if j is a neighbor of i,

Size: px
Start display at page:

Download "if j is a neighbor of i,"

Transcription

1 We see that if i = j the the coditio is trivially satisfied. Otherwise, T ij (i) = (i)q ij mi 1, (j)q ji, ad, (i)q ij T ji (j) = (j)q ji mi 1, (i)q ij. (j)q ji Now there are two cases, if (j)q ji (i)q ij the we have that both of these expressios are equal to (i)q ij ad if (j)q ji apple (i)q ij the both expressios are equal to (j)q ji. So we see that the detailed balace coditios are satisfied ad we coclude that is the limitig distributio of the Markov chai costructed by the MH algorithm. Lets re-visit the permutatio example. We described the matrix Q earlier, essetially: Q ij = 1 N(i) if j is a eighbor of i, where N(i) is the umber of eighbours of the permutatio i. So ow to complete the descriptio of the MH algorithm we simply ote that sice our target is the uiform distributio over the set of permutatios satisfyig the coditio (6.1) wehavethat, =mi 1, N(j), N(i) so the algorithm is quite simple, we start at some permutatio that satisfies the costrait ad propose a eighborig permutatio. If that eighbor has more eighbors, the =1ad we accept the proposal, otherwise we accept it with probability N(j)/N (i). This simple procedure has limitig distributio equal to the uiform distributio o the set of permutatios satisfyig the costrait! 6.4 Gibbs Samplig A very popular variat of the MH algorithm arises whe we are samplig multi-dimesioal radom vectors (both the permutatio example ad the Isig model example are examples of this). Gibbs samplig is just the MH algorithm with a very particular proposal distributio. The idea i Gibbs samplig is that we start i some state (x 1,...,x ) ad ru the followig algorithm: 1. Choose a coordiate to update, uiformly at radom, i.e. with probability 1/ we select co-ordiate j. 2. Update its value by samplig from the coditioal distributio keepig all other coordiates fixed, i.e. we sample a ew value for x j : x j (x j (x 1,...,x j 1,x j+1,...,x )). We repeat these steps. As before there are two miracles: (1) we ca ofte sample from the coditioal distributio eve whe we caot ormalize the distributio (2) the Gibbs samplig algorithm costructs a Markov chai with statioary distributio equal to. Gibbs samplig does ot make much sese for the permutatio example so lets uderstad how it works for the Isig model. 80

2 Fact 6.5. Ofte samplig from the coditioal distributio (x j (x 1,...,x j 1,x j+1,...,x )) is easy. This is difficult to make precise but lets see what happes i the Isig model: (x j =1 (x 1,...,x j 1,x j+1,...,x )) = ((x 1,...,x j 1, 1,x j+1,...,x )) ((x 1,...,x j 1,x j+1,...,x )) ((x 1,...,x j 1, 1,x j+1,...,x )) = ((x 1,...,x j 1, 1,x j+1,...,x )) + ((x 1,...,x j 1, +1,x j+1,...,x )) exp( E(x 1,...,x j 1, 1,x j+1,...,x )) = exp( E(x 1,...,x j 1, 1,x j+1,...,x )) + exp( E(x 1,...,x j 1, 1,x j+1,...,x )), ad this is a very easy distributio to sample from. I geeral, a coditioal distributio will be a ratio of joit distributios ad so the ormalizig costat will agai cacel (as it did i the MH algorithm). Fact 6.6. The limitig distributio of the Gibbs Markov chai is. We ca see that as before the Gibbs algorithm is costructig a Markov chai ad we eed to figure out what its trasitio matrix is. It is agai easy to check that i most iterestig cases the costructed chai will be irreducible ad aperiodic (try to do this for the Isig model as a exercise) so we just eed to check detailed balace coditios. We will do this by showig that Gibbs is a special case of the MH algorithm. Notice that there are o accept/reject steps i Gibbs but first what is the proposal distributio? We propose to move from (x 1,...,x ) to (x 0 1,...,x0 ) if they differ i oly oe co-ordiate. Lets deote this coordiate j (chose with probability 1/) the the proposal happes with probability: Q((x 1,...,x ), (x 0 1,...,x 0 )) = 1 (x0 j x 1,...,x j 1,x j+1,...,x ), ad similarly we ca calculate: Q((x 0 1,...,x 0 ), (x 1,...,x )) = 1 (x j x 1,...,x j 1,x j+1,...,x ). Now if this were really a MH algorithm, we should accept the proposal with probability: =mi 1, ((x0 1,...,x0 )) Q((x 0 1,...,x0 ), (x 1,...,x )) ((x 1,...,x )) Q((x 1,...,x ), (x 0 1 (,...,x0 )) ) =mi 1, ((x0 1,...,x0 )) (x j x 1,...,x j 1,x j+1,...,x ) ((x 1,...,x )) (x 0 j x. 1,...,x j 1,x j+1,...,x ) Now otice that, (x j x 1,...,x j 1,x j+1,...,x )= ((x 1,...,x )) Px ((x 1,...,x j 1,x,x j+1,...,x )), so we see that the ratio is always equal to 1. So if we use the coditioal distributio as a proposal distributio the we should always accept the ew sample which is exactly what Gibbs samplig does. So we coclude that Gibbs samplig has limitig distributio. 81

3 Chapter 7 PageRak Algorithm I this chapter we will discuss aother importat applicatio of Markov chais, ad some of the theory we have developed so far cocerig the limitig behaviour of Markov chais. 7.1 Motivatio ad history PageRak is a algorithm that was developed by Sergey Bri, Rajeev Motwai, Larry Page ad Terry Wiograd. The basic ituitio was that oe could try to measure the umber ad quality of liks to a webpage, ad use that to estimate how importat the webpage is. Agoodwebpageisoethatislikedtofrommayothergoodwebpages. Similar algorithms were proposed by various people aroud the same time. Notably, Jo Kleiberg suggested the HITS (Hyperlik-Iduced Topic Search) algorithm for the same problem. Today, Google uses may other sigals i webpage rakig but PageRak remais a very ifluetial idea. PageRak s first isight is relatively straightforward: we ca thik of the World-Wide-Web (WWW) as a directed graph. The odes are webpages. Differet webpages lik to each other: these are the edges. For today we have webpages umbered {1,...,}. We will attempt to assig each webpage a PageRak score. Deote these (suggestively) { 1, 2,..., }. 7.2 Some early attempts Give our graph o the webpages, a first attempt would be to treat all webpages equally. We the rak each webpage by the umber of pages that lik to it. So the top webpage is just the webpage with the highest i-degree, ad so o. Ituitively, this seems like a bad idea. More precisely, you could imagie that I ca create a webpage ad may sub-pages that all lik to this webpage ad this will result i the first page havig a very high-rakig eve though all the pages that liked to it are owed by me. More broadly, we wat the rakig to be difficult to maipulate locally. As a side commet ideas like these of tryig to artificially boost a webpage s rakig/reputatio has led i recet years to may startups attemptig Search Egie Optimizatio, ad o the other had compaies like Google costatly try to keep this i check. The ext attempt is recursive but is very close to the actual PageRak algorithm. We could weight each of the i-liks to a webpage. Suppose we are tryig to compute the PageRak score for a particular webpage i. Ituitively, 82

4 1. Webpages that lik to a particular i, ad have a high PageRak score, should be give more weight. 2. Webpages that lik to a particular i, ad have a low PageRak score, should be give less weight. This is a bit circular, but the key poit is that that is ot a problem. We have bee seeig may circular defiitios recetly. We will re-visit this i a bit. Lets coect this back to Markov chais. The way to do this is to thik of a so-called radom surfer, oe who visits webpages by clickig liks at radom. The radom surfer s curret locatio is really just the state i a Markov chai. Defie, the adjacecy matrix for a directed graph as 2 3 A 11 A A 1 A 21 A A 2 A = , A 1 A 2... A where A ij =1if there is a edge or lik from i! j. Now, we wat to tur this ito a trasitio matrix for our radom surfer. This is easy to do. We just defie: where 2 3 P 11 P P 1 P 21 P P 2 P = , P 1 P 2... P P ij = A P ij j=1 A. ij Lets go through a simple example. Cosider the followig graph: 83

5 We ca write dow the radom surfer trasitio matrix /2 1/2 0 P = Usig MATLAB, we ca fid the limitig distributio of the radom surfer, ad we obtai Is this ituitive? Observe the followig thigs: =[0.4, 0.2, 0.4, 0]. 1. If there are o liks i to a page it has a score of Page 3 has may i-liks ad gets a high-score. 3. Page 1 has oly oe i-lik but it is from a ifluetial page so it also gets a high-score. So we jumped from some ituitio about assigig high score to webpages which are liked to from other pages with high score to the radom surfer model, ad the limitig distributio. Lets take a step back. We kow that for a statioary distributio : T = T P. So i particular the PageRak score for a page i satisfies: i = X j P ji = j=1 X j=1 j A ji d j. Is this ituitive? What about the ormalizatio by degrees? This effectively cotrols the total vote of each page. So we have made some progress. We have formulated our desired characteristics, ito thigs that are satisfied by the limitig distributio of a particular Markov chai. Now, we just eed to make sure that the limitig distributio exists. There are a few problems we might ru ito. 84

6 Well we kow that for fiite Markov chais there is always at least oe statioary distributio. Why ot use oe of those (it may ot be uique)? Here is a cocrete example of what ca go wrog. Suppose we have the followig web graph: So the radom surfer matrix has two statioary distributios: [1/3 1/3 1/3 0 0] ad [0001/3 1/3]. If we iterpret these etries as PageRak scores the the two rakig are completely at odds with each other. Ituitively, what is happeig is that the rakig of the webpages depeds o where the radom surfer starts. 7.3 The real PageRak algorithm The real PageRak algorithm makes a slight modificatio. Suppose that our radom surfer occasioally gets bored ad clicks o a radom webpage. Our bored radom surfer also follows a Markov chai, with trasitio matrix: Q =(1 ) P We eed to set the parameter, ad eed to do so carefully. What ca go wrog if we pick a value that is too small? Too large? Google uses the value =0.85. This simple modificatio is icredibly importat. We have ow created a Markov chai with a uique statioary distributio, irrespective of the uderlyig graph. We ow have all the pieces i place. We ca represet the WWW as a (very large) matrix ad compute its uique limitig distributio. We ll discuss this i a bit more detail. 7.4 Computig PageRak scores The real cotributio of the PageRak paper was to show that oe could compute the PageRak scores o huge graphs. O a small graph we could use MATLAB. 85

7 Revisitig our earlier example we would ru the followig commads:» P = [0 1/2 1/2 0; ; ; ];» Q = (1-0.85)*oes(4,4)/ *P;» Q 1000 as = This is somewhat ielegat. The other way of doig this ivolves observig that the statioary distributio is just the top eigevector of the trasitio matrix. Thik this through. So we could use the followig istead:» [V,D] = eig(q );» V(:,1)/sum(V(:,1)) as = Computig the top eigevector of a ( ) matrix typically takes time O( 3 ), which is very slow. Oe could istead use a iterative method called the power method, to compute the limitig distributio. This is really very similar to what we tried first (i.e. raisig the trasitio matrix to some high power). It is called the power method of computig eigevectors. Essetially, we could use the followig iterative algorithm: 1. Start with some iitial distributio Compute iteratively: t+1 = t Q util the vector stabilizes. So, i MATLAB we would use:» p = oes(1,4)/4;» for i = 1:1000 p = p*q; ed» p p = The PageRak paper showed that they could compute PageRak scores o web-scale usig the power method. A importat observatio that they made was that oe ca compute these very fast whe the trasitio matrix (without the bored part) is sparse. 7.5 Summary It is worthwhile to thik through how oe would combie PageRak scores (which really igore the cotet of the webpage) with thigs like TF-IDF (term frequecy-iverse documet frequecy) that use the cotet of the webpage (ad the search query). 86

8 We saw how to cast the problem of rakig webpages as that of fidig the limitig distributio of a Markov chai. We saw how to use isights about the existece ad uiqueess of limitig distributios to fix the Markov chai, ad fially we saw how oe might compute PageRak scores at web-scale. I the years sice PageRak was proposed, several ice variats have also bee proposed to improve the basic algorithm (check out the Wikipedia page for PageRak to fid some refereces). 87

Notes for Lecture 11

Notes for Lecture 11 U.C. Berkeley CS78: Computatioal Complexity Hadout N Professor Luca Trevisa 3/4/008 Notes for Lecture Eigevalues, Expasio, ad Radom Walks As usual by ow, let G = (V, E) be a udirected d-regular graph with

More information

Lecture 2: April 3, 2013

Lecture 2: April 3, 2013 TTIC/CMSC 350 Mathematical Toolkit Sprig 203 Madhur Tulsiai Lecture 2: April 3, 203 Scribe: Shubhedu Trivedi Coi tosses cotiued We retur to the coi tossig example from the last lecture agai: Example. Give,

More information

Introduction to Computational Molecular Biology. Gibbs Sampling

Introduction to Computational Molecular Biology. Gibbs Sampling 18.417 Itroductio to Computatioal Molecular Biology Lecture 19: November 16, 2004 Scribe: Tushara C. Karuarata Lecturer: Ross Lippert Editor: Tushara C. Karuarata Gibbs Samplig Itroductio Let s first recall

More information

Lecture 3: August 31

Lecture 3: August 31 36-705: Itermediate Statistics Fall 018 Lecturer: Siva Balakrisha Lecture 3: August 31 This lecture will be mostly a summary of other useful expoetial tail bouds We will ot prove ay of these i lecture,

More information

4. Partial Sums and the Central Limit Theorem

4. Partial Sums and the Central Limit Theorem 1 of 10 7/16/2009 6:05 AM Virtual Laboratories > 6. Radom Samples > 1 2 3 4 5 6 7 4. Partial Sums ad the Cetral Limit Theorem The cetral limit theorem ad the law of large umbers are the two fudametal theorems

More information

Convergence of random variables. (telegram style notes) P.J.C. Spreij

Convergence of random variables. (telegram style notes) P.J.C. Spreij Covergece of radom variables (telegram style otes).j.c. Spreij this versio: September 6, 2005 Itroductio As we kow, radom variables are by defiitio measurable fuctios o some uderlyig measurable space

More information

2 Markov Chain Monte Carlo Sampling

2 Markov Chain Monte Carlo Sampling 22 Part I. Markov Chais ad Stochastic Samplig Figure 10: Hard-core colourig of a lattice. 2 Markov Chai Mote Carlo Samplig We ow itroduce Markov chai Mote Carlo (MCMC) samplig, which is a extremely importat

More information

1 of 7 7/16/2009 6:06 AM Virtual Laboratories > 6. Radom Samples > 1 2 3 4 5 6 7 6. Order Statistics Defiitios Suppose agai that we have a basic radom experimet, ad that X is a real-valued radom variable

More information

CS284A: Representations and Algorithms in Molecular Biology

CS284A: Representations and Algorithms in Molecular Biology CS284A: Represetatios ad Algorithms i Molecular Biology Scribe Notes o Lectures 3 & 4: Motif Discovery via Eumeratio & Motif Represetatio Usig Positio Weight Matrix Joshua Gervi Based o presetatios by

More information

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER / Statistics

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER / Statistics ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER 1 018/019 DR. ANTHONY BROWN 8. Statistics 8.1. Measures of Cetre: Mea, Media ad Mode. If we have a series of umbers the

More information

Seunghee Ye Ma 8: Week 5 Oct 28

Seunghee Ye Ma 8: Week 5 Oct 28 Week 5 Summary I Sectio, we go over the Mea Value Theorem ad its applicatios. I Sectio 2, we will recap what we have covered so far this term. Topics Page Mea Value Theorem. Applicatios of the Mea Value

More information

6.3 Testing Series With Positive Terms

6.3 Testing Series With Positive Terms 6.3. TESTING SERIES WITH POSITIVE TERMS 307 6.3 Testig Series With Positive Terms 6.3. Review of what is kow up to ow I theory, testig a series a i for covergece amouts to fidig the i= sequece of partial

More information

Achieving Stationary Distributions in Markov Chains. Monday, November 17, 2008 Rice University

Achieving Stationary Distributions in Markov Chains. Monday, November 17, 2008 Rice University Istructor: Achievig Statioary Distributios i Markov Chais Moday, November 1, 008 Rice Uiversity Dr. Volka Cevher STAT 1 / ELEC 9: Graphical Models Scribe: Rya E. Guerra, Tahira N. Saleem, Terrace D. Savitsky

More information

The Binomial Theorem

The Binomial Theorem The Biomial Theorem Robert Marti Itroductio The Biomial Theorem is used to expad biomials, that is, brackets cosistig of two distict terms The formula for the Biomial Theorem is as follows: (a + b ( k

More information

n outcome is (+1,+1, 1,..., 1). Let the r.v. X denote our position (relative to our starting point 0) after n moves. Thus X = X 1 + X 2 + +X n,

n outcome is (+1,+1, 1,..., 1). Let the r.v. X denote our position (relative to our starting point 0) after n moves. Thus X = X 1 + X 2 + +X n, CS 70 Discrete Mathematics for CS Sprig 2008 David Wager Note 9 Variace Questio: At each time step, I flip a fair coi. If it comes up Heads, I walk oe step to the right; if it comes up Tails, I walk oe

More information

Lecture 5: April 17, 2013

Lecture 5: April 17, 2013 TTIC/CMSC 350 Mathematical Toolkit Sprig 203 Madhur Tulsiai Lecture 5: April 7, 203 Scribe: Somaye Hashemifar Cheroff bouds recap We recall the Cheroff/Hoeffdig bouds we derived i the last lecture idepedet

More information

UNIT 2 DIFFERENT APPROACHES TO PROBABILITY THEORY

UNIT 2 DIFFERENT APPROACHES TO PROBABILITY THEORY UNIT 2 DIFFERENT APPROACHES TO PROBABILITY THEORY Structure 2.1 Itroductio Objectives 2.2 Relative Frequecy Approach ad Statistical Probability 2. Problems Based o Relative Frequecy 2.4 Subjective Approach

More information

Math 216A Notes, Week 5

Math 216A Notes, Week 5 Math 6A Notes, Week 5 Scribe: Ayastassia Sebolt Disclaimer: These otes are ot early as polished (ad quite possibly ot early as correct) as a published paper. Please use them at your ow risk.. Thresholds

More information

Lecture XVI - Lifting of paths and homotopies

Lecture XVI - Lifting of paths and homotopies Lecture XVI - Liftig of paths ad homotopies I the last lecture we discussed the liftig problem ad proved that the lift if it exists is uiquely determied by its value at oe poit. I this lecture we shall

More information

Infinite Sequences and Series

Infinite Sequences and Series Chapter 6 Ifiite Sequeces ad Series 6.1 Ifiite Sequeces 6.1.1 Elemetary Cocepts Simply speakig, a sequece is a ordered list of umbers writte: {a 1, a 2, a 3,...a, a +1,...} where the elemets a i represet

More information

Discrete Mathematics for CS Spring 2007 Luca Trevisan Lecture 22

Discrete Mathematics for CS Spring 2007 Luca Trevisan Lecture 22 CS 70 Discrete Mathematics for CS Sprig 2007 Luca Trevisa Lecture 22 Aother Importat Distributio The Geometric Distributio Questio: A biased coi with Heads probability p is tossed repeatedly util the first

More information

subcaptionfont+=small,labelformat=parens,labelsep=space,skip=6pt,list=0,hypcap=0 subcaption ALGEBRAIC COMBINATORICS LECTURE 8 TUESDAY, 2/16/2016

subcaptionfont+=small,labelformat=parens,labelsep=space,skip=6pt,list=0,hypcap=0 subcaption ALGEBRAIC COMBINATORICS LECTURE 8 TUESDAY, 2/16/2016 subcaptiofot+=small,labelformat=pares,labelsep=space,skip=6pt,list=0,hypcap=0 subcaptio ALGEBRAIC COMBINATORICS LECTURE 8 TUESDAY, /6/06. Self-cojugate Partitios Recall that, give a partitio λ, we may

More information

TCOM 501: Networking Theory & Fundamentals. Lecture 3 January 29, 2003 Prof. Yannis A. Korilis

TCOM 501: Networking Theory & Fundamentals. Lecture 3 January 29, 2003 Prof. Yannis A. Korilis TCOM 5: Networkig Theory & Fudametals Lecture 3 Jauary 29, 23 Prof. Yais A. Korilis 3-2 Topics Markov Chais Discrete-Time Markov Chais Calculatig Statioary Distributio Global Balace Equatios Detailed Balace

More information

Application to Random Graphs

Application to Random Graphs A Applicatio to Radom Graphs Brachig processes have a umber of iterestig ad importat applicatios. We shall cosider oe of the most famous of them, the Erdős-Réyi radom graph theory. 1 Defiitio A.1. Let

More information

CHAPTER I: Vector Spaces

CHAPTER I: Vector Spaces CHAPTER I: Vector Spaces Sectio 1: Itroductio ad Examples This first chapter is largely a review of topics you probably saw i your liear algebra course. So why cover it? (1) Not everyoe remembers everythig

More information

Lecture 2. The Lovász Local Lemma

Lecture 2. The Lovász Local Lemma Staford Uiversity Sprig 208 Math 233A: No-costructive methods i combiatorics Istructor: Ja Vodrák Lecture date: Jauary 0, 208 Origial scribe: Apoorva Khare Lecture 2. The Lovász Local Lemma 2. Itroductio

More information

Once we have a sequence of numbers, the next thing to do is to sum them up. Given a sequence (a n ) n=1

Once we have a sequence of numbers, the next thing to do is to sum them up. Given a sequence (a n ) n=1 . Ifiite Series Oce we have a sequece of umbers, the ext thig to do is to sum them up. Give a sequece a be a sequece: ca we give a sesible meaig to the followig expressio? a = a a a a While summig ifiitely

More information

MA131 - Analysis 1. Workbook 2 Sequences I

MA131 - Analysis 1. Workbook 2 Sequences I MA3 - Aalysis Workbook 2 Sequeces I Autum 203 Cotets 2 Sequeces I 2. Itroductio.............................. 2.2 Icreasig ad Decreasig Sequeces................ 2 2.3 Bouded Sequeces..........................

More information

Problem Set 4 Due Oct, 12

Problem Set 4 Due Oct, 12 EE226: Radom Processes i Systems Lecturer: Jea C. Walrad Problem Set 4 Due Oct, 12 Fall 06 GSI: Assae Gueye This problem set essetially reviews detectio theory ad hypothesis testig ad some basic otios

More information

6 Integers Modulo n. integer k can be written as k = qn + r, with q,r, 0 r b. So any integer.

6 Integers Modulo n. integer k can be written as k = qn + r, with q,r, 0 r b. So any integer. 6 Itegers Modulo I Example 2.3(e), we have defied the cogruece of two itegers a,b with respect to a modulus. Let us recall that a b (mod ) meas a b. We have proved that cogruece is a equivalece relatio

More information

Linear Regression Demystified

Linear Regression Demystified Liear Regressio Demystified Liear regressio is a importat subject i statistics. I elemetary statistics courses, formulae related to liear regressio are ofte stated without derivatio. This ote iteds to

More information

Bayesian Methods: Introduction to Multi-parameter Models

Bayesian Methods: Introduction to Multi-parameter Models Bayesia Methods: Itroductio to Multi-parameter Models Parameter: θ = ( θ, θ) Give Likelihood p(y θ) ad prior p(θ ), the posterior p proportioal to p(y θ) x p(θ ) Margial posterior ( θ, θ y) is Iterested

More information

ACO Comprehensive Exam 9 October 2007 Student code A. 1. Graph Theory

ACO Comprehensive Exam 9 October 2007 Student code A. 1. Graph Theory 1. Graph Theory Prove that there exist o simple plaar triagulatio T ad two distict adjacet vertices x, y V (T ) such that x ad y are the oly vertices of T of odd degree. Do ot use the Four-Color Theorem.

More information

Oblivious Gradient Clock Synchronization

Oblivious Gradient Clock Synchronization Motivatio: Clock Sychroizatio Oblivious Gradiet Clock Sychroizatio Thomas Locher, ETH Zurich Roger Wattehofer, ETH Zurich Clock sychroizatio is a classic, importat problem! May results have bee published

More information

Frequentist Inference

Frequentist Inference Frequetist Iferece The topics of the ext three sectios are useful applicatios of the Cetral Limit Theorem. Without kowig aythig about the uderlyig distributio of a sequece of radom variables {X i }, for

More information

Lecture 2: Monte Carlo Simulation

Lecture 2: Monte Carlo Simulation STAT/Q SCI 43: Itroductio to Resamplig ethods Sprig 27 Istructor: Ye-Chi Che Lecture 2: ote Carlo Simulatio 2 ote Carlo Itegratio Assume we wat to evaluate the followig itegratio: e x3 dx What ca we do?

More information

Fastest mixing Markov chain on a path

Fastest mixing Markov chain on a path Fastest mixig Markov chai o a path Stephe Boyd Persi Diacois Ju Su Li Xiao Revised July 2004 Abstract We ider the problem of assigig trasitio probabilities to the edges of a path, so the resultig Markov

More information

4.3 Growth Rates of Solutions to Recurrences

4.3 Growth Rates of Solutions to Recurrences 4.3. GROWTH RATES OF SOLUTIONS TO RECURRENCES 81 4.3 Growth Rates of Solutios to Recurreces 4.3.1 Divide ad Coquer Algorithms Oe of the most basic ad powerful algorithmic techiques is divide ad coquer.

More information

1 Introduction to reducing variance in Monte Carlo simulations

1 Introduction to reducing variance in Monte Carlo simulations Copyright c 010 by Karl Sigma 1 Itroductio to reducig variace i Mote Carlo simulatios 11 Review of cofidece itervals for estimatig a mea I statistics, we estimate a ukow mea µ = E(X) of a distributio by

More information

A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence

A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence Sequeces A sequece of umbers is a fuctio whose domai is the positive itegers. We ca see that the sequece,, 2, 2, 3, 3,... is a fuctio from the positive itegers whe we write the first sequece elemet as

More information

Exponential Families and Bayesian Inference

Exponential Families and Bayesian Inference Computer Visio Expoetial Families ad Bayesia Iferece Lecture Expoetial Families A expoetial family of distributios is a d-parameter family f(x; havig the followig form: f(x; = h(xe g(t T (x B(, (. where

More information

EE / EEE SAMPLE STUDY MATERIAL. GATE, IES & PSUs Signal System. Electrical Engineering. Postal Correspondence Course

EE / EEE SAMPLE STUDY MATERIAL. GATE, IES & PSUs Signal System. Electrical Engineering. Postal Correspondence Course Sigal-EE Postal Correspodece Course 1 SAMPLE STUDY MATERIAL Electrical Egieerig EE / EEE Postal Correspodece Course GATE, IES & PSUs Sigal System Sigal-EE Postal Correspodece Course CONTENTS 1. SIGNAL

More information

Lecture 12: September 27

Lecture 12: September 27 36-705: Itermediate Statistics Fall 207 Lecturer: Siva Balakrisha Lecture 2: September 27 Today we will discuss sufficiecy i more detail ad the begi to discuss some geeral strategies for costructig estimators.

More information

Zeros of Polynomials

Zeros of Polynomials Math 160 www.timetodare.com 4.5 4.6 Zeros of Polyomials I these sectios we will study polyomials algebraically. Most of our work will be cocered with fidig the solutios of polyomial equatios of ay degree

More information

Math 61CM - Solutions to homework 3

Math 61CM - Solutions to homework 3 Math 6CM - Solutios to homework 3 Cédric De Groote October 2 th, 208 Problem : Let F be a field, m 0 a fixed oegative iteger ad let V = {a 0 + a x + + a m x m a 0,, a m F} be the vector space cosistig

More information

Markov Decision Processes

Markov Decision Processes Markov Decisio Processes Defiitios; Statioary policies; Value improvemet algorithm, Policy improvemet algorithm, ad liear programmig for discouted cost ad average cost criteria. Markov Decisio Processes

More information

MA131 - Analysis 1. Workbook 3 Sequences II

MA131 - Analysis 1. Workbook 3 Sequences II MA3 - Aalysis Workbook 3 Sequeces II Autum 2004 Cotets 2.8 Coverget Sequeces........................ 2.9 Algebra of Limits......................... 2 2.0 Further Useful Results........................

More information

Sequences A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence

Sequences A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence Sequeces A sequece of umbers is a fuctio whose domai is the positive itegers. We ca see that the sequece 1, 1, 2, 2, 3, 3,... is a fuctio from the positive itegers whe we write the first sequece elemet

More information

CS276A Practice Problem Set 1 Solutions

CS276A Practice Problem Set 1 Solutions CS76A Practice Problem Set Solutios Problem. (i) (ii) 8 (iii) 6 Compute the gamma-codes for the followig itegers: (i) (ii) 8 (iii) 6 Problem. For this problem, we will be dealig with a collectio of millio

More information

Random Models. Tusheng Zhang. February 14, 2013

Random Models. Tusheng Zhang. February 14, 2013 Radom Models Tusheg Zhag February 14, 013 1 Radom Walks Let me describe the model. Radom walks are used to describe the motio of a movig particle (object). Suppose that a particle (object) moves alog the

More information

Sequences I. Chapter Introduction

Sequences I. Chapter Introduction Chapter 2 Sequeces I 2. Itroductio A sequece is a list of umbers i a defiite order so that we kow which umber is i the first place, which umber is i the secod place ad, for ay atural umber, we kow which

More information

Chapter 2 The Monte Carlo Method

Chapter 2 The Monte Carlo Method Chapter 2 The Mote Carlo Method The Mote Carlo Method stads for a broad class of computatioal algorithms that rely o radom sampligs. It is ofte used i physical ad mathematical problems ad is most useful

More information

Notes for Lecture 5. 1 Grover Search. 1.1 The Setting. 1.2 Motivation. Lecture 5 (September 26, 2018)

Notes for Lecture 5. 1 Grover Search. 1.1 The Setting. 1.2 Motivation. Lecture 5 (September 26, 2018) COS 597A: Quatum Cryptography Lecture 5 (September 6, 08) Lecturer: Mark Zhadry Priceto Uiversity Scribe: Fermi Ma Notes for Lecture 5 Today we ll move o from the slightly cotrived applicatios of quatum

More information

Lecture Chapter 6: Convergence of Random Sequences

Lecture Chapter 6: Convergence of Random Sequences ECE5: Aalysis of Radom Sigals Fall 6 Lecture Chapter 6: Covergece of Radom Sequeces Dr Salim El Rouayheb Scribe: Abhay Ashutosh Doel, Qibo Zhag, Peiwe Tia, Pegzhe Wag, Lu Liu Radom sequece Defiitio A ifiite

More information

Ma 530 Infinite Series I

Ma 530 Infinite Series I Ma 50 Ifiite Series I Please ote that i additio to the material below this lecture icorporated material from the Visual Calculus web site. The material o sequeces is at Visual Sequeces. (To use this li

More information

HOMEWORK 2 SOLUTIONS

HOMEWORK 2 SOLUTIONS HOMEWORK SOLUTIONS CSE 55 RANDOMIZED AND APPROXIMATION ALGORITHMS 1. Questio 1. a) The larger the value of k is, the smaller the expected umber of days util we get all the coupos we eed. I fact if = k

More information

18.S096: Homework Problem Set 1 (revised)

18.S096: Homework Problem Set 1 (revised) 8.S096: Homework Problem Set (revised) Topics i Mathematics of Data Sciece (Fall 05) Afoso S. Badeira Due o October 6, 05 Exteded to: October 8, 05 This homework problem set is due o October 6, at the

More information

b i u x i U a i j u x i u x j

b i u x i U a i j u x i u x j M ath 5 2 7 Fall 2 0 0 9 L ecture 1 9 N ov. 1 6, 2 0 0 9 ) S ecod- Order Elliptic Equatios: Weak S olutios 1. Defiitios. I this ad the followig two lectures we will study the boudary value problem Here

More information

Stat 421-SP2012 Interval Estimation Section

Stat 421-SP2012 Interval Estimation Section Stat 41-SP01 Iterval Estimatio Sectio 11.1-11. We ow uderstad (Chapter 10) how to fid poit estimators of a ukow parameter. o However, a poit estimate does ot provide ay iformatio about the ucertaity (possible

More information

NUMERICAL METHODS FOR SOLVING EQUATIONS

NUMERICAL METHODS FOR SOLVING EQUATIONS Mathematics Revisio Guides Numerical Methods for Solvig Equatios Page 1 of 11 M.K. HOME TUITION Mathematics Revisio Guides Level: GCSE Higher Tier NUMERICAL METHODS FOR SOLVING EQUATIONS Versio:. Date:

More information

6a Time change b Quadratic variation c Planar Brownian motion d Conformal local martingales e Hints to exercises...

6a Time change b Quadratic variation c Planar Brownian motion d Conformal local martingales e Hints to exercises... Tel Aviv Uiversity, 28 Browia motio 59 6 Time chage 6a Time chage..................... 59 6b Quadratic variatio................. 61 6c Plaar Browia motio.............. 64 6d Coformal local martigales............

More information

( ) = p and P( i = b) = q.

( ) = p and P( i = b) = q. MATH 540 Radom Walks Part 1 A radom walk X is special stochastic process that measures the height (or value) of a particle that radomly moves upward or dowward certai fixed amouts o each uit icremet of

More information

Ma 530 Introduction to Power Series

Ma 530 Introduction to Power Series Ma 530 Itroductio to Power Series Please ote that there is material o power series at Visual Calculus. Some of this material was used as part of the presetatio of the topics that follow. What is a Power

More information

Introduction There are two really interesting things to do in statistics.

Introduction There are two really interesting things to do in statistics. ECON 497 Lecture Notes E Page 1 of 1 Metropolita State Uiversity ECON 497: Research ad Forecastig Lecture Notes E: Samplig Distributios Itroductio There are two really iterestig thigs to do i statistics.

More information

Massachusetts Institute of Technology

Massachusetts Institute of Technology 6.0/6.3: Probabilistic Systems Aalysis (Fall 00) Problem Set 8: Solutios. (a) We cosider a Markov chai with states 0,,, 3,, 5, where state i idicates that there are i shoes available at the frot door i

More information

Lecture 12: November 13, 2018

Lecture 12: November 13, 2018 Mathematical Toolkit Autum 2018 Lecturer: Madhur Tulsiai Lecture 12: November 13, 2018 1 Radomized polyomial idetity testig We will use our kowledge of coditioal probability to prove the followig lemma,

More information

Expectation and Variance of a random variable

Expectation and Variance of a random variable Chapter 11 Expectatio ad Variace of a radom variable The aim of this lecture is to defie ad itroduce mathematical Expectatio ad variace of a fuctio of discrete & cotiuous radom variables ad the distributio

More information

Kinetics of Complex Reactions

Kinetics of Complex Reactions Kietics of Complex Reactios by Flick Colema Departmet of Chemistry Wellesley College Wellesley MA 28 wcolema@wellesley.edu Copyright Flick Colema 996. All rights reserved. You are welcome to use this documet

More information

Design and Analysis of Algorithms

Design and Analysis of Algorithms Desig ad Aalysis of Algorithms Probabilistic aalysis ad Radomized algorithms Referece: CLRS Chapter 5 Topics: Hirig problem Idicatio radom variables Radomized algorithms Huo Hogwei 1 The hirig problem

More information

Vector Quantization: a Limiting Case of EM

Vector Quantization: a Limiting Case of EM . Itroductio & defiitios Assume that you are give a data set X = { x j }, j { 2,,, }, of d -dimesioal vectors. The vector quatizatio (VQ) problem requires that we fid a set of prototype vectors Z = { z

More information

Confidence Intervals for the Population Proportion p

Confidence Intervals for the Population Proportion p Cofidece Itervals for the Populatio Proportio p The cocept of cofidece itervals for the populatio proportio p is the same as the oe for, the samplig distributio of the mea, x. The structure is idetical:

More information

Lecture 10: Universal coding and prediction

Lecture 10: Universal coding and prediction 0-704: Iformatio Processig ad Learig Sprig 0 Lecture 0: Uiversal codig ad predictio Lecturer: Aarti Sigh Scribes: Georg M. Goerg Disclaimer: These otes have ot bee subjected to the usual scrutiy reserved

More information

5. Likelihood Ratio Tests

5. Likelihood Ratio Tests 1 of 5 7/29/2009 3:16 PM Virtual Laboratories > 9. Hy pothesis Testig > 1 2 3 4 5 6 7 5. Likelihood Ratio Tests Prelimiaries As usual, our startig poit is a radom experimet with a uderlyig sample space,

More information

Chapter 6 Infinite Series

Chapter 6 Infinite Series Chapter 6 Ifiite Series I the previous chapter we cosidered itegrals which were improper i the sese that the iterval of itegratio was ubouded. I this chapter we are goig to discuss a topic which is somewhat

More information

Square-Congruence Modulo n

Square-Congruence Modulo n Square-Cogruece Modulo Abstract This paper is a ivestigatio of a equivalece relatio o the itegers that was itroduced as a exercise i our Discrete Math class. Part I - Itro Defiitio Two itegers are Square-Cogruet

More information

Output Analysis and Run-Length Control

Output Analysis and Run-Length Control IEOR E4703: Mote Carlo Simulatio Columbia Uiversity c 2017 by Marti Haugh Output Aalysis ad Ru-Legth Cotrol I these otes we describe how the Cetral Limit Theorem ca be used to costruct approximate (1 α%

More information

MS&E 321 Spring Stochastic Systems June 1, 2013 Prof. Peter W. Glynn Page 1 of 5

MS&E 321 Spring Stochastic Systems June 1, 2013 Prof. Peter W. Glynn Page 1 of 5 M&E 321 prig 12-13 tochastic ystems Jue 1, 2013 Prof. Peter W. Gly Page 1 of 5 ectio 6: Harris Recurrece Cotets 6.1 Harris Recurret Markov Chais............................. 1 6.2 tochastic Lyapuov Fuctios..............................

More information

Lecture 18: Sampling distributions

Lecture 18: Sampling distributions Lecture 18: Samplig distributios I may applicatios, the populatio is oe or several ormal distributios (or approximately). We ow study properties of some importat statistics based o a radom sample from

More information

Recursive Algorithms. Recurrences. Recursive Algorithms Analysis

Recursive Algorithms. Recurrences. Recursive Algorithms Analysis Recursive Algorithms Recurreces Computer Sciece & Egieerig 35: Discrete Mathematics Christopher M Bourke cbourke@cseuledu A recursive algorithm is oe i which objects are defied i terms of other objects

More information

Lecture 9: Expanders Part 2, Extractors

Lecture 9: Expanders Part 2, Extractors Lecture 9: Expaders Part, Extractors Topics i Complexity Theory ad Pseudoradomess Sprig 013 Rutgers Uiversity Swastik Kopparty Scribes: Jaso Perry, Joh Kim I this lecture, we will discuss further the pseudoradomess

More information

Variance of Discrete Random Variables Class 5, Jeremy Orloff and Jonathan Bloom

Variance of Discrete Random Variables Class 5, Jeremy Orloff and Jonathan Bloom Variace of Discrete Radom Variables Class 5, 18.05 Jeremy Orloff ad Joatha Bloom 1 Learig Goals 1. Be able to compute the variace ad stadard deviatio of a radom variable.. Uderstad that stadard deviatio

More information

Statistics 511 Additional Materials

Statistics 511 Additional Materials Cofidece Itervals o mu Statistics 511 Additioal Materials This topic officially moves us from probability to statistics. We begi to discuss makig ifereces about the populatio. Oe way to differetiate probability

More information

Lecture 7: Density Estimation: k-nearest Neighbor and Basis Approach

Lecture 7: Density Estimation: k-nearest Neighbor and Basis Approach STAT 425: Itroductio to Noparametric Statistics Witer 28 Lecture 7: Desity Estimatio: k-nearest Neighbor ad Basis Approach Istructor: Ye-Chi Che Referece: Sectio 8.4 of All of Noparametric Statistics.

More information

MA131 - Analysis 1. Workbook 10 Series IV

MA131 - Analysis 1. Workbook 10 Series IV MA131 - Aalysis 1 Workbook 10 Series IV Autum 2004 Cotets 4.19 Rearragemets of Series...................... 1 4.19 Rearragemets of Series If you take ay fiite set of umbers ad rearrage their order, their

More information

Product measures, Tonelli s and Fubini s theorems For use in MAT3400/4400, autumn 2014 Nadia S. Larsen. Version of 13 October 2014.

Product measures, Tonelli s and Fubini s theorems For use in MAT3400/4400, autumn 2014 Nadia S. Larsen. Version of 13 October 2014. Product measures, Toelli s ad Fubii s theorems For use i MAT3400/4400, autum 2014 Nadia S. Larse Versio of 13 October 2014. 1. Costructio of the product measure The purpose of these otes is to preset the

More information

1 Approximating Integrals using Taylor Polynomials

1 Approximating Integrals using Taylor Polynomials Seughee Ye Ma 8: Week 7 Nov Week 7 Summary This week, we will lear how we ca approximate itegrals usig Taylor series ad umerical methods. Topics Page Approximatig Itegrals usig Taylor Polyomials. Defiitios................................................

More information

Discrete Mathematics for CS Spring 2005 Clancy/Wagner Notes 21. Some Important Distributions

Discrete Mathematics for CS Spring 2005 Clancy/Wagner Notes 21. Some Important Distributions CS 70 Discrete Mathematics for CS Sprig 2005 Clacy/Wager Notes 21 Some Importat Distributios Questio: A biased coi with Heads probability p is tossed repeatedly util the first Head appears. What is the

More information

EECS564 Estimation, Filtering, and Detection Hwk 2 Solns. Winter p θ (z) = (2θz + 1 θ), 0 z 1

EECS564 Estimation, Filtering, and Detection Hwk 2 Solns. Winter p θ (z) = (2θz + 1 θ), 0 z 1 EECS564 Estimatio, Filterig, ad Detectio Hwk 2 Sols. Witer 25 4. Let Z be a sigle observatio havig desity fuctio where. p (z) = (2z + ), z (a) Assumig that is a oradom parameter, fid ad plot the maximum

More information

ECE 901 Lecture 14: Maximum Likelihood Estimation and Complexity Regularization

ECE 901 Lecture 14: Maximum Likelihood Estimation and Complexity Regularization ECE 90 Lecture 4: Maximum Likelihood Estimatio ad Complexity Regularizatio R Nowak 5/7/009 Review : Maximum Likelihood Estimatio We have iid observatios draw from a ukow distributio Y i iid p θ, i,, where

More information

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 19

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 19 CS 70 Discrete Mathematics ad Probability Theory Sprig 2016 Rao ad Walrad Note 19 Some Importat Distributios Recall our basic probabilistic experimet of tossig a biased coi times. This is a very simple

More information

Lecture 2: Uncomputability and the Haling Problem

Lecture 2: Uncomputability and the Haling Problem CSE 200 Computability ad Complexity Wedesday, April 3, 2013 Lecture 2: Ucomputability ad the Halig Problem Istructor: Professor Shachar Lovett Scribe: Dogcai She 1 The Uiversal Turig Machie I the last

More information

THE ASYMPTOTIC COMPLEXITY OF MATRIX REDUCTION OVER FINITE FIELDS

THE ASYMPTOTIC COMPLEXITY OF MATRIX REDUCTION OVER FINITE FIELDS THE ASYMPTOTIC COMPLEXITY OF MATRIX REDUCTION OVER FINITE FIELDS DEMETRES CHRISTOFIDES Abstract. Cosider a ivertible matrix over some field. The Gauss-Jorda elimiatio reduces this matrix to the idetity

More information

Regression with quadratic loss

Regression with quadratic loss Regressio with quadratic loss Maxim Ragisky October 13, 2015 Regressio with quadratic loss is aother basic problem studied i statistical learig theory. We have a radom couple Z = X,Y, where, as before,

More information

Lecture 11: Pseudorandom functions

Lecture 11: Pseudorandom functions COM S 6830 Cryptography Oct 1, 2009 Istructor: Rafael Pass 1 Recap Lecture 11: Pseudoradom fuctios Scribe: Stefao Ermo Defiitio 1 (Ge, Ec, Dec) is a sigle message secure ecryptio scheme if for all uppt

More information

Lecture 4 The Simple Random Walk

Lecture 4 The Simple Random Walk Lecture 4: The Simple Radom Walk 1 of 9 Course: M36K Itro to Stochastic Processes Term: Fall 014 Istructor: Gorda Zitkovic Lecture 4 The Simple Radom Walk We have defied ad costructed a radom walk {X }

More information

Chapter 4. Fourier Series

Chapter 4. Fourier Series Chapter 4. Fourier Series At this poit we are ready to ow cosider the caoical equatios. Cosider, for eample the heat equatio u t = u, < (4.) subject to u(, ) = si, u(, t) = u(, t) =. (4.) Here,

More information

2 Banach spaces and Hilbert spaces

2 Banach spaces and Hilbert spaces 2 Baach spaces ad Hilbert spaces Tryig to do aalysis i the ratioal umbers is difficult for example cosider the set {x Q : x 2 2}. This set is o-empty ad bouded above but does ot have a least upper boud

More information

Resampling Methods. X (1/2), i.e., Pr (X i m) = 1/2. We order the data: X (1) X (2) X (n). Define the sample median: ( n.

Resampling Methods. X (1/2), i.e., Pr (X i m) = 1/2. We order the data: X (1) X (2) X (n). Define the sample median: ( n. Jauary 1, 2019 Resamplig Methods Motivatio We have so may estimators with the property θ θ d N 0, σ 2 We ca also write θ a N θ, σ 2 /, where a meas approximately distributed as Oce we have a cosistet estimator

More information

Economics Spring 2015

Economics Spring 2015 1 Ecoomics 400 -- Sprig 015 /17/015 pp. 30-38; Ch. 7.1.4-7. New Stata Assigmet ad ew MyStatlab assigmet, both due Feb 4th Midterm Exam Thursday Feb 6th, Chapters 1-7 of Groeber text ad all relevat lectures

More information

(b) What is the probability that a particle reaches the upper boundary n before the lower boundary m?

(b) What is the probability that a particle reaches the upper boundary n before the lower boundary m? MATH 529 The Boudary Problem The drukard s walk (or boudary problem) is oe of the most famous problems i the theory of radom walks. Oe versio of the problem is described as follows: Suppose a particle

More information