Polarimetry. Dave McConnell, CASS Radio Astronomy School, Narrabri 30 September kpc. 8.5 GHz B-vectors Perley & Carilli (1996)

Size: px
Start display at page:

Download "Polarimetry. Dave McConnell, CASS Radio Astronomy School, Narrabri 30 September kpc. 8.5 GHz B-vectors Perley & Carilli (1996)"

Transcription

1 8.5 GHz B-vectors Perley & Carilli (1996) 10 kpc Polarimetry Dave McConnell, CASS Radio Astronomy School, Narrabri 30 September

2 Electro-magnetic waves are polarized E H S = c/4π (E H) S E/M waves have direction, amplitude, frequency and polarization Poynting vector S = c/4π (E H) 2

3 Outline of lecture Polarization - what is it? How is it described Origins of polarized light How is it important to astrophysics How is it measured 3

4 Polarized waves: linear 4

5 Polarized waves: linear 4

6 ... at any angle ψ ψ 5

7 or Circular - LCP, RCP Right 6

8 or Circular - LCP, RCP Right 6

9 or Circular - LCP, RCP Right 6

10 or Circular - LCP, RCP Left Right 6

11 IEEE Standard 211, 1969 IAU resolution,

12 Linear as sum of circulars 8

13 Linear as sum of circulars 8

14 Other combinations The sum of two circular waves of unequal amplitude will have elliptical polarization. The sum of two orthogonal linears with phase difference 0 < δ < π/2 will also have elliptical polarization. 9

15 Polarization ellipse y Ex tan α = Ey / Ex η ξ tan 2ψ = tan 2α cos δ χ α ψ Ey x sin 2 χ = sin 2α sin δ ψ is the position angle χ is the ellipticity 10

16 Stokes description Defined by George Stokes in 1852 Adopted for astronomy by Chandrasehkar (1949) in the solution of radiative transfer problems. 11

17 Stokes parameters For monochromatic waves I : total intensity Q : linear U : linear V : circular I2 = Q 2 + U 2 + V 2 12

18 Stokes parameters For monochromatic waves I : total intensity Q : linear U : linear V : circular I2 = Q 2 + U 2 + V 2 12

19 Linear: Q and U > 0 > 0 < 0 < 0 Q (U = 0) U (Q = 0) 13

20 Linear: Q and U Q > 0 U > 0 U < 0 Q < 0 Q < 0 Q > 0 U < 0 U > 0 Q < 0 U > 0 14

21 The Poincaré sphere 15

22 The Poincaré sphere 15

23 Partial polarization Two monochromatic signals summed: different frequencies different polarization ellipses 16

24 Partial polarization Two monochromatic signals summed: different frequencies different polarization ellipses 16

25 Pancharatnam s extension V S -U Q -Q U Radius represents I S = (Q,U,V) S I Unpolarized radiation (I - S) at centre. -V 17

26 Stokes parameters For finite bandwidth radiation I : total intensity Q : linear U : linear V : circular I 2 Q 2 + U 2 + V 2 18

27 Polarized light 19

28 Polarized light Loss of symmetry 19

29 Polarized light Loss of symmetry Polarized radiation 19

30 Polarized light Loss of symmetry Polarized radiation Polarization-dependent propagation reflection scattering birefringence 19

31 Scattering Light from the day time sky is sun light Rayleigh scattered by molecules in the atmosphere. Sky light is polarized, maximally at 90 degrees to the sun. The CMB is expected to be partially polarized because of Thompson scattering 20

32 Birefringence Birefringence occurs when light passes through anisotropic material whose refractive index differs for the two polarization modes. Linear modes birefringent Circular modes birefringent 21

33 Zeeman 22

34 Synchrotron - + a 23

35 Synchrotron - + a - a 23

36 Synchrotron - + a - + B a 23

37 Faraday rotation 24

38 Faraday rotation Magnetised plasmas are birefringent: the two circular modes have refractive index dependent on the parallel component of the magnetic field, the electron density, and the wave frequency. The relative phase of the two modes changes along the propagation path, and so does the position angle ψ of the resultant linearly polarized radiation. ψ = RM λ 2 24

39 Faraday rotation Magnetised plasmas are birefringent: the two circular modes have refractive index dependent on the parallel component of the magnetic field, the electron density, and the wave frequency. The relative phase of the two modes changes along the propagation path, and so does the position angle ψ of the resultant linearly polarized radiation. ψ = RM λ 2 24

40 How is it measured? 25

41 How is it measured? Measures Ey Measures Ex 25

42 How is it measured? Measures Ey Measures Ex 25

43 How is it measured? Measures Ey Measures Ex 25

44 Imaging I, Q, U and V are equivalent for aperture synthesis imaging, but for the possibility (certainty) of negative Q, U, V. We can define and measure visibilities for each of the Stokes quantities: for antennas p and q : E x2 E xp E xq, E x E y E xp E yq, etc 26

45 Mars at 22GHz credit: Myers/Perley, NRAO 27

46 Mars at 22GHz Q U credit: Myers/Perley, NRAO 27

47 Why is it so difficult? Depolarization leads to weak signals Conceptual difficulties - it is complicated Instrumental effects can be significant and difficult to separate from the signal 28

48 Instrumental imperfections Leakage - a little E x detected in y-feed,... phase errors (in general, complex gain variations) polarization response varies within the beam 29

49 Jones calculus v x v y Rec 30

50 Jones calculus v x v y Rec 30

51 Mueller calculus Measured visibilities Correlate Rec Rec = 4 x 4 matrix 31

52 References Radhakrishnan. Polarisation. URSI proceedings (1990) pp. 34 Hamaker et al. Understanding radio polarimetry. I. Mathematical foundations. Astronomy and Astrophysics Supplement (1996) vol. 117 pp. 137 Sault et al. Understanding radio polarimetry. II. Instrumental calibration of an interferometer array. Astronomy and Astrophysics Supplement (1996) vol. 117 pp. 149 Hamaker et al. Understanding radio polarimetry. III. Interpreting the IAU/ IEEE definitions of the Stokes parameters. Astronomy and Astrophysics Supplement (1996) vol. 117 pp. 161 Heiles et al. Mueller Matrix Parameters for Radio Telescopes and Their Observational Determination. The Publications of the Astronomical Society of the Pacific (2001) vol. 113 pp Born and Wolf: Principle of Optics, Chapters 1 and 10 Presentations from previous Synthesis Schools (Ohja, 2003; Perley

53 Polarisation a tutorial by V. Radhakrishnan 33

Polarization in Interferometry. Ramprasad Rao (ASIAA)

Polarization in Interferometry. Ramprasad Rao (ASIAA) Polarization in Interferometry Ramprasad Rao (ASIAA) W M A Q We Must Ask Questions Outline Polarization in Astronomical Sources Polarization Physics & Mathematics Antenna Response Interferometer Response

More information

Polarization in Interferometry

Polarization in Interferometry Polarization in Interferometry Rick Perley (NRAO-Socorro) Fourth INPE Advanced Course on Astrophysics: Radio Astronomy in the 21 st Century My Apologies, Up Front This lecture contains some difficult material.

More information

Description. Polarization can be described several other ways

Description. Polarization can be described several other ways Polarization If there are magnetic fields ( Synchrotron, Cyclotron...) involved we can get a preferred direction of radiation - polarization We normally use Stokes parameters to show thes (I,Q,U,V) -total

More information

Brewster Angle and Total Internal Reflection

Brewster Angle and Total Internal Reflection Lecture 4: Polarization Outline 1 Polarized Light in the Universe 2 Brewster Angle and Total Internal Reflection 3 Descriptions of Polarized Light 4 Polarizers 5 Retarders Christoph U. Keller, Utrecht

More information

Brewster Angle and Total Internal Reflection

Brewster Angle and Total Internal Reflection Lecture 5: Polarization Outline 1 Polarized Light in the Universe 2 Brewster Angle and Total Internal Reflection 3 Descriptions of Polarized Light 4 Polarizers 5 Retarders Christoph U. Keller, Leiden University,

More information

Typical anisotropies introduced by geometry (not everything is spherically symmetric) temperature gradients magnetic fields electrical fields

Typical anisotropies introduced by geometry (not everything is spherically symmetric) temperature gradients magnetic fields electrical fields Lecture 6: Polarimetry 1 Outline 1 Polarized Light in the Universe 2 Fundamentals of Polarized Light 3 Descriptions of Polarized Light Polarized Light in the Universe Polarization indicates anisotropy

More information

Lecture 5: Polarization. Polarized Light in the Universe. Descriptions of Polarized Light. Polarizers. Retarders. Outline

Lecture 5: Polarization. Polarized Light in the Universe. Descriptions of Polarized Light. Polarizers. Retarders. Outline Lecture 5: Polarization Outline 1 Polarized Light in the Universe 2 Descriptions of Polarized Light 3 Polarizers 4 Retarders Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016,

More information

3.4 Elliptical Parameters of the Polarization Ellipse References

3.4 Elliptical Parameters of the Polarization Ellipse References Contents Preface to the Second Edition Preface to the First Edition A Historical Note Edward Collett iii v xiii PART 1: THE CLASSICAL OPTICAL FIELD Chapter 1 Chapter 2 Chapter 3 Chapter 4 Introduction

More information

Polarized Light. Second Edition, Revised and Expanded. Dennis Goldstein Air Force Research Laboratory Eglin Air Force Base, Florida, U.S.A.

Polarized Light. Second Edition, Revised and Expanded. Dennis Goldstein Air Force Research Laboratory Eglin Air Force Base, Florida, U.S.A. Polarized Light Second Edition, Revised and Expanded Dennis Goldstein Air Force Research Laboratory Eglin Air Force Base, Florida, U.S.A. ш DEK KER MARCEL DEKKER, INC. NEW YORK BASEL Contents Preface to

More information

Lecture 8: Polarimetry 2. Polarizers and Retarders. Polarimeters. Scattering Polarization. Zeeman Effect. Outline

Lecture 8: Polarimetry 2. Polarizers and Retarders. Polarimeters. Scattering Polarization. Zeeman Effect. Outline Lecture 8: Polarimetry 2 Outline 1 Polarizers and Retarders 2 Polarimeters 3 Scattering Polarization 4 Zeeman Effect Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Observational Astrophysics

More information

PMARIZED LI6HT FUNDAMENTALS AND APPLICATIONS EBWABD COLLETT. Measurement Concepts, Inc. Colts Neck, New Jersey

PMARIZED LI6HT FUNDAMENTALS AND APPLICATIONS EBWABD COLLETT. Measurement Concepts, Inc. Colts Neck, New Jersey PMARIZED LI6HT FUNDAMENTALS AND APPLICATIONS EBWABD COLLETT Measurement Concepts, Inc. Colts Neck, New Jersey Marcel Dekker, Inc. New York Basel Hong Kong About the Series Preface A Historical Note iii

More information

Polarimetry in the E-ELT era. Polarized Light in the Universe. Descriptions of Polarized Light. Polarizers. Retarders. Fundamentals of Polarized Light

Polarimetry in the E-ELT era. Polarized Light in the Universe. Descriptions of Polarized Light. Polarizers. Retarders. Fundamentals of Polarized Light Polarimetry in the E-ELT era Fundamentals of Polarized Light 1 Polarized Light in the Universe 2 Descriptions of Polarized Light 3 Polarizers 4 Retarders Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl

More information

P lar metry. Roopesh Ojha. Synthesis Imaging School Narrabri. May 14th, 2003

P lar metry. Roopesh Ojha. Synthesis Imaging School Narrabri. May 14th, 2003 P lar metry Roopesh Ojha Synthesis Imaging School Narrabri May 14th, 2003 Overview What is Polarisation? Milestones of polarimetry How is it described? How is it measured? What is its role in Astronomy

More information

An Introduction to Radio Astronomy

An Introduction to Radio Astronomy An Introduction to Radio Astronomy Bernard F. Burke Massachusetts Institute of Technology and Francis Graham-Smith Jodrell Bank, University of Manchester CAMBRIDGE UNIVERSITY PRESS Contents Preface Acknowledgements

More information

Lecture 4: Polarimetry 2. Polarizers and Retarders. Polarimeters. Scattering Polarization. Zeeman Effect. Outline

Lecture 4: Polarimetry 2. Polarizers and Retarders. Polarimeters. Scattering Polarization. Zeeman Effect. Outline Lecture 4: Polarimetry 2 Outline 1 Polarizers and Retarders 2 Polarimeters 3 Scattering Polarization 4 Zeeman Effect Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Observational Astrophysics

More information

Polarimetry with Phased-Array Feeds

Polarimetry with Phased-Array Feeds Polarimetry with Phased-Array Feeds Bruce Veidt Dominion Radio Astrophysical Observatory Herzberg Institute of Astrophysics National Research Council of Canada Penticton, British Columbia, Canada Provo,

More information

Lecture 11: Polarized Light. Fundamentals of Polarized Light. Descriptions of Polarized Light. Scattering Polarization. Zeeman Effect.

Lecture 11: Polarized Light. Fundamentals of Polarized Light. Descriptions of Polarized Light. Scattering Polarization. Zeeman Effect. Lecture 11: Polarized Light Outline 1 Fundamentals of Polarized Light 2 Descriptions of Polarized Light 3 Scattering Polarization 4 Zeeman Effect 5 Hanle Effect Fundamentals of Polarized Light Electromagnetic

More information

Chapter 4: Polarization of light

Chapter 4: Polarization of light Chapter 4: Polarization of light 1 Preliminaries and definitions B E Plane-wave approximation: E(r,t) ) and B(r,t) are uniform in the plane ^ k We will say that light polarization vector is along E(r,t)

More information

An Introduction to Radio Astronomy

An Introduction to Radio Astronomy An Introduction to Radio Astronomy Second edition Bernard F. Burke and Francis Graham-Smith CAMBRIDGE UNIVERSITY PRESS Contents Preface to the second edition page x 1 Introduction 1 1.1 The role of radio

More information

Polarized and unpolarised transverse waves, with applications to optical systems

Polarized and unpolarised transverse waves, with applications to optical systems 2/16/17 Electromagnetic Processes In Dispersive Media, Lecture 6 1 Polarized and unpolarised transverse waves, with applications to optical systems T. Johnson 2/16/17 Electromagnetic Processes In Dispersive

More information

P457: Wave Polarisation and Stokes Parameters

P457: Wave Polarisation and Stokes Parameters P457: Wave Polarisation and Stokes Parameters 1 Wave Polarisation Electromagnetic waves are transverse, meaning that their oscillations are perpendicular to their direction of propagation. If the wave

More information

Understanding radio polarimetry. III. Interpreting the IAU/IEEE definitions of the Stokes parameters

Understanding radio polarimetry. III. Interpreting the IAU/IEEE definitions of the Stokes parameters ASTRONOMY & ASTROPHYSICS MAY II 1996, PAGE 161 SUPPLEMENT SERIES Astron. Astrophys. Suppl. Ser. 117, 161-165 (1996) Understanding radio polarimetry. III. Interpreting the IAU/IEEE definitions of the Stokes

More information

Optics and Optical Design. Chapter 6: Polarization Optics. Lectures 11-13

Optics and Optical Design. Chapter 6: Polarization Optics. Lectures 11-13 Optics and Optical Design Chapter 6: Polarization Optics Lectures 11-13 Cord Arnold / Anne L Huillier Polarization of Light Arbitrary wave vs. paraxial wave One component in x-direction y x z Components

More information

Polarization. Polarization. Physics Waves & Oscillations 4/3/2016. Spring 2016 Semester Matthew Jones. Two problems to be considered today:

Polarization. Polarization. Physics Waves & Oscillations 4/3/2016. Spring 2016 Semester Matthew Jones. Two problems to be considered today: 4/3/26 Physics 422 Waves & Oscillations Lecture 34 Polarization of Light Spring 26 Semester Matthew Jones Polarization (,)= cos (,)= cos + Unpolarizedlight: Random,, Linear polarization: =,± Circular polarization:

More information

Radiative Processes in Astrophysics. Radio Polarization

Radiative Processes in Astrophysics. Radio Polarization Radiative Processes in Astrophysics. Radio Polarization Cormac Reynolds May 24, 2010 Radio Polarization Topics Description of the polarized state Stokes parameters. (TMS 4.8) Why are radio sources polarized?

More information

Lecture 6: Polarimetry 2. Polarizers and Retarders. Polarimeters. Scattering Polarization. Zeeman Effect. Hanle Effect. Outline

Lecture 6: Polarimetry 2. Polarizers and Retarders. Polarimeters. Scattering Polarization. Zeeman Effect. Hanle Effect. Outline Lecture 6: Polarimetry 2 Outline 1 Polarizers and Retarders 2 Polarimeters 3 Scattering Polarization 4 Zeeman Effect 5 Hanle Effect Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Solar Physics,

More information

Deconvolving Primary Beam Patterns from SKA Images

Deconvolving Primary Beam Patterns from SKA Images SKA memo 103, 14 aug 2008 Deconvolving Primary Beam Patterns from SKA Images Melvyn Wright & Stuartt Corder University of California, Berkeley, & Caltech, Pasadena, CA. ABSTRACT In this memo we present

More information

Interferometry of Solar System Objects

Interferometry of Solar System Objects Interferometry of Solar System Objects Bryan Butler National Radio Astronomy Observatory Atacama Large Millimeter/submillimeter Array Expanded Very Large Array Robert C. Byrd Green Bank Telescope Very

More information

EVLA Memo 177 Polarimetric calibration and dynamic range issues

EVLA Memo 177 Polarimetric calibration and dynamic range issues EVLA Memo 177 Polarimetric calibration and dynamic range issues R.J. Sault, Rick Perley April 3, 2014 Introduction This memo considers some dynamic range issues resulting from limitations in the polarimetric

More information

Chapter 1 - The Nature of Light

Chapter 1 - The Nature of Light David J. Starling Penn State Hazleton PHYS 214 Electromagnetic radiation comes in many forms, differing only in wavelength, frequency or energy. Electromagnetic radiation comes in many forms, differing

More information

Chap. 2. Polarization of Optical Waves

Chap. 2. Polarization of Optical Waves Chap. 2. Polarization of Optical Waves 2.1 Polarization States - Direction of the Electric Field Vector : r E = E xˆ + E yˆ E x x y ( ω t kz + ϕ ), E = E ( ωt kz + ϕ ) = E cos 0 x cos x y 0 y - Role :

More information

Optics and Optical Design. Chapter 6: Polarization Optics. Lectures 11 13

Optics and Optical Design. Chapter 6: Polarization Optics. Lectures 11 13 Optics and Optical Design Chapter 6: Polarization Optics Lectures 11 13 Cord Arnold / Anne L Huillier Polarization of Light Arbitrary wave vs. paraxial wave One component in x direction y x z Components

More information

Polarimetry Techniques. K. Sankarasubramanian ISRO Satellite Centre Bangalore India

Polarimetry Techniques. K. Sankarasubramanian ISRO Satellite Centre Bangalore India Polarimetry Techniques K. Sankarasubramanian ISRO Satellite Centre Bangalore sankark@isac.gov.in Outline Introduction Why Polarimetry? Requirements Polarization Basics Stokes Parameters & Mueller Matrices

More information

Introduction to Polarization

Introduction to Polarization Phone: Ext 659, E-mail: hcchui@mail.ncku.edu.tw Fall/007 Introduction to Polarization Text Book: A Yariv and P Yeh, Photonics, Oxford (007) 1.6 Polarization States and Representations (Stokes Parameters

More information

Lecture 13 Interstellar Magnetic Fields

Lecture 13 Interstellar Magnetic Fields Lecture 13 Interstellar Magnetic Fields 1. Introduction. Synchrotron radiation 3. Faraday rotation 4. Zeeman effect 5. Polarization of starlight 6. Summary of results References Zweibel & Heiles, Nature

More information

Solar System Objects. Bryan Butler National Radio Astronomy Observatory

Solar System Objects. Bryan Butler National Radio Astronomy Observatory Solar System Objects Bryan Butler National Radio Astronomy Observatory Atacama Large Millimeter/submillimeter Array Expanded Very Large Array Robert C. Byrd Green Bank Telescope Very Long Baseline Array

More information

Some emission processes are intrinsically polarised e.g. synchrotron radiation.

Some emission processes are intrinsically polarised e.g. synchrotron radiation. Polarisation Some emission processes are intrinsically polarised e.g. synchrotron radiation. B e linearly polarised emission circularly polarised emission Scattering processes can either increase or decrease

More information

17. Jones Matrices & Mueller Matrices

17. Jones Matrices & Mueller Matrices 7. Jones Matrices & Mueller Matrices Jones Matrices Rotation of coordinates - the rotation matrix Stokes Parameters and unpolarized light Mueller Matrices R. Clark Jones (96-24) Sir George G. Stokes (89-93)

More information

Chap. 4. Electromagnetic Propagation in Anisotropic Media

Chap. 4. Electromagnetic Propagation in Anisotropic Media Chap. 4. Electromagnetic Propagation in Anisotropic Media - Optical properties depend on the direction of propagation and the polarization of the light. - Crystals such as calcite, quartz, KDP, and liquid

More information

Jones calculus for optical system

Jones calculus for optical system 2/14/17 Electromagnetic Processes In Dispersive Media, Lecture 6 1 Jones calculus for optical system T. Johnson Key concepts in the course so far What is meant by an electro-magnetic response? What characterises

More information

ASKAP. and phased array feeds in astronomy. David McConnell CASS: ASKAP Commissioning and Early Science 16 November 2017

ASKAP. and phased array feeds in astronomy. David McConnell CASS: ASKAP Commissioning and Early Science 16 November 2017 ASKAP and phased array feeds in astronomy David McConnell CASS: ASKAP Commissioning and Early Science 16 November 2017 Image credit: Alex Cherney / terrastro.com 1 Credits ASKAP Commissioning & Early Science

More information

Temperature Scales and Telescope Efficiencies

Temperature Scales and Telescope Efficiencies Temperature Scales and Telescope Efficiencies Jeff Mangum (NRAO) April 11, 2006 Contents 1 Introduction 1 2 Definitions 1 2.1 General Terms.................................. 2 2.2 Efficiencies....................................

More information

POLARIZATION AND POLARIMETRY: A REVIEW

POLARIZATION AND POLARIMETRY: A REVIEW Journal of The Korean Astronomical Society http://dx.doi.org/10.5303/jkas.2014.47.1.15 47: 15 39, 2014 February ISSN:1225-4614 c 2014 The Korean Astronomical Society. All Rights Reserved. http://jkas.kas.org

More information

Chapter 9 - Polarization

Chapter 9 - Polarization Chapter 9 - Polarization Gabriel Popescu University of Illinois at Urbana Champaign Beckman Institute Quantitative Light Imaging Laboratory http://light.ece.uiuc.edu Principles of Optical Imaging Electrical

More information

Swinburne Research Bank

Swinburne Research Bank Swinburne Research Bank http://researchbank.swinburne.edu.au van Straten, W., Manchester, R. N.., & Johnston, S. 2010. PSRCHIVE and PSRFITS: definition of the Stokes parameters and instrumental basis conventions.

More information

UE SPM-PHY-S Polarization Optics

UE SPM-PHY-S Polarization Optics UE SPM-PHY-S07-101 Polarization Optics N. Fressengeas Laboratoire Matériaux Optiques, Photonique et Systèmes Unité de Recherche commune à l Université Paul Verlaine Metz et à Supélec Document à télécharger

More information

PRINCIPLES OF PHYSICAL OPTICS

PRINCIPLES OF PHYSICAL OPTICS PRINCIPLES OF PHYSICAL OPTICS C. A. Bennett University of North Carolina At Asheville WILEY- INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION CONTENTS Preface 1 The Physics of Waves 1 1.1 Introduction

More information

Lecture 4: Anisotropic Media. Dichroism. Optical Activity. Faraday Effect in Transparent Media. Stress Birefringence. Form Birefringence

Lecture 4: Anisotropic Media. Dichroism. Optical Activity. Faraday Effect in Transparent Media. Stress Birefringence. Form Birefringence Lecture 4: Anisotropic Media Outline Dichroism Optical Activity 3 Faraday Effect in Transparent Media 4 Stress Birefringence 5 Form Birefringence 6 Electro-Optics Dichroism some materials exhibit different

More information

43 and 86 GHz VLBI Polarimetry of 3C Adrienne Hunacek, MIT Mentor Jody Attridge MIT Haystack Observatory August 12 th, 2004

43 and 86 GHz VLBI Polarimetry of 3C Adrienne Hunacek, MIT Mentor Jody Attridge MIT Haystack Observatory August 12 th, 2004 43 and 86 GHz VLBI Polarimetry of 3C454.3 Adrienne Hunacek, MIT Mentor Jody Attridge MIT Haystack Observatory August 12 th, 2004 Introduction Quasars subclass subclass of Active Galactic Nuclei (AGN) Extremely

More information

linear polarization: the electric field is oriented in a single direction circular polarization: the electric field vector rotates

linear polarization: the electric field is oriented in a single direction circular polarization: the electric field vector rotates Chapter 8 Polarimetry 8.1 Description of polarized radiation The polarization of electromagnetic radiation is described by the orientation of the wave s electric field vector. There are two different cases

More information

ANTENNA AND WAVE PROPAGATION

ANTENNA AND WAVE PROPAGATION ANTENNA AND WAVE PROPAGATION Electromagnetic Waves and Their Propagation Through the Atmosphere ELECTRIC FIELD An Electric field exists in the presence of a charged body ELECTRIC FIELD INTENSITY (E) A

More information

Lecture 9: Indirect Imaging 2. Two-Element Interferometer. Van Cittert-Zernike Theorem. Aperture Synthesis Imaging. Outline

Lecture 9: Indirect Imaging 2. Two-Element Interferometer. Van Cittert-Zernike Theorem. Aperture Synthesis Imaging. Outline Lecture 9: Indirect Imaging 2 Outline 1 Two-Element Interferometer 2 Van Cittert-Zernike Theorem 3 Aperture Synthesis Imaging Cygnus A at 6 cm Image courtesy of NRAO/AUI Very Large Array (VLA), New Mexico,

More information

The data model. Panos Labropoulos. Kapteyn Instituut

The data model. Panos Labropoulos. Kapteyn Instituut The data model Panos Labropoulos " Challenges The actual 21-cm signal is several times weaker than the foregrounds and sits below the telescope noise Foregrounds: galactic and extragalactic (polarization?)

More information

Pseudocontinuum Polarimetry with the GBT Brian S. Mason v.1 31may07 v.2 03sep07. Abstract

Pseudocontinuum Polarimetry with the GBT Brian S. Mason v.1 31may07 v.2 03sep07. Abstract Pseudocontinuum Polarimetry with the GBT Brian S. Mason v.1 31may07 v.2 03sep07 Abstract We outline a simple method for calibrating correlation polarimetric data from the GBT spectrometer, and describe

More information

CROSSCORRELATION SPECTROPOLARIMETRY IN SINGLE-DISH RADIO ASTRONOMY

CROSSCORRELATION SPECTROPOLARIMETRY IN SINGLE-DISH RADIO ASTRONOMY CROSSCORRELATION SPECTROPOLARIMETRY IN SINGLE-DISH RADIO ASTRONOMY Carl Heiles Astronomy Department, University of California, Berkeley, CA 94720-3411; cheiles@astron.berkeley.edu ABSTRACT Modern digital

More information

Quarter wave plates and Jones calculus for optical system

Quarter wave plates and Jones calculus for optical system 2/11/16 Electromagnetic Processes In Dispersive Media, Lecture 6 1 Quarter wave plates and Jones calculus for optical system T. Johnson 2/11/16 Electromagnetic Processes In Dispersive Media, Lecture 6

More information

VLBA Imaging of the Blazar, J

VLBA Imaging of the Blazar, J VLBA Imaging of the Blazar, J08053+6144 Daniel Zirzow Jeffrey Karle Joe Craig May 11, 2009 Contents 1 Introduction 2 2 Calibration of VLBA Data 3 3 Imaging J08053+6144 at 5 GHz & 15 GHz 4 4 Model Fitting

More information

16. More About Polarization

16. More About Polarization 16. More About Polarization Polarization control Wave plates Circular polarizers Reflection & polarization Scattering & polarization Birefringent materials have more than one refractive index A special

More information

: Imaging Systems Laboratory II. Laboratory 6: The Polarization of Light April 16 & 18, 2002

: Imaging Systems Laboratory II. Laboratory 6: The Polarization of Light April 16 & 18, 2002 151-232: Imaging Systems Laboratory II Laboratory 6: The Polarization of Light April 16 & 18, 22 Abstract. In this lab, we will investigate linear and circular polarization of light. Linearly polarized

More information

arxiv: v1 [astro-ph.co] 4 Dec 2010

arxiv: v1 [astro-ph.co] 4 Dec 2010 Spectropolarimetry with the Allen Telescope Array: Faraday Rotation toward Bright Polarized Radio Galaxies arxiv:1012.0945v1 [astro-ph.co] 4 Dec 2010 C. J. Law 1, B. M. Gaensler 2, G. C. Bower 1, D. C.

More information

Chap. 5. Jones Calculus and Its Application to Birefringent Optical Systems

Chap. 5. Jones Calculus and Its Application to Birefringent Optical Systems Chap. 5. Jones Calculus and Its Application to Birefringent Optical Systems - The overall optical transmission through many optical components such as polarizers, EO modulators, filters, retardation plates.

More information

FIRST YEAR PHYSICS. Unit 4: Light II

FIRST YEAR PHYSICS. Unit 4: Light II FIRST YEAR PHYSICS Unit 4: Light II Contents PHASORS...3 RESOLUTION OF OPTICAL INSTRUMENTS...5 Rayleigh s criterion... 7 MORE ON DIFFRACTION...11 Multiple slits:... 11 Diffraction gratings... 14 X-RAY

More information

Satellite Remote Sensing SIO 135/SIO 236. Electromagnetic Radiation and Polarization

Satellite Remote Sensing SIO 135/SIO 236. Electromagnetic Radiation and Polarization Satellite Remote Sensing SIO 135/SIO 236 Electromagnetic Radiation and Polarization 1 Electromagnetic Radiation The first requirement for remote sensing is to have an energy source to illuminate the target.

More information

Multi-frequency polarimetry of a complete sample of faint PACO sources. INAF-IRA (Bologna)

Multi-frequency polarimetry of a complete sample of faint PACO sources. INAF-IRA (Bologna) Multi-frequency polarimetry of a complete sample of faint PACO sources. Vincenzo Galluzzi Marcella Massardi DiFA (University of Bologna) INAF-IRA (Bologna) INAF-IRA & Italian ARC The state-of-the-art The

More information

Polarizers and Retarders

Polarizers and Retarders Phys 531 Lecture 20 11 November 2004 Polarizers and Retarders Last time, discussed basics of polarization Linear, circular, elliptical states Describe by polarization vector ĵ Today: Describe elements

More information

Specifying Polarisation Properties For Radio Telescopes

Specifying Polarisation Properties For Radio Telescopes Specifying Polarisation Properties For Radio Telescopes Bruce Veidt NRC Herzberg Astronomy and Astrophysics, Penticton, BC, Canada PAF Workshop, Sydney, 14 16 November 2017 Outline Motivation: Polarised

More information

FUNDAMENTALS OF POLARIZED LIGHT

FUNDAMENTALS OF POLARIZED LIGHT FUNDAMENTALS OF POLARIZED LIGHT A STATISTICAL OPTICS APPROACH Christian Brosseau University of Brest, France A WILEY-INTERSCIENCE PUBLICATION JOHN WILEY & SONS, INC. New York - Chichester. Weinheim. Brisbane

More information

A New Limit on CMB Circular Polarization from SPIDER Johanna Nagy for the SPIDER collaboration arxiv: Published in ApJ

A New Limit on CMB Circular Polarization from SPIDER Johanna Nagy for the SPIDER collaboration arxiv: Published in ApJ A New Limit on CMB Circular Polarization from SPIDER Johanna Nagy for the SPIDER collaboration arxiv: 1704.00215 Published in ApJ TeVPA 2017 Stokes Parameters Plane wave traveling in the z direction Stokes

More information

Sensitivity. Bob Zavala US Naval Observatory. Outline

Sensitivity. Bob Zavala US Naval Observatory. Outline Sensitivity Bob Zavala US Naval Observatory Tenth Synthesis Imaging Summer School University of New Mexico, June 13-20, 2006 Outline 2 What is Sensitivity? Antenna Performance Measures Interferometer Sensitivity

More information

arxiv: v1 [astro-ph.im] 20 Jun 2017

arxiv: v1 [astro-ph.im] 20 Jun 2017 Draft version July 21, 2018 Typeset using L A TEX preprint style in AASTeX61 CALIBRATION ERRORS IN INTERFEROMETRIC RADIO POLARIMETRY Christopher A. Hales1, 2, arxiv:1706.06612v1 [astro-ph.im] 20 Jun 2017

More information

Optics of Liquid Crystal Displays

Optics of Liquid Crystal Displays Optics of Liquid Crystal Displays Second Edition POCHIYEH CLAIRE GU WILEY A John Wiley & Sons, Inc., Publication Contents Preface Preface to the First Edition xiii xv Chapter 1. Preliminaries 1 1.1. Basic

More information

OPTI 501, Electromagnetic Waves (3)

OPTI 501, Electromagnetic Waves (3) OPTI 501, Electromagnetic Waves (3) Vector fields, Maxwell s equations, electromagnetic field energy, wave equations, free-space solutions, box modes, Fresnel equations, scalar and vector potentials, gauge

More information

Jones vector & matrices

Jones vector & matrices Jones vector & matrices Department of Physics 1 Matrix treatment of polarization Consider a light ray with an instantaneous E-vector as shown y E k, t = xe x (k, t) + ye y k, t E y E x x E x = E 0x e i

More information

MUDRA PHYSICAL SCIENCES

MUDRA PHYSICAL SCIENCES MUDRA PHYSICAL SCIENCES VOLUME- PART B & C MODEL QUESTION BANK FOR THE TOPICS:. Electromagnetic Theory UNIT-I UNIT-II 7 4. Quantum Physics & Application UNIT-I 8 UNIT-II 97 (MCQs) Part B & C Vol- . Electromagnetic

More information

Circular polarization in comets: calibration of measurements

Circular polarization in comets: calibration of measurements Circular polarization in comets: calibration of measurements Vera Rosenbush, Nikolai Kiselev Main Astronomical Observatory of the National Academy of Sciences of Ukraine, rosevera@mao.kiev.ua Kyiv 1 Outline

More information

Radiative Transfer with Polarization

Radiative Transfer with Polarization The Radiative Transfer Equation with Polarization Han Uitenbroek National Solar Observatory/Sacramento Peak Sunspot, USA Hale COLLAGE, Boulder, Feb 16, 2016 Today s Lecture Equation of transfer with polarization

More information

Vector Magnetic Field Diagnostics using Hanle Effect

Vector Magnetic Field Diagnostics using Hanle Effect Meeting on Science with Planned and Upcoming Solar Facilities in the Country, Bangalore, India, November 2-3, 2011 Vector Magnetic Field Diagnostics using Hanle Effect M. Sampoorna Indian Institute of

More information

Fundamentals of radio astronomy

Fundamentals of radio astronomy Fundamentals of radio astronomy Sean Dougherty National Research Council Herzberg Institute for Astrophysics Apologies up front! Broad topic - a lot of ground to cover (the first understatement of the

More information

Lab #13: Polarization

Lab #13: Polarization Lab #13: Polarization Introduction In this experiment we will investigate various properties associated with polarized light. We will study both its generation and application. Real world applications

More information

Intuitive interpretation of Mueller matrices of transmission. John Freudenthal Hinds Instruments, Inc.

Intuitive interpretation of Mueller matrices of transmission. John Freudenthal Hinds Instruments, Inc. Intuitive interpretation of Mueller matrices of transmission John Freudenthal Hinds Instruments, Inc. Abstract Polarization metrology has grown to embrace ever more complicated measurement parameters.

More information

Lecture 8 Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell

Lecture 8 Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell Lecture 8 Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell 1. Scattering Introduction - Consider a localized object that contains charges

More information

Ellipsometry. Introduction. Measurement Principles

Ellipsometry. Introduction. Measurement Principles Ellipsometry Introduction Ellipsometry is the measurement of the effect of reflection on the state of polarization of light. The result of an ellipsometric measurement can be the complex refractive index

More information

Lecture 4: Polarisation of light, introduction

Lecture 4: Polarisation of light, introduction Lecture 4: Polarisation of light, introduction Lecture aims to explain: 1. Light as a transverse electro-magnetic wave 2. Importance of polarisation of light 3. Linearly polarised light 4. Natural light

More information

Phase Sensitive Faraday Rotation in. and various Diamagnetic liquid Samples

Phase Sensitive Faraday Rotation in. and various Diamagnetic liquid Samples Phase Sensitive Faraday Rotation in TERBIUM GALLIUM GARNET crystal and various Diamagnetic liquid Samples Supervisor: Dr. Saadat Anwar Siddiqi Co-Supervisor: Dr. Muhammad Sabieh Anwar Presented by: Aysha

More information

The Planck Mission and Ground-based Radio Surveys

The Planck Mission and Ground-based Radio Surveys The Planck Mission and Ground-based Radio Surveys Russ Taylor University of Calgary Kingston Meeting UBC, November 2003 Current state of that art in ground-based radio surveys How Planck factors into the

More information

Copyright 1966, by the author(s). All rights reserved.

Copyright 1966, by the author(s). All rights reserved. Copyright 1966, by the author(s). All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are

More information

Part I. The Quad-Ridged Flared Horn

Part I. The Quad-Ridged Flared Horn 9 Part I The Quad-Ridged Flared Horn 10 Chapter 2 Key Requirements of Radio Telescope Feeds Almost all of today s radio telescopes operating above 0.5 GHz use reflector antennas consisting of one or more

More information

SMR WINTER COLLEGE QUANTUM AND CLASSICAL ASPECTS INFORMATION OPTICS. The Origins of Light s angular Momentum

SMR WINTER COLLEGE QUANTUM AND CLASSICAL ASPECTS INFORMATION OPTICS. The Origins of Light s angular Momentum SMR.1738-8 WINTER COLLEGE on QUANTUM AND CLASSICAL ASPECTS of INFORMATION OPTICS 30 January - 10 February 2006 The Origins of Light s angular Momentum Miles PADGETT University of Glasgow Dept. of Physics

More information

Light Waves and Polarization

Light Waves and Polarization Light Waves and Polarization Xavier Fernando Ryerson Communications Lab http://www.ee.ryerson.ca/~fernando The Nature of Light There are three theories explain the nature of light: Quantum Theory Light

More information

Radiation processes and mechanisms in astrophysics I. R Subrahmanyan Notes on ATA lectures at UWA, Perth 18 May 2009

Radiation processes and mechanisms in astrophysics I. R Subrahmanyan Notes on ATA lectures at UWA, Perth 18 May 2009 Radiation processes and mechanisms in astrophysics I R Subrahmanyan Notes on ATA lectures at UWA, Perth 18 May 009 Light of the night sky We learn of the universe around us from EM radiation, neutrinos,

More information

Solar Magnetic Fields Jun 07 UA/NSO Summer School 1

Solar Magnetic Fields Jun 07 UA/NSO Summer School 1 Solar Magnetic Fields 2 12 Jun 07 UA/NSO Summer School 1 Solar Magnetic Fields 2 (12 June) An introduction to the instruments and techniques used to remotely measure the solar magnetic field Stokes Vectors

More information

Chapter 34. Electromagnetic Waves

Chapter 34. Electromagnetic Waves Chapter 34 Electromagnetic Waves The Goal of the Entire Course Maxwell s Equations: Maxwell s Equations James Clerk Maxwell 1831 1879 Scottish theoretical physicist Developed the electromagnetic theory

More information

Contents. 1 Basic Equations 1. Acknowledgment. 1.1 The Maxwell Equations Constitutive Relations 11

Contents. 1 Basic Equations 1. Acknowledgment. 1.1 The Maxwell Equations Constitutive Relations 11 Preface Foreword Acknowledgment xvi xviii xix 1 Basic Equations 1 1.1 The Maxwell Equations 1 1.1.1 Boundary Conditions at Interfaces 4 1.1.2 Energy Conservation and Poynting s Theorem 9 1.2 Constitutive

More information

Polarization degree fading during propagation of partially coherent light through retarders

Polarization degree fading during propagation of partially coherent light through retarders OPTO-ELECTRONICS REVIEW 3(), 7 76 7 th International Workshop on Nonlinear Optics Applications Polarization degree fading during propagation of partially coherent light through retarders A.W. DOMAÑSKI

More information

Alexey Kuznetsov. Armagh Observatory

Alexey Kuznetsov. Armagh Observatory Alexey Kuznetsov Armagh Observatory Outline of the talk Solar radio emission History Instruments and methods Results of observations Radio emission of planets Overview / history / instruments Radio emission

More information

Faraday rotation measure synthesis of edge-on galaxy UGC 10288

Faraday rotation measure synthesis of edge-on galaxy UGC 10288 Faraday rotation measure synthesis of edge-on galaxy UGC 10288 PATRICK KAMIENESKI PI: DANIEL WANG KENDALL SULLIVAN DYLAN PARÉ Extragalactic magnetic fields Global configuration of the disk and halo components

More information

Recap Lecture + Thomson Scattering. Thermal radiation Blackbody radiation Bremsstrahlung radiation

Recap Lecture + Thomson Scattering. Thermal radiation Blackbody radiation Bremsstrahlung radiation Recap Lecture + Thomson Scattering Thermal radiation Blackbody radiation Bremsstrahlung radiation LECTURE 1: Constancy of Brightness in Free Space We use now energy conservation: de=i ν 1 da1 d Ω1 dt d

More information

Light as electromagnetic wave and as particle

Light as electromagnetic wave and as particle Light as electromagnetic wave and as particle Help to understand and learn exam question 5. (How the wave-particle duality can be applied to light?) and to measurements Microscopy II., Light emission and

More information

Goal: The theory behind the electromagnetic radiation in remote sensing. 2.1 Maxwell Equations and Electromagnetic Waves

Goal: The theory behind the electromagnetic radiation in remote sensing. 2.1 Maxwell Equations and Electromagnetic Waves Chapter 2 Electromagnetic Radiation Goal: The theory behind the electromagnetic radiation in remote sensing. 2.1 Maxwell Equations and Electromagnetic Waves Electromagnetic waves do not need a medium to

More information