data, that we get the parameter estimates For maximum likelihood estimation, we can use Hessian matrix

More information

Applied Econometrics (QEM)

Applied Econometrics (QEM) Applied Econometrics (QEM) based on Prinicples of Econometrics Jakub Mućk Department of Quantitative Economics Jakub Mućk Applied Econometrics (QEM) Meeting #3 1 / 42 Outline 1 2 3 t-test P-value Linear

More information

Variance. Standard deviation VAR = = value. Unbiased SD = SD = 10/23/2011. Functional Connectivity Correlation and Regression.

Variance. Standard deviation VAR = = value. Unbiased SD = SD = 10/23/2011. Functional Connectivity Correlation and Regression. 10/3/011 Functional Connectivity Correlation and Regression Variance VAR = Standard deviation Standard deviation SD = Unbiased SD = 1 10/3/011 Standard error Confidence interval SE = CI = = t value for

More information

Statistical Distribution Assumptions of General Linear Models

Statistical Distribution Assumptions of General Linear Models Statistical Distribution Assumptions of General Linear Models Applied Multilevel Models for Cross Sectional Data Lecture 4 ICPSR Summer Workshop University of Colorado Boulder Lecture 4: Statistical Distributions

More information

Numerical solution of Least Squares Problems 1/32

Numerical solution of Least Squares Problems 1/32 Numerical solution of Least Squares Problems 1/32 Linear Least Squares Problems Suppose that we have a matrix A of the size m n and the vector b of the size m 1. The linear least square problem is to find

More information

Bayesian inference. Rasmus Waagepetersen Department of Mathematics Aalborg University Denmark. April 10, 2017

Bayesian inference. Rasmus Waagepetersen Department of Mathematics Aalborg University Denmark. April 10, 2017 Bayesian inference Rasmus Waagepetersen Department of Mathematics Aalborg University Denmark April 10, 2017 1 / 22 Outline for today A genetic example Bayes theorem Examples Priors Posterior summaries

More information

Math 56 Homework 1 Michael Downs. ne n 10 + ne n (1)

Math 56 Homework 1 Michael Downs. ne n 10 + ne n (1) . Problem (a) Yes. The following equation: ne n + ne n () holds for all n R but, since we re only concerned with the asymptotic behavior as n, let us only consider n >. Dividing both sides by n( + ne n

More information

Introduction to General and Generalized Linear Models

Introduction to General and Generalized Linear Models Introduction to General and Generalized Linear Models Mixed effects models - Part IV Henrik Madsen Poul Thyregod Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby

More information

CHAPTER 2. Techniques for Solving. Second Order Linear. Homogeneous ODE s

CHAPTER 2. Techniques for Solving. Second Order Linear. Homogeneous ODE s A SERIES OF CLASS NOTES FOR 005-006 TO INTRODUCE LINEAR AND NONLINEAR PROBLEMS TO ENGINEERS, SCIENTISTS, AND APPLIED MATHEMATICIANS DE CLASS NOTES A COLLECTION OF HANDOUTS ON SCALAR LINEAR ORDINARY DIFFERENTIAL

More information