Continuity Equation for Compressible Flow

Size: px
Start display at page:

Download "Continuity Equation for Compressible Flow"

Transcription

1

2 Continuity Equation for Compressible Flow Velocity potential irrotational steady compressible

3 Momentum (Euler) Equation for Compressible Flow Euler's equation isentropic

4 velocity potential equation for steady, irrotational, isentropic compressible flow

5 Velocity Potential Equation for Compressible Flow a can be readily expressed in terms of φ as follows. nonlinear partial differential equation finite-difference numerical techniques Once φ is known, all the other flow variables can be obtained as: T γ γ p γ 1 2 γ 1 ρ γ 1 2 γ 1 T 0 = (1 + M 2 ) p 0 = (1 + 2 M ) = (1 + ρ 0 2 M )

6 Velocity Potential Equation for Compressible Flow nonlinear partial differential equation finite-difference numerical techniques Velocity Potential Equation For Incompressible Flow Laplace s equation is a second-order linear partial differential equation. If Φ 1, Φ 2, Φ 3,, Φ n represent n separate solutions of Laplace s equation, thenφ =Φ 1 +Φ 2 +Φ 3 + +Φ n is also a solution of Laplace s equation. Therefore, the solution of a complex flow are usually in the form of a sum of elementary flow solutions. linear partial differential equation Linear algebra analytical or numerical techniques

7 THE LINEARIZED VELOCITY POTENTIAL EQUATION uˆ vˆ << 1 << 1

8 (11.12)

9 freestream local

10 uˆ V uˆ V vˆ ~ 0.1 << 1; V 2 vˆ ~ 0.01 <<< 1; 2 2 V 2 ~ 0.1 << 1 ~ 0.01<<< < 1 M 0 < M 2 for 0 M 2 < 0.64 for 1.2 M < < 1 M < < M < 25 5

11 not valid for thick bodies and for large angles of attack not for transonic flow (0.8 < M < 1.2) or hypersonic flow (M> 5).

12 Pressure Coefficient C p

13 Linearized Form of Pressure Coefficient C p For an adiabatic flow of a calorically perfect gas

14

15

16 Boundary Conditions θ At infinity At the body surface: The flow-tangency condition holds. Let θ be the angle between the tangent to the surface and the freestream.

17 PRANDTL-GLAUERT COMPRESSIBILITY CORRECTION Compressibility corrections for 0.3<M<0.7

18

19

20

21

22 compressibility correction Prandtl-Glauert rule As early as 1922, Prandtl in his lectures at Gottingen, and first formally published by the British aerodynamicist, Hermann Glauert, in 1928.

23

24 IMPROVED COMPRESSIBILITY CORRECTIONS

25 CRITICAL MACH NUMBER Linearized theory does not apply to the transonic flow regime, 0.8 < M <1.2. Transonic flow is highly nonlinear. Consider an airfoil in a low-speed flow, say, with M = 0.3, as sketched in Fig. a. In the expansion over the top surface of the airfoil, the local flow Mach number M increases. Let point A represent the location on the airfoil surface where the pressure is a minimum, hence where M is a maximum. Let us say this maximum is M A = Now assume that we gradually increase the freestream Mach number. As M increases, M A also increases. For example, if M is increased to M = 0.5, the maximum local value of M will be 0.772, as shown in Fig. b.

26 CRITICAL MACH NUMBER Linearized theory does not apply to the transonic flow regime, 0.8 < M <1.2. Transonic flow is highly nonlinear. Let us continue to increase M until we achieve just the right value such that the local Mach number at the minimum pressure point equals 1, i.e., such that M A = 1.0, as shown in Fig. c. When this happens, the freestream Mach number M is called the critical Mach number, denoted by M cr. By definition, the critical Mach number is that freestream Mach number at which sonic flow is first achieved on the airfoil surface. In Fig. c, M cr = One of the most important problems in highspeed aerodynamics is the determination of the critical Mach number of a given airfoil, because at values of M slightly above M cr the airfoil experiences a dramatic increase in drag coefficient.

27 Estimation of M cr C = f ( M, M p, A A )

28 Estimation of Mcr

29

30 Thin airfoil Thick airfoil

31

32

33

34

35

36

37

38 THE SOUND BARRIER C d = C d,0 2 1 M MACH NUMBER

39 DRAG-DIVERGENCE MACH NUMBER According to Prandtl- Glauert rule, C d becomes infinite at M = 1, C d = C d,0 2 1 M Point c is the critical Mach number. As we very carefully increase M slightly above M cr, (point d) a finite region of supersonic flow appears on the airfoil. At point e, the value of M at which this sudden increase in drag starts is defined as the drag-divergence Mach number. Beyond the drag-divergence Mach number, the drag coefficient can become very large, typically increasing by a factor of 10 or more.

40 point a~b point c point d point e drag-divergence Mach number

41 The Bell XS-l-the first rocket-propelled manned aircraft to fly faster than sound, October 14, Since 1945, research in transonic aerodynamics has focused on reducing the large drag rise. Instead of living with a factor of 10 increase in drag at Mach 1, can we reduce it to a factor of 2 or 3? This is the subject of the remaining sections of this chapter.

42 Reducing Drag at Transonic and Supersonic Flow 1. Thin airfoil section

43 Reducing Drag at Transonic and Supersonic Flow 2. Swept wings Adolf Busemann (1901~1986) The typical swept wing aircraft, F-86 fighter

44 Sweep Wing Obviously, it is desirable to reduce the Mach number of the flow over the airfoil section. A long time ago, it was discovered that the flow could be "fooled" by simply sweeping the wing.

45 Swept Wing Aircrafts F-86 Sabre fighter F-100 Super Sabre fighter

46 Richard Whitcomb (1921~2009)

47 THE WHITCOMB AREA RULE 1950 F-102 fighter

48 Area-Ruled Aircraft YF-102A

49 Area-Ruled Aircraft F-106

50 Area-Ruled Aircrafts F-104 fighter F-5 fighter B-1B bomber F-16 fighter

51 Reducing Drag at Transonic and Supersonic Flow 3. Supercritical airfoil section

52 Standard NACA 64 series airfoils with different thickness for high speed research in 1949 Shock wave move downstream as Mach number increases. A large region of separation flow downstream of shock wave for M=0.94, 0.87 and The separation flow is the primary reason for the increase in the drag near the M=1.0. Discontinuity pressure increase across a shock wave creates a strong adverse pressure gradient on airfoil surface and this adverse pressure gradient causes flow separation.

53

54

55 Computational Fluid Dynamics (CFD)

56

57

58

59

60 Blended Wing Body (BWB) Aircraft Design

61 Blended Wing Body (BWB) Aircraft Design Area-Ruled Aircraft

62 Computational Fluid Dynamics (CFD) National Transonic Facility (NTF)

Fundamentals of Aerodynamits

Fundamentals of Aerodynamits Fundamentals of Aerodynamits Fifth Edition in SI Units John D. Anderson, Jr. Curator of Aerodynamics National Air and Space Museum Smithsonian Institution and Professor Emeritus University of Maryland

More information

Fundamentals of Aerodynamics

Fundamentals of Aerodynamics Fundamentals of Aerodynamics Fourth Edition John D. Anderson, Jr. Curator of Aerodynamics National Air and Space Museum Smithsonian Institution and Professor Emeritus University of Maryland Me Graw Hill

More information

Compressible Potential Flow: The Full Potential Equation. Copyright 2009 Narayanan Komerath

Compressible Potential Flow: The Full Potential Equation. Copyright 2009 Narayanan Komerath Compressible Potential Flow: The Full Potential Equation 1 Introduction Recall that for incompressible flow conditions, velocity is not large enough to cause density changes, so density is known. Thus

More information

Compressible Flow. Professor Ugur GUVEN Aerospace Engineer Spacecraft Propulsion Specialist

Compressible Flow. Professor Ugur GUVEN Aerospace Engineer Spacecraft Propulsion Specialist Compressible Flow Professor Ugur GUVEN Aerospace Engineer Spacecraft Propulsion Specialist What is Compressible Flow? Compressible Flow is a type of flow in which the density can not be treated as constant.

More information

AOE 3114 Compressible Aerodynamics

AOE 3114 Compressible Aerodynamics AOE 114 Compressible Aerodynamics Primary Learning Objectives The student will be able to: 1. Identify common situations in which compressibility becomes important in internal and external aerodynamics

More information

Configuration Aerodynamics

Configuration Aerodynamics Configuration Aerodynamics William H. Mason Virginia Tech Blacksburg, VA The front cover of the brochure describing the French Exhibit at the Montreal Expo, 1967. January 2018 W.H. Mason CONTENTS i CONTENTS

More information

Supersonic Aerodynamics. Methods and Applications

Supersonic Aerodynamics. Methods and Applications Supersonic Aerodynamics Methods and Applications Outline Introduction to Supersonic Flow Governing Equations Numerical Methods Aerodynamic Design Applications Introduction to Supersonic Flow What does

More information

Thin airfoil theory. Chapter Compressible potential flow The full potential equation

Thin airfoil theory. Chapter Compressible potential flow The full potential equation hapter 4 Thin airfoil theory 4. ompressible potential flow 4.. The full potential equation In compressible flow, both the lift and drag of a thin airfoil can be determined to a reasonable level of accuracy

More information

FUNDAMENTALS OF AERODYNAMICS

FUNDAMENTALS OF AERODYNAMICS *A \ FUNDAMENTALS OF AERODYNAMICS Second Edition John D. Anderson, Jr. Professor of Aerospace Engineering University of Maryland H ' McGraw-Hill, Inc. New York St. Louis San Francisco Auckland Bogota Caracas

More information

MDTS 5734 : Aerodynamics & Propulsion Lecture 1 : Characteristics of high speed flight. G. Leng, MDTS, NUS

MDTS 5734 : Aerodynamics & Propulsion Lecture 1 : Characteristics of high speed flight. G. Leng, MDTS, NUS MDTS 5734 : Aerodynamics & Propulsion Lecture 1 : Characteristics of high speed flight References Jack N. Nielsen, Missile Aerodynamics, AIAA Progress in Astronautics and Aeronautics, v104, 1986 Michael

More information

1. Introduction Some Basic Concepts

1. Introduction Some Basic Concepts 1. Introduction Some Basic Concepts 1.What is a fluid? A substance that will go on deforming in the presence of a deforming force, however small 2. What Properties Do Fluids Have? Density ( ) Pressure

More information

Review of Fundamentals - Fluid Mechanics

Review of Fundamentals - Fluid Mechanics Review of Fundamentals - Fluid Mechanics Introduction Properties of Compressible Fluid Flow Basics of One-Dimensional Gas Dynamics Nozzle Operating Characteristics Characteristics of Shock Wave A gas turbine

More information

Introduction to Fluid Mechanics. Chapter 13 Compressible Flow. Fox, Pritchard, & McDonald

Introduction to Fluid Mechanics. Chapter 13 Compressible Flow. Fox, Pritchard, & McDonald Introduction to Fluid Mechanics Chapter 13 Compressible Flow Main Topics Basic Equations for One-Dimensional Compressible Flow Isentropic Flow of an Ideal Gas Area Variation Flow in a Constant Area Duct

More information

Applied Aerodynamics - I

Applied Aerodynamics - I Applied Aerodynamics - I o Course Contents (Tentative) Introductory Thoughts Historical Perspective Flow Similarity Aerodynamic Coefficients Sources of Aerodynamic Forces Fundamental Equations & Principles

More information

Aerodynamics. Lecture 1: Introduction - Equations of Motion G. Dimitriadis

Aerodynamics. Lecture 1: Introduction - Equations of Motion G. Dimitriadis Aerodynamics Lecture 1: Introduction - Equations of Motion G. Dimitriadis Definition Aerodynamics is the science that analyses the flow of air around solid bodies The basis of aerodynamics is fluid dynamics

More information

Introduction to Aerodynamics. Dr. Guven Aerospace Engineer (P.hD)

Introduction to Aerodynamics. Dr. Guven Aerospace Engineer (P.hD) Introduction to Aerodynamics Dr. Guven Aerospace Engineer (P.hD) Aerodynamic Forces All aerodynamic forces are generated wither through pressure distribution or a shear stress distribution on a body. The

More information

High Speed Aerodynamics. Copyright 2009 Narayanan Komerath

High Speed Aerodynamics. Copyright 2009 Narayanan Komerath Welcome to High Speed Aerodynamics 1 Lift, drag and pitching moment? Linearized Potential Flow Transformations Compressible Boundary Layer WHAT IS HIGH SPEED AERODYNAMICS? Airfoil section? Thin airfoil

More information

PEMP ACD2505. M.S. Ramaiah School of Advanced Studies, Bengaluru

PEMP ACD2505. M.S. Ramaiah School of Advanced Studies, Bengaluru Governing Equations of Fluid Flow Session delivered by: M. Sivapragasam 1 Session Objectives -- At the end of this session the delegate would have understood The principle of conservation laws Different

More information

Notes #6 MAE 533, Fluid Mechanics

Notes #6 MAE 533, Fluid Mechanics Notes #6 MAE 533, Fluid Mechanics S. H. Lam lam@princeton.edu http://www.princeton.edu/ lam October 1, 1998 1 Different Ways of Representing T The speed of sound, a, is formally defined as ( p/ ρ) s. It

More information

AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS

AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS 1 / 29 AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS Hierarchy of Mathematical Models 1 / 29 AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS 2 / 29

More information

Introduction and Basic Concepts

Introduction and Basic Concepts Topic 1 Introduction and Basic Concepts 1 Flow Past a Circular Cylinder Re = 10,000 and Mach approximately zero Mach = 0.45 Mach = 0.64 Pictures are from An Album of Fluid Motion by Van Dyke Flow Past

More information

Introduction to Flight

Introduction to Flight l_ Introduction to Flight Fifth Edition John D. Anderson, Jr. Curator for Aerodynamics, National Air and Space Museum Smithsonian Institution Professor Emeritus University of Maryland Me Graw Higher Education

More information

Transonic Aerodynamics Wind Tunnel Testing Considerations. W.H. Mason Configuration Aerodynamics Class

Transonic Aerodynamics Wind Tunnel Testing Considerations. W.H. Mason Configuration Aerodynamics Class Transonic Aerodynamics Wind Tunnel Testing Considerations W.H. Mason Configuration Aerodynamics Class Transonic Aerodynamics History Pre WWII propeller tip speeds limited airplane speed Props did encounter

More information

AEROSPACE ENGINEERING

AEROSPACE ENGINEERING AEROSPACE ENGINEERING Subject Code: AE Course Structure Sections/Units Topics Section A Engineering Mathematics Topics (Core) 1 Linear Algebra 2 Calculus 3 Differential Equations 1 Fourier Series Topics

More information

Concept: AERODYNAMICS

Concept: AERODYNAMICS 1 Concept: AERODYNAMICS 2 Narayanan Komerath 3 4 Keywords: Flow Potential Flow Lift, Drag, Dynamic Pressure, Irrotational, Mach Number, Reynolds Number, Incompressible 5 6 7 1. Definition When objects

More information

ME 6139: High Speed Aerodynamics

ME 6139: High Speed Aerodynamics Dr. A.B.M. Toufique Hasan Professor Department of Mechanical Engineering, BUET Lecture-01 04 November 2017 teacher.buet.ac.bd/toufiquehasan/ toufiquehasan@me.buet.ac.bd 1 Aerodynamics is the study of dynamics

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad INTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, yderabad - 500 043 AERONAUTICAL ENGINEERING COURE DECRIPTION FORM Course Title Course Code Regulation Course tructure Course Coordinator Team

More information

Copyright 2007 N. Komerath. Other rights may be specified with individual items. All rights reserved.

Copyright 2007 N. Komerath. Other rights may be specified with individual items. All rights reserved. Low Speed Aerodynamics Notes 5: Potential ti Flow Method Objective: Get a method to describe flow velocity fields and relate them to surface shapes consistently. Strategy: Describe the flow field as the

More information

Introduction to Aerospace Engineering

Introduction to Aerospace Engineering 4. Basic Fluid (Aero) Dynamics Introduction to Aerospace Engineering Here, we will try and look at a few basic ideas from the complicated field of fluid dynamics. The general area includes studies of incompressible,

More information

Drag (2) Induced Drag Friction Drag Form Drag Wave Drag

Drag (2) Induced Drag Friction Drag Form Drag Wave Drag Drag () Induced Drag Friction Drag Form Drag Wave Drag Outline Nomenclature and Concepts Farfield Drag Analysis Induced Drag Multiple Lifting Surfaces Zero Lift Drag :Friction and Form Drag Supersonic

More information

MDTS 5705 : Aerodynamics & Propulsion Lecture 2 : Missile lift and drag. G. Leng, MDTS, NUS

MDTS 5705 : Aerodynamics & Propulsion Lecture 2 : Missile lift and drag. G. Leng, MDTS, NUS MDTS 5705 : Aerodynamics & Propulsion Lecture 2 : Missile lift and drag 2.1. The design of supersonic airfoils For efficient lift generation at subsonic speeds, airfoils look like : So why can t a similar

More information

Lecture1: Characteristics of Hypersonic Atmosphere

Lecture1: Characteristics of Hypersonic Atmosphere Module 1: Hypersonic Atmosphere Lecture1: Characteristics of Hypersonic Atmosphere 1.1 Introduction Hypersonic flight has special traits, some of which are seen in every hypersonic flight. Presence of

More information

Aerothermodynamics of high speed flows

Aerothermodynamics of high speed flows Aerothermodynamics of high speed flows AERO 0033 1 Lecture 6: D potential flow, method of characteristics Thierry Magin, Greg Dimitriadis, and Johan Boutet Thierry.Magin@vki.ac.be Aeronautics and Aerospace

More information

Performance. 5. More Aerodynamic Considerations

Performance. 5. More Aerodynamic Considerations Performance 5. More Aerodynamic Considerations There is an alternative way of looking at aerodynamic flow problems that is useful for understanding certain phenomena. Rather than tracking a particle of

More information

Steady waves in compressible flow

Steady waves in compressible flow Chapter Steady waves in compressible flow. Oblique shock waves Figure. shows an oblique shock wave produced when a supersonic flow is deflected by an angle. Figure.: Flow geometry near a plane oblique

More information

for what specific application did Henri Pitot develop the Pitot tube? what was the name of NACA s (now NASA) first research laboratory?

for what specific application did Henri Pitot develop the Pitot tube? what was the name of NACA s (now NASA) first research laboratory? 1. 5% short answers for what specific application did Henri Pitot develop the Pitot tube? what was the name of NACA s (now NASA) first research laboratory? in what country (per Anderson) was the first

More information

A Study of Transonic Flow and Airfoils. Presented by: Huiliang Lui 30 th April 2007

A Study of Transonic Flow and Airfoils. Presented by: Huiliang Lui 30 th April 2007 A Study of Transonic Flow and Airfoils Presented by: Huiliang Lui 3 th April 7 Contents Background Aims Theory Conservation Laws Irrotational Flow Self-Similarity Characteristics Numerical Modeling Conclusion

More information

IX. COMPRESSIBLE FLOW. ρ = P

IX. COMPRESSIBLE FLOW. ρ = P IX. COMPRESSIBLE FLOW Compressible flow is the study of fluids flowing at speeds comparable to the local speed of sound. This occurs when fluid speeds are about 30% or more of the local acoustic velocity.

More information

Richard Nakka's Experimental Rocketry Web Site

Richard Nakka's Experimental Rocketry Web Site Página 1 de 7 Richard Nakka's Experimental Rocketry Web Site Solid Rocket Motor Theory -- Nozzle Theory Nozzle Theory The rocket nozzle can surely be described as the epitome of elegant simplicity. The

More information

Given the water behaves as shown above, which direction will the cylinder rotate?

Given the water behaves as shown above, which direction will the cylinder rotate? water stream fixed but free to rotate Given the water behaves as shown above, which direction will the cylinder rotate? ) Clockwise 2) Counter-clockwise 3) Not enough information F y U 0 U F x V=0 V=0

More information

2. Getting Ready for Computational Aerodynamics: Fluid Mechanics Foundations

2. Getting Ready for Computational Aerodynamics: Fluid Mechanics Foundations . Getting Ready for Computational Aerodynamics: Fluid Mechanics Foundations We need to review the governing equations of fluid mechanics before examining the methods of computational aerodynamics in detail.

More information

1. (20 pts total 2pts each) - Circle the most correct answer for the following questions.

1. (20 pts total 2pts each) - Circle the most correct answer for the following questions. ME 50 Gas Dynamics Spring 009 Final Exam NME:. (0 pts total pts each) - Circle the most correct answer for the following questions. i. normal shock propagated into still air travels with a speed (a) equal

More information

Wings and Bodies in Compressible Flows

Wings and Bodies in Compressible Flows Wings and Bodies in Compressible Flows Prandtl-Glauert-Goethert Transformation Potential equation: 1 If we choose and Laplace eqn. The transformation has stretched the x co-ordinate by 2 Values of at corresponding

More information

4 Compressible Fluid Dynamics

4 Compressible Fluid Dynamics 4 Compressible Fluid Dynamics 4. Compressible flow definitions Compressible flow describes the behaviour of fluids that experience significant variations in density under the application of external pressures.

More information

Induced Drag and High-Speed Aerodynamics Robert Stengel, Aircraft Flight Dynamics, MAE 331, 2018

Induced Drag and High-Speed Aerodynamics Robert Stengel, Aircraft Flight Dynamics, MAE 331, 2018 Induced Drag and High-Speed Aerodynamics Robert Stengel, Aircraft Flight Dynamics, MAE 331, 2018 Drag-due-to-lift and effects of wing planform Effect of angle of attack on lift and drag coefficients Mach

More information

SPC Aerodynamics Course Assignment Due Date Monday 28 May 2018 at 11:30

SPC Aerodynamics Course Assignment Due Date Monday 28 May 2018 at 11:30 SPC 307 - Aerodynamics Course Assignment Due Date Monday 28 May 2018 at 11:30 1. The maximum velocity at which an aircraft can cruise occurs when the thrust available with the engines operating with the

More information

Introduction to Atmospheric Flight. Dr. Guven Aerospace Engineer (P.hD)

Introduction to Atmospheric Flight. Dr. Guven Aerospace Engineer (P.hD) Introduction to Atmospheric Flight Dr. Guven Aerospace Engineer (P.hD) What is Atmospheric Flight? There are many different ways in which Aerospace engineering is associated with atmospheric flight concepts.

More information

Analyses of Diamond - Shaped and Circular Arc Airfoils in Supersonic Wind Tunnel Airflows

Analyses of Diamond - Shaped and Circular Arc Airfoils in Supersonic Wind Tunnel Airflows Analyses of Diamond - Shaped and Circular Arc Airfoils in Supersonic Wind Tunnel Airflows Modo U. P, Chukwuneke J. L, Omenyi Sam 1 Department of Mechanical Engineering, Nnamdi Azikiwe University, Awka,

More information

HIGH SPEED GAS DYNAMICS HINCHEY

HIGH SPEED GAS DYNAMICS HINCHEY HIGH SPEED GAS DYNAMICS HINCHEY MACH WAVES Mach Number is the speed of something divided by the local speed of sound. When an infinitesimal disturbance moves at a steady speed, at each instant in time

More information

Aerothermodynamics of High Speed Flows

Aerothermodynamics of High Speed Flows Aerothermodynamics of High Speed Flows Lecture 1: Introduction G. Dimitriadis 1 The sound barrier Supersonic aerodynamics and aircraft design go hand in hand Aspects of supersonic flow theory were developed

More information

Drag Characteristics of a Low-Drag Low-Boom Supersonic Formation Flying Concept

Drag Characteristics of a Low-Drag Low-Boom Supersonic Formation Flying Concept Drag Characteristics of a Low-Drag Low-Boom Supersonic Formation Flying Concept Yuichiro Goto, Shigeru Obayashi and Yasuaki Kohama Tohoku University, Sendai, Japan In this paper, a new concept for low-drag,

More information

Notes #4a MAE 533, Fluid Mechanics

Notes #4a MAE 533, Fluid Mechanics Notes #4a MAE 533, Fluid Mechanics S. H. Lam lam@princeton.edu http://www.princeton.edu/ lam October 23, 1998 1 The One-dimensional Continuity Equation The one-dimensional steady flow continuity equation

More information

To study the motion of a perfect gas, the conservation equations of continuity

To study the motion of a perfect gas, the conservation equations of continuity Chapter 1 Ideal Gas Flow The Navier-Stokes equations To study the motion of a perfect gas, the conservation equations of continuity ρ + (ρ v = 0, (1.1 momentum ρ D v Dt = p+ τ +ρ f m, (1.2 and energy ρ

More information

6.1 According to Handbook of Chemistry and Physics the composition of air is

6.1 According to Handbook of Chemistry and Physics the composition of air is 6. Compressible flow 6.1 According to Handbook of Chemistry and Physics the composition of air is From this, compute the gas constant R for air. 6. The figure shows a, Pitot-static tube used for velocity

More information

Shock and Expansion Waves

Shock and Expansion Waves Chapter For the solution of the Euler equations to represent adequately a given large-reynolds-number flow, we need to consider in general the existence of discontinuity surfaces, across which the fluid

More information

DEVELOPMENT OF A COMPRESSED CARBON DIOXIDE PROPULSION UNIT FOR NEAR-TERM MARS SURFACE APPLICATIONS

DEVELOPMENT OF A COMPRESSED CARBON DIOXIDE PROPULSION UNIT FOR NEAR-TERM MARS SURFACE APPLICATIONS DEVELOPMENT OF A COMPRESSED CARBON DIOXIDE PROPULSION UNIT FOR NEAR-TERM MARS SURFACE APPLICATIONS Erin Blass Old Dominion University Advisor: Dr. Robert Ash Abstract This work has focused on the development

More information

Flight Vehicle Terminology

Flight Vehicle Terminology Flight Vehicle Terminology 1.0 Axes Systems There are 3 axes systems which can be used in Aeronautics, Aerodynamics & Flight Mechanics: Ground Axes G(x 0, y 0, z 0 ) Body Axes G(x, y, z) Aerodynamic Axes

More information

Isentropic Flow. Gas Dynamics

Isentropic Flow. Gas Dynamics Isentropic Flow Agenda Introduction Derivation Stagnation properties IF in a converging and converging-diverging nozzle Application Introduction Consider a gas in horizontal sealed cylinder with a piston

More information

Investigation potential flow about swept back wing using panel method

Investigation potential flow about swept back wing using panel method INTERNATIONAL JOURNAL OF ENERGY AND ENVIRONMENT Volume 7, Issue 4, 2016 pp.317-326 Journal homepage: www.ijee.ieefoundation.org Investigation potential flow about swept back wing using panel method Wakkas

More information

FUNDAMENTALS OF GAS DYNAMICS

FUNDAMENTALS OF GAS DYNAMICS FUNDAMENTALS OF GAS DYNAMICS Second Edition ROBERT D. ZUCKER OSCAR BIBLARZ Department of Aeronautics and Astronautics Naval Postgraduate School Monterey, California JOHN WILEY & SONS, INC. Contents PREFACE

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 AERONAUTICAL ENGINEERING TUTORIAL QUESTION BANK Course Name : LOW SPEED AERODYNAMICS Course Code : AAE004 Regulation : IARE

More information

Modelling and Computational Fluid Dynamic Analysis on Jet Nozzle

Modelling and Computational Fluid Dynamic Analysis on Jet Nozzle Modelling and Computational Fluid Dynamic Analysis on Jet Nozzle 1 Shaik Khaja Hussain, 2 B V Amarnath Reddy, 3 A V Hari Babu 1 Research Scholar, 2 Assistant Professor, 3 HOD Mechanical Engineering Department

More information

the pitot static measurement equal to a constant C which is to take into account the effect of viscosity and so on.

the pitot static measurement equal to a constant C which is to take into account the effect of viscosity and so on. Mechanical Measurements and Metrology Prof. S. P. Venkateshan Department of Mechanical Engineering Indian Institute of Technology, Madras Module -2 Lecture - 27 Measurement of Fluid Velocity We have been

More information

GAS DYNAMICS. M. Halük Aksel. O. Cahit Eralp. and. Middle East Technical University Ankara, Turkey

GAS DYNAMICS. M. Halük Aksel. O. Cahit Eralp. and. Middle East Technical University Ankara, Turkey GAS DYNAMICS M. Halük Aksel and O. Cahit Eralp Middle East Technical University Ankara, Turkey PRENTICE HALL f r \ New York London Toronto Sydney Tokyo Singapore; \ Contents Preface xi Nomenclature xiii

More information

Entry Aerodynamics MARYLAND U N I V E R S I T Y O F. Entry Aerodynamics. ENAE Launch and Entry Vehicle Design

Entry Aerodynamics MARYLAND U N I V E R S I T Y O F. Entry Aerodynamics. ENAE Launch and Entry Vehicle Design Atmospheric Regimes on Entry Basic fluid parameters Definition of Mean Free Path Rarified gas Newtonian flow Continuum Newtonian flow (hypersonics) 2014 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu

More information

MONTANA STATE UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERING. EMEC 426 Thermodynamics of Propulsion Systems. Spring 2017

MONTANA STATE UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERING. EMEC 426 Thermodynamics of Propulsion Systems. Spring 2017 MONTANA STATE UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERING EMEC 426 Thermodynamics of Propulsion Systems Spring 2017 Instructor: Dr. Alan H. George Office: Roberts 119 Office Hours: to be announced

More information

Lecture-2. One-dimensional Compressible Fluid Flow in Variable Area

Lecture-2. One-dimensional Compressible Fluid Flow in Variable Area Lecture-2 One-dimensional Compressible Fluid Flow in Variable Area Summary of Results(Cont..) In isoenergetic-isentropic flow, an increase in velocity always corresponds to a Mach number increase and vice

More information

AE 451 Aeronautical Engineering Design I Aerodynamics. Prof. Dr. Serkan Özgen Dept. Aerospace Engineering December 2017

AE 451 Aeronautical Engineering Design I Aerodynamics. Prof. Dr. Serkan Özgen Dept. Aerospace Engineering December 2017 AE 451 Aeronautical Engineering Design I Aerodynamics Prof. Dr. Serkan Özgen Dept. Aerospace Engineering December 2017 Lift curve 2 Lift curve slope 3 Subsonic lift curve slope C Lα = 2 + 4 + AR2 β 2 η

More information

Isentropic Duct Flows

Isentropic Duct Flows An Internet Book on Fluid Dynamics Isentropic Duct Flows In this section we examine the behavior of isentropic flows, continuing the development of the relations in section (Bob). First it is important

More information

3. FORMS OF GOVERNING EQUATIONS IN CFD

3. FORMS OF GOVERNING EQUATIONS IN CFD 3. FORMS OF GOVERNING EQUATIONS IN CFD 3.1. Governing and model equations in CFD Fluid flows are governed by the Navier-Stokes equations (N-S), which simpler, inviscid, form is the Euler equations. For

More information

Fundamentals of Fluid Dynamics: Waves in Fluids

Fundamentals of Fluid Dynamics: Waves in Fluids Fundamentals of Fluid Dynamics: Waves in Fluids Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI (after: D.J. ACHESON s Elementary Fluid Dynamics ) bluebox.ippt.pan.pl/ tzielins/ Institute

More information

In which of the following scenarios is applying the following form of Bernoulli s equation: steady, inviscid, uniform stream of water. Ma = 0.

In which of the following scenarios is applying the following form of Bernoulli s equation: steady, inviscid, uniform stream of water. Ma = 0. bernoulli_11 In which of the following scenarios is applying the following form of Bernoulli s equation: p V z constant! g + g + = from point 1 to point valid? a. 1 stagnant column of water steady, inviscid,

More information

Airfoils and Wings. Eugene M. Cliff

Airfoils and Wings. Eugene M. Cliff Airfoils and Wings Eugene M. Cliff 1 Introduction The primary purpose of these notes is to supplement the text material related to aerodynamic forces. We are mainly interested in the forces on wings and

More information

Introduction to Aerospace Engineering

Introduction to Aerospace Engineering Introduction to Aerosace Engineering Lecture slides hallenge the future Introduction to Aerosace Engineering Aerodynamics & Prof. H. Bijl ir. N. Timmer &. Airfoils and finite wings Anderson 5.9 end of

More information

Chapter 5 Wing design - selection of wing parameters 2 Lecture 20 Topics

Chapter 5 Wing design - selection of wing parameters 2 Lecture 20 Topics Chapter 5 Wing design - selection of wing parameters Lecture 0 Topics 5..4 Effects of geometric parameters, Reynolds number and roughness on aerodynamic characteristics of airfoils 5..5 Choice of airfoil

More information

Mach number, relative thickness, sweep and lift coefficient of the wing - An empirical investigation of parameters and equations

Mach number, relative thickness, sweep and lift coefficient of the wing - An empirical investigation of parameters and equations Project Department of Automotive and Aeronautical Engineering ach number, relative thickness, sweep and lift coefficient of the wing - An empirical investigation of parameters and equations Author: Simona

More information

Introduction to Gas Dynamics All Lecture Slides

Introduction to Gas Dynamics All Lecture Slides Introduction to Gas Dynamics All Lecture Slides Teknillinen Korkeakoulu / Helsinki University of Technology Autumn 009 1 Compressible flow Zeroth law of thermodynamics 3 First law of thermodynamics 4 Equation

More information

Aeroelasticity. Lecture 9: Supersonic Aeroelasticity. G. Dimitriadis. AERO0032-1, Aeroelasticity and Experimental Aerodynamics, Lecture 9

Aeroelasticity. Lecture 9: Supersonic Aeroelasticity. G. Dimitriadis. AERO0032-1, Aeroelasticity and Experimental Aerodynamics, Lecture 9 Aeroelasticity Lecture 9: Supersonic Aeroelasticity G. Dimitriadis AERO0032-1, Aeroelasticity and Experimental Aerodynamics, Lecture 9 1 Introduction All the material presented up to now concerned incompressible

More information

Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015

Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015 Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015 I. Introduction (Chapters 1 and 2) A. What is Fluid Mechanics? 1. What is a fluid? 2. What is mechanics? B. Classification of Fluid Flows 1. Viscous

More information

Introduction to Aerospace Engineering

Introduction to Aerospace Engineering Introduction to Aerospace Engineering Lecture slides Challenge the future 3-0-0 Introduction to Aerospace Engineering Aerodynamics 5 & 6 Prof. H. Bijl ir. N. Timmer Delft University of Technology 5. Compressibility

More information

One-Dimensional Isentropic Flow

One-Dimensional Isentropic Flow Cairo University Second Year Faculty of Engineering Gas Dynamics AER 201B Aerospace Department Sheet (1) 2011-2012 One-Dimensional Isentropic Flow 1. Assuming the flow of a perfect gas in an adiabatic,

More information

Mechanics of Flight. Warren F. Phillips. John Wiley & Sons, Inc. Professor Mechanical and Aerospace Engineering Utah State University WILEY

Mechanics of Flight. Warren F. Phillips. John Wiley & Sons, Inc. Professor Mechanical and Aerospace Engineering Utah State University WILEY Mechanics of Flight Warren F. Phillips Professor Mechanical and Aerospace Engineering Utah State University WILEY John Wiley & Sons, Inc. CONTENTS Preface Acknowledgments xi xiii 1. Overview of Aerodynamics

More information

AA210A Fundamentals of Compressible Flow. Chapter 1 - Introduction to fluid flow

AA210A Fundamentals of Compressible Flow. Chapter 1 - Introduction to fluid flow AA210A Fundamentals of Compressible Flow Chapter 1 - Introduction to fluid flow 1 1.2 Conservation of mass Mass flux in the x-direction [ ρu ] = M L 3 L T = M L 2 T Momentum per unit volume Mass per unit

More information

AE 2020: Low Speed Aerodynamics. I. Introductory Remarks Read chapter 1 of Fundamentals of Aerodynamics by John D. Anderson

AE 2020: Low Speed Aerodynamics. I. Introductory Remarks Read chapter 1 of Fundamentals of Aerodynamics by John D. Anderson AE 2020: Low Speed Aerodynamics I. Introductory Remarks Read chapter 1 of Fundamentals of Aerodynamics by John D. Anderson Text Book Anderson, Fundamentals of Aerodynamics, 4th Edition, McGraw-Hill, Inc.

More information

Fundamentals of Fluid Dynamics: Ideal Flow Theory & Basic Aerodynamics

Fundamentals of Fluid Dynamics: Ideal Flow Theory & Basic Aerodynamics Fundamentals of Fluid Dynamics: Ideal Flow Theory & Basic Aerodynamics Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI (after: D.J. ACHESON s Elementary Fluid Dynamics ) bluebox.ippt.pan.pl/

More information

Subsonic and Supersonic Flow Through Pitot Tubes

Subsonic and Supersonic Flow Through Pitot Tubes Subsonic and Supersonic Flow Through Pitot Tubes 140015771 Nicola Rennie MT4599 Project in Mathematics / Statistics School of Mathematics & Statistics University of St Andrews Supervisor: Dr. Richard Scott

More information

Module3: Waves in Supersonic Flow Lecture14: Waves in Supersonic Flow (Contd.)

Module3: Waves in Supersonic Flow Lecture14: Waves in Supersonic Flow (Contd.) 1 Module3: Waves in Supersonic Flow Lecture14: Waves in Supersonic Flow (Contd.) Mach Reflection: The appearance of subsonic regions in the flow complicates the problem. The complications are also encountered

More information

Drag Computation (1)

Drag Computation (1) Drag Computation (1) Why drag so concerned Its effects on aircraft performances On the Concorde, one count drag increase ( C D =.0001) requires two passengers, out of the 90 ~ 100 passenger capacity, be

More information

NUMERICAL INVESTIGATIONS ON THE SLENDER AXISYMMETRIC BODIES AERODYNAMICS IN WIDE RANGE OF MACH NUMBERS AND ANGLES OF ATTACK FROM 0 TO 180

NUMERICAL INVESTIGATIONS ON THE SLENDER AXISYMMETRIC BODIES AERODYNAMICS IN WIDE RANGE OF MACH NUMBERS AND ANGLES OF ATTACK FROM 0 TO 180 NUMERICAL INVESTIGATIONS ON THE SLENDER AXISYMMETRIC BODIES AERODYNAMICS IN WIDE RANGE OF MACH NUMBERS AND ANGLES OF ATTACK FROM 0 TO 180 N.V. Voevodenko*, L.G. Ivanteeva*, V.Ju. Lunin* * TsAGI Central

More information

Given a stream function for a cylinder in a uniform flow with circulation: a) Sketch the flow pattern in terms of streamlines.

Given a stream function for a cylinder in a uniform flow with circulation: a) Sketch the flow pattern in terms of streamlines. Question Given a stream function for a cylinder in a uniform flow with circulation: R Γ r ψ = U r sinθ + ln r π R a) Sketch the flow pattern in terms of streamlines. b) Derive an expression for the angular

More information

The Importance of drag

The Importance of drag Drag Computation The Importance of drag Its effects on aircraft performances On the Concorde, one count drag increase (ΔC D =.0001) requires two passengers, out of the 90 ~ 100 passenger capacity, be taken

More information

Inviscid & Incompressible flow

Inviscid & Incompressible flow < 3.1. Introduction and Road Map > Basic aspects of inviscid, incompressible flow Bernoulli s Equation Laplaces s Equation Some Elementary flows Some simple applications 1.Venturi 2. Low-speed wind tunnel

More information

Rocket Thermodynamics

Rocket Thermodynamics Rocket Thermodynamics PROFESSOR CHRIS CHATWIN LECTURE FOR SATELLITE AND SPACE SYSTEMS MSC UNIVERSITY OF SUSSEX SCHOOL OF ENGINEERING & INFORMATICS 25 TH APRIL 2017 Thermodynamics of Chemical Rockets ΣForce

More information

Brenda M. Kulfan, John E. Bussoletti, and Craig L. Hilmes Boeing Commercial Airplane Group, Seattle, Washington, 98124

Brenda M. Kulfan, John E. Bussoletti, and Craig L. Hilmes Boeing Commercial Airplane Group, Seattle, Washington, 98124 AIAA--2007-0684 Pressures and Drag Characteristics of Bodies of Revolution at Near Sonic Speeds Including the Effects of Viscosity and Wind Tunnel Walls Brenda M. Kulfan, John E. Bussoletti, and Craig

More information

Propulsion Systems and Aerodynamics MODULE CODE LEVEL 6 CREDITS 20 Engineering and Mathematics Industrial Collaborative Engineering

Propulsion Systems and Aerodynamics MODULE CODE LEVEL 6 CREDITS 20 Engineering and Mathematics Industrial Collaborative Engineering TITLE Propulsion Systems and Aerodynamics MODULE CODE 55-6894 LEVEL 6 CREDITS 20 DEPARTMENT Engineering and Mathematics SUBJECT GROUP Industrial Collaborative Engineering MODULE LEADER Dr. Xinjun Cui DATE

More information

AA210A Fundamentals of Compressible Flow. Chapter 13 - Unsteady Waves in Compressible Flow

AA210A Fundamentals of Compressible Flow. Chapter 13 - Unsteady Waves in Compressible Flow AA210A Fundamentals of Compressible Flow Chapter 13 - Unsteady Waves in Compressible Flow The Shock Tube - Wave Diagram 13.1 Equations for irrotational, homentropic, unsteady flow ρ t + x k ρ U i t (

More information

CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION

CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION 7.1 THE NAVIER-STOKES EQUATIONS Under the assumption of a Newtonian stress-rate-of-strain constitutive equation and a linear, thermally conductive medium,

More information

Uncertainty in airflow field parameters in a study of shock waves on flat plate in transonic wind tunnel

Uncertainty in airflow field parameters in a study of shock waves on flat plate in transonic wind tunnel Journal of Physics: Conference Series OPEN ACCESS Uncertainty in airflow field parameters in a study of shock waves on flat plate in transonic wind tunnel To cite this article: L C C Reis et al 03 J. Phys.:

More information

Compressible Duct Flow with Friction

Compressible Duct Flow with Friction Compressible Duct Flow with Friction We treat only the effect of friction, neglecting area change and heat transfer. The basic assumptions are 1. Steady one-dimensional adiabatic flow 2. Perfect gas with

More information

Mestrado Integrado em Engenharia Mecânica Aerodynamics 1 st Semester 2012/13

Mestrado Integrado em Engenharia Mecânica Aerodynamics 1 st Semester 2012/13 Mestrado Integrado em Engenharia Mecânica Aerodynamics 1 st Semester 212/13 Exam 2ª época, 2 February 213 Name : Time : 8: Number: Duration : 3 hours 1 st Part : No textbooks/notes allowed 2 nd Part :

More information