MAT 132 Midterm 1 Spring 2017

Size: px
Start display at page:

Download "MAT 132 Midterm 1 Spring 2017"

Transcription

1 MAT Midterm Spring 7 Name: ID: Problem Total ( pts) ( pts) ( pts) ( pts) ( pts) ( pts) (5 pts) (5 pts) ( pts) Score Instructions: () Fill in your name and Stony Brook ID number at the top of this cover sheet. () This exam is closed-book and closed-notes; no calculators, no phones. () Leave your answers in exact form (e.g. /, not /) to receive full credit., not.) and simplify them as much as possible (e.g. () Answer all questions in the space provided. If you need more room use the blank backs of the pages. (5) Show your work; correct answers alone will receive only partial credit.

2 Evaluate the following integrals. Each part worths points:. arctan (x) + x + dx Solution. We use u-substitution where u = arctan(x). Then du = x +dx and we have: arctan (x) + x + dx = = arctan() arctan() π = u u + du + u π = ( π ) + π = π 9 + π u + du Grading: points for finding u and du, 7 points for writing the integral in terms of u and computing the integral. You would lose points if you didn t change your bounds after u-substitution, and or points if you didn t simplify the final answer.

3 . e t cos(t) dt Solution. We use integration by parts where u = e t and dv = cos(t)dt. That implies that du = e t dt and v = sin(t). Therefore, we have: e t t sin(t) cos(t) dt = e t sin(t) = e t sin(t) e dt e t sin(t) dt () Then we pply integration by parts again to the integral in () where u = e t and dv = sin(t)dt. We have du = e t dt and v = cos(t) which implies that: t sin(t) e e t t sin(t) sin(t) dt = e cos(t) ( et t sin(t) = e + et cos(t) 9 t cos(t) e dt) e t cos(t) dt) In summary, we have: e t t sin(t) cos(t) dt = e + et cos(t) 9 e t cos(t) dt) which implies that: ( + 9 ) e t t sin(t) cos(t) dt = e + et cos(t) = e t t sin(t) cos(t) dt = e + et cos(t) = e t cos(t) dt = et sin(t) + et cos(t) + C At the end, we included the arbitrary constant of integration, because our integral is indefinite. Grading: points for each of integration by parts, point for carrying out each of integration by parts correctly, point for using the result to compute the integral and point for arbitrary constant of integration

4 . x + x x 5 dx Solution. The denominator of this fraction can be factorized as (x 5)(x + ). Therefore, we can use partial fraction decomposition to compute this integral: x + x x 5 = A x 5 + B x + = x + A(x + ) + B(x 5) x = x 5 (x 5)(x + ) = x + = A(x + ) + B(x 5) () Identity () has to hold for all values of x. In particular, we can evaluate it at x = 5 and x = : x = 5 : 5 + = A(5 + ) + B(5 5) = 6 = 8 A = A = x = : ( ) + = A( + ) + B( 5) = 8 = 8 B = B = In order to find A and B, we can follow the following alternative approach. The equation () can be rewritten as: x + = (A + B)x + (A 5B) = { A + B = A 5B = By multiplying the first equation by 5 and then adding it up to the second equation, we obtain: 8A = 6 = A =. Similarly, we can multiply the first equation by and then subtract it from the second equation. This implies that: 8B = 8 = B =. In any case, we have: x + x x 5 dx = x 5 + x + dx = ln( x 5 ) + ln( x + ) = ( ln( 5 ) + ln( + )) ( ln( 5 ) + ln( + )) = ln() + ln(6) ln() ln() = ln( 6 ) = ln( 8 ) Grading: points for factorization of the denominator and setting up partial fraction decomposition, points for finding A and B, points finding the antiderivatives, pointing for computing the integral and simplifying the answer

5 . x ln(x) dx Solution. Integration by parts can be used to simplified this integral. Let u = ln(x) and dv = xdx. Then du = ln(x) x and v = x : x ln(x) dx = ln(x) x = x ln(x) ln(x) x x dx x ln(x) dx The last integral can be computed by another application of integration by parts. If we pick u = ln(x) and dv = xdx, then du = x x and v =. Therefore, we have: x ln(x) x ln(x) dx = x ln(x) (ln(x) x x x dx) = x ln(x) x ln(x) x + dx) = x ln(x) x ln(x) + x + C Grading: 8 points for setting up the integration by parts correctly and points for evaluating integration by parts. You would lose.5 points for not writing the arbitrary constant of integration. Some of the students interpreted ln(x) as ln(x ). They got complete score if they took the integral correctly. Note that x ln(x ) = x ln(x) and the above method (integration by parts with u = ln(x) and dv = xdx) can be used to take this alternative version of the integral. 5

6 5. cos(x) sin(x) cos(x) dx Solution. We can use u-substitution with u = cos(x). Then du = sin(x)dx and we have: cos(x) sin(x) u dx = cos(x) u du The expression in inside the integral on the left hand side can be simplified as: u u = u + = u u u + u = + u () Therefore, we can write:: u u du = = + u du du + u du = u + ln( u ) + C = cos(x) + ln( cos(x)) + C In the last step, we plug in cos(x) for u. Grading: points for finding u, point for writing correct integral after u-substitution, points for decomposing as in (), points for computing the integral and point for writing the final answer in terms of x 6

7 6. t e t dt Solution. Firstly, use u-substitution with u = t. Then du = tdt and we have: t e t dt = = ue u du ue u du The latter integral can be computed using integration by parts. Let r = u and ds = e u du. Then r = du and s = e u, and we can rewrite the last expression as: ue u du = (ueu e u du) = ( e e e u ) = (e e + e ) = (e + ) Grading: You would lose, or points, if you used the above strategy to compute the integral but you got the wrong answer: point for a small oversight, points if you forgot to change the bounds of integration after a u-substitution, and points for a mix of these. You would get points if you attempted an integration by parts that lead nowhere, or points if you set up the problem with the correct integration by parts but couldn t do anything else. 7

8 7. (5 points) Albert s boomerang has the shape of the region enclosed by the parabolas y = x x + and y = x 6x + 5. Find the area of his boomerang. Solution. Firstly, we need to find the intersection points of the two parabolas. If (x,y) lies on the graph of these two curves, then: x x + = x 6x + 5 = = x x + = x =, Therefore, the two intersection points are (,) and (,). We slicing the region enclosed by the two parabolas vertically. Therefore, we have to use the x-coordinate to parametrize our slices and the possible values of x lie in the interval [,]. For x [,], the length of the slice is equal to (x x + ) (x 6x + 5) = x x. (In order to see which graph is on top in the interval [,], we can evaluate our functions at an arbitrary point in (,) like.) Therefore, the area is equal to: x x dx = x x x = ( ) ( ) = (6 8 ) ( ) = 6 Grading: 5 points for finding the intersection points, 5 points for deciding which parabola is on top and 5 points for writing the integral and its evaluation. 8

9 8. (5 points) Let R be the region obtained by rotating the region enclosed by the x-axis, y-axis, x = π, and the curve y = cos(x). (a) Sketch the shape of this region in the coordinate plane. Grading: 5 points for the figure (b) Let S be the solid given by rotating the region R about the y-axis. Find the volume of S. Solution. We slice the region R vertically. Thus we have to use the x-axis to parametrize our slices, and for each value of x [, π ] we have a slice. Each such slice determines a cylindrical shell in the solid S. The height of this shell is cos(x) and the radius is equal to x. Therefore, the volume of S is equal to: π πx cos(x) dx We can use integration by parts to compute this integral. Define the parts by u = πx and dv = cos(x)dx. Therefore, we have du = πdx and v = sin(x): π πx cos(x) dx = πx sin(x) π π π sin(x) dx = π π sin(π ) π sin() ( π cos(x) π ) = π + π cos(π ) π cos() π = + π π π = π Grading: points for finding the correct integral, 5 points for computing the integral, point for the final answer (c) Let T be the solid given by rotating the region R about the horizontal line y =. Find the volume of T. Solution. We slice the region R vertically again and for each x [, π ] we obtain one slice. However, such slice in this case gives rise to a washer because we are rotating a vertical slice about a horizontal line. The inner radius of each slice cos(x) and the outer radius is equal to 9

10 . Therefore, volume of a slice with thickness x at the point x [, π ]: Therefore, the volume of the solid is equal to: (π π( cos(x)) ) x π (π π( cos(x)) ) dx = = π π = π (π π( cos(x) cos(x) )) dx π cos(x) π cos(x) dx π = π sin(x) π π π cos(x) dx π π cos(x) dx + cos(x) dx π = π sin( π ) π sin() π dx π = π π π π π cos(u) du = π π 6 π π (sin(u) ) = π π 6 π (sin(π ) sin()) = π π 6 π = 5π 8 π 6 In step (), we use integration by substitution with u = x π cos(x) dx () Grading: 6 points for finding the correct integral, points for computing the integral

Grade: The remainder of this page has been left blank for your workings. VERSION D. Midterm D: Page 1 of 12

Grade: The remainder of this page has been left blank for your workings. VERSION D. Midterm D: Page 1 of 12 First Name: Student-No: Last Name: Section: Grade: The remainder of this page has been left blank for your workings. Midterm D: Page of 2 Indefinite Integrals. 9 marks Each part is worth marks. Please

More information

SCORE. Exam 3. MA 114 Exam 3 Fall 2016

SCORE. Exam 3. MA 114 Exam 3 Fall 2016 Exam 3 Name: Section and/or TA: Do not remove this answer page you will return the whole exam. You will be allowed two hours to complete this test. No books or notes may be used. You may use a graphing

More information

SCORE. Exam 3. MA 114 Exam 3 Fall 2016

SCORE. Exam 3. MA 114 Exam 3 Fall 2016 Exam 3 Name: Section and/or TA: Do not remove this answer page you will return the whole exam. You will be allowed two hours to complete this test. No books or notes may be used. You may use a graphing

More information

Math 181, Exam 1, Study Guide 2 Problem 1 Solution. =[17ln 5 +3(5)] [17 ln 1 +3(1)] =17ln = 17ln5+12

Math 181, Exam 1, Study Guide 2 Problem 1 Solution. =[17ln 5 +3(5)] [17 ln 1 +3(1)] =17ln = 17ln5+12 Math 8, Exam, Study Guide Problem Solution. Compute the definite integral: 5 ( ) 7 x +3 dx Solution: UsingtheFundamentalTheoremofCalculusPartI,thevalueof the integral is: 5 ( ) 7 [ ] 5 x +3 dx = 7 ln x

More information

MA CALCULUS II Friday, December 09, 2011 FINAL EXAM. Closed Book - No calculators! PART I Each question is worth 4 points.

MA CALCULUS II Friday, December 09, 2011 FINAL EXAM. Closed Book - No calculators! PART I Each question is worth 4 points. CALCULUS II, FINAL EXAM 1 MA 126 - CALCULUS II Friday, December 09, 2011 Name (Print last name first):...................................................... Signature:........................................................................

More information

Exam 3 Solutions. Multiple Choice Questions

Exam 3 Solutions. Multiple Choice Questions MA 4 Exam 3 Solutions Fall 26 Exam 3 Solutions Multiple Choice Questions. The average value of the function f (x) = x + sin(x) on the interval [, 2π] is: A. 2π 2 2π B. π 2π 2 + 2π 4π 2 2π 4π 2 + 2π 2.

More information

MATH 162. Midterm Exam 1 - Solutions February 22, 2007

MATH 162. Midterm Exam 1 - Solutions February 22, 2007 MATH 62 Midterm Exam - Solutions February 22, 27. (8 points) Evaluate the following integrals: (a) x sin(x 4 + 7) dx Solution: Let u = x 4 + 7, then du = 4x dx and x sin(x 4 + 7) dx = 4 sin(u) du = 4 [

More information

Multiple Choice Answers. MA 114 Calculus II Spring 2013 Final Exam 1 May Question

Multiple Choice Answers. MA 114 Calculus II Spring 2013 Final Exam 1 May Question MA 114 Calculus II Spring 2013 Final Exam 1 May 2013 Name: Section: Last 4 digits of student ID #: This exam has six multiple choice questions (six points each) and five free response questions with points

More information

MATH 101: PRACTICE MIDTERM 2

MATH 101: PRACTICE MIDTERM 2 MATH : PRACTICE MIDTERM INSTRUCTOR: PROF. DRAGOS GHIOCA March 7, Duration of examination: 7 minutes This examination includes pages and 6 questions. You are responsible for ensuring that your copy of the

More information

Turn off all cell phones, pagers, radios, mp3 players, and other similar devices.

Turn off all cell phones, pagers, radios, mp3 players, and other similar devices. Math 25 B and C Midterm 2 Palmieri, Autumn 26 Your Name Your Signature Student ID # TA s Name and quiz section (circle): Cady Cruz Jacobs BA CB BB BC CA CC Turn off all cell phones, pagers, radios, mp3

More information

Final Exam. V Spring: Calculus I. May 12, 2011

Final Exam. V Spring: Calculus I. May 12, 2011 Name: ID#: Final Exam V.63.0121.2011Spring: Calculus I May 12, 2011 PLEASE READ THE FOLLOWING INFORMATION. This is a 90-minute exam. Calculators, books, notes, and other aids are not allowed. You may use

More information

Math 113 Winter 2005 Key

Math 113 Winter 2005 Key Name Student Number Section Number Instructor Math Winter 005 Key Departmental Final Exam Instructions: The time limit is hours. Problem consists of short answer questions. Problems through are multiple

More information

Math 106 Answers to Exam 3a Fall 2015

Math 106 Answers to Exam 3a Fall 2015 Math 6 Answers to Exam 3a Fall 5.. Consider the curve given parametrically by x(t) = cos(t), y(t) = (t 3 ) 3, for t from π to π. (a) (6 points) Find all the points (x, y) where the graph has either a vertical

More information

MA 126 CALCULUS II Wednesday, December 10, 2014 FINAL EXAM. Closed book - Calculators and One Index Card are allowed! PART I

MA 126 CALCULUS II Wednesday, December 10, 2014 FINAL EXAM. Closed book - Calculators and One Index Card are allowed! PART I CALCULUS II, FINAL EXAM 1 MA 126 CALCULUS II Wednesday, December 10, 2014 Name (Print last name first):................................................ Student Signature:.........................................................

More information

SOLUTIONS FOR PRACTICE FINAL EXAM

SOLUTIONS FOR PRACTICE FINAL EXAM SOLUTIONS FOR PRACTICE FINAL EXAM ANDREW J. BLUMBERG. Solutions () Short answer questions: (a) State the mean value theorem. Proof. The mean value theorem says that if f is continuous on (a, b) and differentiable

More information

Grade: The remainder of this page has been left blank for your workings. VERSION E. Midterm E: Page 1 of 12

Grade: The remainder of this page has been left blank for your workings. VERSION E. Midterm E: Page 1 of 12 First Name: Student-No: Last Name: Section: Grade: The remainder of this page has been left blank for your workings. Midterm E: Page of Indefinite Integrals. 9 marks Each part is worth 3 marks. Please

More information

y = x 3 and y = 2x 2 x. 2x 2 x = x 3 x 3 2x 2 + x = 0 x(x 2 2x + 1) = 0 x(x 1) 2 = 0 x = 0 and x = (x 3 (2x 2 x)) dx

y = x 3 and y = 2x 2 x. 2x 2 x = x 3 x 3 2x 2 + x = 0 x(x 2 2x + 1) = 0 x(x 1) 2 = 0 x = 0 and x = (x 3 (2x 2 x)) dx Millersville University Name Answer Key Mathematics Department MATH 2, Calculus II, Final Examination May 4, 2, 8:AM-:AM Please answer the following questions. Your answers will be evaluated on their correctness,

More information

Math 181, Exam 2, Study Guide 2 Problem 1 Solution. 1 + dx. 1 + (cos x)2 dx. 1 + cos2 xdx. = π ( 1 + cos π 2

Math 181, Exam 2, Study Guide 2 Problem 1 Solution. 1 + dx. 1 + (cos x)2 dx. 1 + cos2 xdx. = π ( 1 + cos π 2 Math 8, Exam, Study Guide Problem Solution. Use the trapezoid rule with n to estimate the arc-length of the curve y sin x between x and x π. Solution: The arclength is: L b a π π + ( ) dy + (cos x) + cos

More information

Fall 2013 Hour Exam 2 11/08/13 Time Limit: 50 Minutes

Fall 2013 Hour Exam 2 11/08/13 Time Limit: 50 Minutes Math 8 Fall Hour Exam /8/ Time Limit: 5 Minutes Name (Print): This exam contains 9 pages (including this cover page) and 7 problems. Check to see if any pages are missing. Enter all requested information

More information

Integrated Calculus II Exam 1 Solutions 2/6/4

Integrated Calculus II Exam 1 Solutions 2/6/4 Integrated Calculus II Exam Solutions /6/ Question Determine the following integrals: te t dt. We integrate by parts: u = t, du = dt, dv = e t dt, v = dv = e t dt = e t, te t dt = udv = uv vdu = te t (

More information

Test 2 - Answer Key Version A

Test 2 - Answer Key Version A MATH 8 Student s Printed Name: Instructor: CUID: Section: Fall 27 8., 8.2,. -.4 Instructions: You are not permitted to use a calculator on any portion of this test. You are not allowed to use any textbook,

More information

Final Exam Review Quesitons

Final Exam Review Quesitons Final Exam Review Quesitons. Compute the following integrals. (a) x x 4 (x ) (x + 4) dx. The appropriate partial fraction form is which simplifies to x x 4 (x ) (x + 4) = A x + B (x ) + C x + 4 + Dx x

More information

t 2 + 2t dt = (t + 1) dt + 1 = arctan t x + 6 x(x 3)(x + 2) = A x +

t 2 + 2t dt = (t + 1) dt + 1 = arctan t x + 6 x(x 3)(x + 2) = A x + MATH 06 0 Practice Exam #. (0 points) Evaluate the following integrals: (a) (0 points). t +t+7 This is an irreducible quadratic; its denominator can thus be rephrased via completion of the square as a

More information

Practice Exam I. Summer Term I Kostadinov. MA124 Calculus II Boston University

Practice Exam I. Summer Term I Kostadinov. MA124 Calculus II Boston University student: Practice Exam I Problem 1: Find the derivative of the functions T 1 (x), T 2 (x), T 3 (x). State the reason of your answers. a) T 1 (x) = x 2t dt 2 b) T 2 (x) = e x ln(t2 )dt c) T 3 (x) = x 2

More information

Calculus II (Fall 2015) Practice Problems for Exam 1

Calculus II (Fall 2015) Practice Problems for Exam 1 Calculus II (Fall 15) Practice Problems for Exam 1 Note: Section divisions and instructions below are the same as they will be on the exam, so you will have a better idea of what to expect, though I will

More information

November 20, Problem Number of points Points obtained Total 50

November 20, Problem Number of points Points obtained Total 50 MATH 124 E MIDTERM 2, v.b Autumn 2018 November 20, 2018 NAME: SIGNATURE: STUDENT ID #: GAB AB AB AB AB AB AB AB AB AB AB AB AB AB QUIZ SECTION: ABB ABB Problem Number of points Points obtained 1 14 2 10

More information

New York City College of Technology, CUNY Mathematics Department. MAT 1575 Final Exam Review Problems. 3x (a) x 2 (x 3 +1) 3 dx (b) dx.

New York City College of Technology, CUNY Mathematics Department. MAT 1575 Final Exam Review Problems. 3x (a) x 2 (x 3 +1) 3 dx (b) dx. New York City College of Technology, CUNY Mathematics Department MAT 575 Final Exam eview Problems. Evaluate the following definite integrals: x x (a) x (x +) dx (b) dx 0 0 x + 9 (c) 0 x + dx. Evaluate

More information

MA 113 Calculus I Fall 2016 Exam Final Wednesday, December 14, True/False 1 T F 2 T F 3 T F 4 T F 5 T F. Name: Section:

MA 113 Calculus I Fall 2016 Exam Final Wednesday, December 14, True/False 1 T F 2 T F 3 T F 4 T F 5 T F. Name: Section: MA 113 Calculus I Fall 2016 Exam Final Wednesday, December 14, 2016 Name: Section: Last 4 digits of student ID #: This exam has five true/false questions (two points each), ten multiple choice questions

More information

Math Final Exam Review

Math Final Exam Review Math - Final Exam Review. Find dx x + 6x +. Name: Solution: We complete the square to see if this function has a nice form. Note we have: x + 6x + (x + + dx x + 6x + dx (x + + Note that this looks a lot

More information

Problem Out of Score Problem Out of Score Total 45

Problem Out of Score Problem Out of Score Total 45 Midterm Exam #1 Math 11, Section 5 January 3, 15 Duration: 5 minutes Name: Student Number: Do not open this test until instructed to do so! This exam should have 8 pages, including this cover sheet. No

More information

MA 126 CALCULUS II Wednesday, December 14, 2016 FINAL EXAM. Closed book - Calculators and One Index Card are allowed! PART I

MA 126 CALCULUS II Wednesday, December 14, 2016 FINAL EXAM. Closed book - Calculators and One Index Card are allowed! PART I CALCULUS II, FINAL EXAM 1 MA 126 CALCULUS II Wednesday, December 14, 2016 Name (Print last name first):................................................ Student Signature:.........................................................

More information

Math 113 Winter 2005 Departmental Final Exam

Math 113 Winter 2005 Departmental Final Exam Name Student Number Section Number Instructor Math Winter 2005 Departmental Final Exam Instructions: The time limit is hours. Problem consists of short answer questions. Problems 2 through are multiple

More information

Final Exam SOLUTIONS MAT 131 Fall 2011

Final Exam SOLUTIONS MAT 131 Fall 2011 1. Compute the following its. (a) Final Exam SOLUTIONS MAT 131 Fall 11 x + 1 x 1 x 1 The numerator is always positive, whereas the denominator is negative for numbers slightly smaller than 1. Also, as

More information

More Final Practice Problems

More Final Practice Problems 8.0 Calculus Jason Starr Final Exam at 9:00am sharp Fall 005 Tuesday, December 0, 005 More 8.0 Final Practice Problems Here are some further practice problems with solutions for the 8.0 Final Exam. Many

More information

Math 226 Calculus Spring 2016 Exam 2V1

Math 226 Calculus Spring 2016 Exam 2V1 Math 6 Calculus Spring 6 Exam V () (35 Points) Evaluate the following integrals. (a) (7 Points) tan 5 (x) sec 3 (x) dx (b) (8 Points) cos 4 (x) dx Math 6 Calculus Spring 6 Exam V () (Continued) Evaluate

More information

Final exam (practice) UCLA: Math 31B, Spring 2017

Final exam (practice) UCLA: Math 31B, Spring 2017 Instructor: Noah White Date: Final exam (practice) UCLA: Math 3B, Spring 207 This exam has 8 questions, for a total of 80 points. Please print your working and answers neatly. Write your solutions in the

More information

Section 5.6. Integration By Parts. MATH 126 (Section 5.6) Integration By Parts The University of Kansas 1 / 10

Section 5.6. Integration By Parts. MATH 126 (Section 5.6) Integration By Parts The University of Kansas 1 / 10 Section 5.6 Integration By Parts MATH 126 (Section 5.6) Integration By Parts The University of Kansas 1 / 10 Integration By Parts Manipulating the Product Rule d dx (f (x) g(x)) = f (x) g (x) + f (x) g(x)

More information

Without fully opening the exam, check that you have pages 1 through 11.

Without fully opening the exam, check that you have pages 1 through 11. MTH 33 Solutions to Final Exam May, 8 Name: Section: Recitation Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages through. Show

More information

Math 42: Fall 2015 Midterm 2 November 3, 2015

Math 42: Fall 2015 Midterm 2 November 3, 2015 Math 4: Fall 5 Midterm November 3, 5 NAME: Solutions Time: 8 minutes For each problem, you should write down all of your work carefully and legibly to receive full credit When asked to justify your answer,

More information

There are some trigonometric identities given on the last page.

There are some trigonometric identities given on the last page. MA 114 Calculus II Fall 2015 Exam 4 December 15, 2015 Name: Section: Last 4 digits of student ID #: No books or notes may be used. Turn off all your electronic devices and do not wear ear-plugs during

More information

Exploring Substitution

Exploring Substitution I. Introduction Exploring Substitution Math Fall 08 Lab We use the Fundamental Theorem of Calculus, Part to evaluate a definite integral. If f is continuous on [a, b] b and F is any antiderivative of f

More information

Test 2 - Answer Key Version A

Test 2 - Answer Key Version A MATH 8 Student s Printed Name: Instructor: Test - Answer Key Spring 6 8. - 8.3,. -. CUID: Section: Instructions: You are not permitted to use a calculator on any portion of this test. You are not allowed

More information

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle! 1. (a) (b) (c) (d) (e) 2. (a) (b) (c) (d) (e) (a) (b) (c) (d) (e) 4. (a) (b) (c) (d) (e)...

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle! 1. (a) (b) (c) (d) (e) 2. (a) (b) (c) (d) (e) (a) (b) (c) (d) (e) 4. (a) (b) (c) (d) (e)... Math, Exam III November 6, 7 The Honor Code is in effect for this examination. All work is to be your own. No calculators. The exam lasts for hour and min. Be sure that your name is on every page in case

More information

Substitutions and by Parts, Area Between Curves. Goals: The Method of Substitution Areas Integration by Parts

Substitutions and by Parts, Area Between Curves. Goals: The Method of Substitution Areas Integration by Parts Week #7: Substitutions and by Parts, Area Between Curves Goals: The Method of Substitution Areas Integration by Parts 1 Week 7 The Indefinite Integral The Fundamental Theorem of Calculus, b a f(x) dx =

More information

MATH 250 TOPIC 13 INTEGRATION. 13B. Constant, Sum, and Difference Rules

MATH 250 TOPIC 13 INTEGRATION. 13B. Constant, Sum, and Difference Rules Math 5 Integration Topic 3 Page MATH 5 TOPIC 3 INTEGRATION 3A. Integration of Common Functions Practice Problems 3B. Constant, Sum, and Difference Rules Practice Problems 3C. Substitution Practice Problems

More information

Integrals. D. DeTurck. January 1, University of Pennsylvania. D. DeTurck Math A: Integrals 1 / 61

Integrals. D. DeTurck. January 1, University of Pennsylvania. D. DeTurck Math A: Integrals 1 / 61 Integrals D. DeTurck University of Pennsylvania January 1, 2018 D. DeTurck Math 104 002 2018A: Integrals 1 / 61 Integrals Start with dx this means a little bit of x or a little change in x If we add up

More information

Puzzle 1 Puzzle 2 Puzzle 3 Puzzle 4 Puzzle 5 /10 /10 /10 /10 /10

Puzzle 1 Puzzle 2 Puzzle 3 Puzzle 4 Puzzle 5 /10 /10 /10 /10 /10 MATH-65 Puzzle Collection 6 Nov 8 :pm-:pm Name:... 3 :pm Wumaier :pm Njus 5 :pm Wumaier 6 :pm Njus 7 :pm Wumaier 8 :pm Njus This puzzle collection is closed book and closed notes. NO calculators are allowed

More information

Exam 4 SCORE. MA 114 Exam 4 Spring Section and/or TA:

Exam 4 SCORE. MA 114 Exam 4 Spring Section and/or TA: Exam 4 Name: Section and/or TA: Last Four Digits of Student ID: Do not remove this answer page you will return the whole exam. You will be allowed two hours to complete this test. No books or notes may

More information

Section 4.4. Using the Fundamental Theorem. Difference Equations to Differential Equations

Section 4.4. Using the Fundamental Theorem. Difference Equations to Differential Equations Difference Equations to Differential Equations Section 4.4 Using the Fundamental Theorem As we saw in Section 4.3, using the Fundamental Theorem of Integral Calculus reduces the problem of evaluating a

More information

Examples. 1. (Solution) (a) Suppose f is an increasing function, and let A(x) = x

Examples. 1. (Solution) (a) Suppose f is an increasing function, and let A(x) = x Math 31A Final Exam Practice Problems Austin Christian December 1, 15 Here are some practice problems for the final. You ll notice that these problems all come from material since the last exam. You are,

More information

Spring 2017 Midterm 1 04/26/2017

Spring 2017 Midterm 1 04/26/2017 Math 2B Spring 2017 Midterm 1 04/26/2017 Time Limit: 50 Minutes Name (Print): Student ID This exam contains 10 pages (including this cover page) and 5 problems. Check to see if any pages are missing. Enter

More information

MATH 2300 review problems for Exam 1 ANSWERS

MATH 2300 review problems for Exam 1 ANSWERS MATH review problems for Exam ANSWERS. Evaluate the integral sin x cos x dx in each of the following ways: This one is self-explanatory; we leave it to you. (a) Integrate by parts, with u = sin x and dv

More information

MATH 1A - FINAL EXAM DELUXE - SOLUTIONS. x x x x x 2. = lim = 1 =0. 2) Then ln(y) = x 2 ln(x) 3) ln(x)

MATH 1A - FINAL EXAM DELUXE - SOLUTIONS. x x x x x 2. = lim = 1 =0. 2) Then ln(y) = x 2 ln(x) 3) ln(x) MATH A - FINAL EXAM DELUXE - SOLUTIONS PEYAM RYAN TABRIZIAN. ( points, 5 points each) Find the following limits (a) lim x x2 + x ( ) x lim x2 + x x2 + x 2 + + x x x x2 + + x x 2 + x 2 x x2 + + x x x2 +

More information

MATH 32A: MIDTERM 2 REVIEW. sin 2 u du z(t) = sin 2 t + cos 2 2

MATH 32A: MIDTERM 2 REVIEW. sin 2 u du z(t) = sin 2 t + cos 2 2 MATH 3A: MIDTERM REVIEW JOE HUGHES 1. Curvature 1. Consider the curve r(t) = x(t), y(t), z(t), where x(t) = t Find the curvature κ(t). 0 cos(u) sin(u) du y(t) = Solution: The formula for curvature is t

More information

Access to Science, Engineering and Agriculture: Mathematics 2 MATH00040 Chapter 4 Solutions

Access to Science, Engineering and Agriculture: Mathematics 2 MATH00040 Chapter 4 Solutions Access to Science, Engineering and Agriculture: Mathematics MATH4 Chapter 4 Solutions In all these solutions, c will represent an arbitrary constant.. (a) Since f(x) 5 is a constant, 5dx 5x] 5. (b) Since

More information

MATH 101 Midterm Examination Spring 2009

MATH 101 Midterm Examination Spring 2009 MATH Midterm Eamination Spring 9 Date: May 5, 9 Time: 7 minutes Surname: (Please, print!) Given name(s): Signature: Instructions. This is a closed book eam: No books, no notes, no calculators are allowed!.

More information

Integration by Parts

Integration by Parts Calculus 2 Lia Vas Integration by Parts Using integration by parts one transforms an integral of a product of two functions into a simpler integral. Divide the initial function into two parts called u

More information

Math 162: Calculus IIA

Math 162: Calculus IIA Math 62: Calculus IIA Final Exam ANSWERS December 9, 26 Part A. (5 points) Evaluate the integral x 4 x 2 dx Substitute x 2 cos θ: x 8 cos dx θ ( 2 sin θ) dθ 4 x 2 2 sin θ 8 cos θ dθ 8 cos 2 θ cos θ dθ

More information

Math 112 (Calculus I) Final Exam

Math 112 (Calculus I) Final Exam Name: Student ID: Section: Instructor: Math 112 (Calculus I) Final Exam Dec 18, 7:00 p.m. Instructions: Work on scratch paper will not be graded. For questions 11 to 19, show all your work in the space

More information

University of Toronto Solutions to MAT186H1F TERM TEST of Tuesday, October 15, 2013 Duration: 100 minutes

University of Toronto Solutions to MAT186H1F TERM TEST of Tuesday, October 15, 2013 Duration: 100 minutes University of Toronto Solutions to MAT186H1F TERM TEST of Tuesday, October 15, 2013 Duration: 100 minutes Only aids permitted: Casio FX-991 or Sharp EL-520 calculator. Instructions: Answer all questions.

More information

By providing my signature below I acknowledge that this is my work, and I did not get any help from anyone else:

By providing my signature below I acknowledge that this is my work, and I did not get any help from anyone else: University of Georgia Department of Mathematics Math 2250 Final Exam Spring 2016 By providing my signature below I acknowledge that this is my work, and I did not get any help from anyone else: Name (sign):

More information

MATH 1207 R02 MIDTERM EXAM 2 SOLUTION

MATH 1207 R02 MIDTERM EXAM 2 SOLUTION MATH 7 R MIDTERM EXAM SOLUTION FALL 6 - MOON Name: Write your answer neatly and show steps. Except calculators, any electronic devices including laptops and cell phones are not allowed. () (5 pts) Find

More information

Friday 09/15/2017 Midterm I 50 minutes

Friday 09/15/2017 Midterm I 50 minutes Fa 17: MATH 2924 040 Differential and Integral Calculus II Noel Brady Friday 09/15/2017 Midterm I 50 minutes Name: Student ID: Instructions. 1. Attempt all questions. 2. Do not write on back of exam sheets.

More information

Math 221 Exam III (50 minutes) Friday April 19, 2002 Answers

Math 221 Exam III (50 minutes) Friday April 19, 2002 Answers Math Exam III (5 minutes) Friday April 9, Answers I. ( points.) Fill in the boxes as to complete the following statement: A definite integral can be approximated by a Riemann sum. More precisely, if a

More information

Spring /07/2017

Spring /07/2017 MA 38 Calculus II with Life Science Applications FIRST MIDTERM Spring 207 02/07/207 Name: Sect. #: Do not remove this answer page you will return the whole exam. No books or notes may be used. Use the

More information

Spring /06/2018

Spring /06/2018 MA 38 Calculus II with Life Science Applications FIRST MIDTERM Spring 28 2/6/28 Name: Sect. #: Do not remove this answer page you will return the whole exam. No books or notes may be used. Use the backs

More information

Integration by Parts. MAT 126, Week 2, Thursday class. Xuntao Hu

Integration by Parts. MAT 126, Week 2, Thursday class. Xuntao Hu MAT 126, Week 2, Thursday class Xuntao Hu Recall that the substitution rule is a combination of the FTC and the chain rule. We can also combine the FTC and the product rule: d dx [f (x)g(x)] = f (x)g (x)

More information

Solutions to Exam 2, Math 10560

Solutions to Exam 2, Math 10560 Solutions to Exam, Math 6. Which of the following expressions gives the partial fraction decomposition of the function x + x + f(x = (x (x (x +? Solution: Notice that (x is not an irreducile factor. If

More information

Midterm 1 practice UCLA: Math 32B, Winter 2017

Midterm 1 practice UCLA: Math 32B, Winter 2017 Midterm 1 practice UCLA: Math 32B, Winter 2017 Instructor: Noah White Date: Version: practice This exam has 4 questions, for a total of 40 points. Please print your working and answers neatly. Write your

More information

Section 5.5 More Integration Formula (The Substitution Method) 2 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I

Section 5.5 More Integration Formula (The Substitution Method) 2 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I Section 5.5 More Integration Formula (The Substitution Method) 2 Lectures College of Science MATHS : Calculus I (University of Bahrain) Integrals / 7 The Substitution Method Idea: To replace a relatively

More information

Calculus II Practice Test 1 Problems: , 6.5, Page 1 of 10

Calculus II Practice Test 1 Problems: , 6.5, Page 1 of 10 Calculus II Practice Test Problems: 6.-6.3, 6.5, 7.-7.3 Page of This is in no way an inclusive set of problems there can be other types of problems on the actual test. To prepare for the test: review homework,

More information

MA EXAM 1 INSTRUCTIONS VERSION 01 FEBRUARY 8, Section # and recitation time

MA EXAM 1 INSTRUCTIONS VERSION 01 FEBRUARY 8, Section # and recitation time MA 16600 EXAM 1 INSTRUCTIONS VERSION 01 FEBRUARY 8, 2017 Your name Student ID # Your TA s name Section # and recitation time 1. You must use a #2 pencil on the scantron sheet (answer sheet). 2. Check that

More information

THE UNIVERSITY OF WESTERN ONTARIO

THE UNIVERSITY OF WESTERN ONTARIO Instructor s Name (Print) Student s Name (Print) Student s Signature THE UNIVERSITY OF WESTERN ONTARIO LONDON CANADA DEPARTMENTS OF APPLIED MATHEMATICS AND MATHEMATICS Calculus 1A Final Examination Code

More information

Math Makeup Exam - 3/14/2018

Math Makeup Exam - 3/14/2018 Math 22 - Makeup Exam - 3/4/28 Name: Section: The following rules apply: This is a closed-book exam. You may not use any books or notes on this exam. For free response questions, you must show all work.

More information

You can learn more about the services offered by the teaching center by visiting

You can learn more about the services offered by the teaching center by visiting MAC 232 Exam 3 Review Spring 209 This review, produced by the Broward Teaching Center, contains a collection of questions which are representative of the type you may encounter on the exam. Other resources

More information

Name: AK-Nummer: Ergänzungsprüfung January 29, 2016

Name: AK-Nummer: Ergänzungsprüfung January 29, 2016 INSTRUCTIONS: The test has a total of 32 pages including this title page and 9 questions which are marked out of 10 points; ensure that you do not omit a page by mistake. Please write your name and AK-Nummer

More information

Mathematics 1052, Calculus II Exam 1, April 3rd, 2010

Mathematics 1052, Calculus II Exam 1, April 3rd, 2010 Mathematics 5, Calculus II Exam, April 3rd,. (8 points) If an unknown function y satisfies the equation y = x 3 x + 4 with the condition that y()=, then what is y? Solution: We must integrate y against

More information

a k 0, then k + 1 = 2 lim 1 + 1

a k 0, then k + 1 = 2 lim 1 + 1 Math 7 - Midterm - Form A - Page From the desk of C. Davis Buenger. https://people.math.osu.edu/buenger.8/ Problem a) [3 pts] If lim a k = then a k converges. False: The divergence test states that if

More information

Math 116 Second Midterm November 14, 2012

Math 116 Second Midterm November 14, 2012 Math 6 Second Midterm November 4, Name: EXAM SOLUTIONS Instructor: Section:. Do not open this exam until you are told to do so.. This exam has pages including this cover. There are 8 problems. Note that

More information

Solutions to Exam 1, Math Solution. Because f(x) is one-to-one, we know the inverse function exists. Recall that (f 1 ) (a) =

Solutions to Exam 1, Math Solution. Because f(x) is one-to-one, we know the inverse function exists. Recall that (f 1 ) (a) = Solutions to Exam, Math 56 The function f(x) e x + x 3 + x is one-to-one (there is no need to check this) What is (f ) ( + e )? Solution Because f(x) is one-to-one, we know the inverse function exists

More information

2t t dt.. So the distance is (t2 +6) 3/2

2t t dt.. So the distance is (t2 +6) 3/2 Math 8, Solutions to Review for the Final Exam Question : The distance is 5 t t + dt To work that out, integrate by parts with u t +, so that t dt du The integral is t t + dt u du u 3/ (t +) 3/ So the

More information

Note: Final Exam is at 10:45 on Tuesday, 5/3/11 (This is the Final Exam time reserved for our labs). From Practice Test I

Note: Final Exam is at 10:45 on Tuesday, 5/3/11 (This is the Final Exam time reserved for our labs). From Practice Test I MA Practice Final Answers in Red 4/8/ and 4/9/ Name Note: Final Exam is at :45 on Tuesday, 5// (This is the Final Exam time reserved for our labs). From Practice Test I Consider the integral 5 x dx. Sketch

More information

Be sure this exam has 8 pages including the cover The University of British Columbia MATH 103 Midterm Exam II Mar 14, 2012

Be sure this exam has 8 pages including the cover The University of British Columbia MATH 103 Midterm Exam II Mar 14, 2012 Be sure this exam has 8 pages including the cover The University of British Columbia MATH Midterm Exam II Mar 4, 22 Family Name Student Number Given Name Signature Section Number This exam consists of

More information

Final Exam 2011 Winter Term 2 Solutions

Final Exam 2011 Winter Term 2 Solutions . (a Find the radius of convergence of the series: ( k k+ x k. Solution: Using the Ratio Test, we get: L = lim a k+ a k = lim ( k+ k+ x k+ ( k k+ x k = lim x = x. Note that the series converges for L

More information

M273Q Multivariable Calculus Spring 2017 Review Problems for Exam 3

M273Q Multivariable Calculus Spring 2017 Review Problems for Exam 3 M7Q Multivariable alculus Spring 7 Review Problems for Exam Exam covers material from Sections 5.-5.4 and 6.-6. and 7.. As you prepare, note well that the Fall 6 Exam posted online did not cover exactly

More information

(a) x cos 3x dx We apply integration by parts. Take u = x, so that dv = cos 3x dx, v = 1 sin 3x, du = dx. Thus

(a) x cos 3x dx We apply integration by parts. Take u = x, so that dv = cos 3x dx, v = 1 sin 3x, du = dx. Thus Math 128 Midterm Examination 2 October 21, 28 Name 6 problems, 112 (oops) points. Instructions: Show all work partial credit will be given, and Answers without work are worth credit without points. You

More information

Math 142, Final Exam, Fall 2006, Solutions

Math 142, Final Exam, Fall 2006, Solutions Math 4, Final Exam, Fall 6, Solutions There are problems. Each problem is worth points. SHOW your wor. Mae your wor be coherent and clear. Write in complete sentences whenever this is possible. CIRCLE

More information

MATH 220 CALCULUS I SPRING 2018, MIDTERM I FEB 16, 2018

MATH 220 CALCULUS I SPRING 2018, MIDTERM I FEB 16, 2018 MATH 220 CALCULUS I SPRING 2018, MIDTERM I FEB 16, 2018 DEPARTMENT OF MATHEMATICS UNIVERSITY OF PITTSBURGH NAME: ID NUMBER: (1) Do not open this exam until you are told to begin. (2) This exam has 12 pages

More information

Volumes of Solids of Revolution Lecture #6 a

Volumes of Solids of Revolution Lecture #6 a Volumes of Solids of Revolution Lecture #6 a Sphereoid Parabaloid Hyperboloid Whateveroid Volumes Calculating 3-D Space an Object Occupies Take a cross-sectional slice. Compute the area of the slice. Multiply

More information

Practice Problems: Integration by Parts

Practice Problems: Integration by Parts Practice Problems: Integration by Parts Answers. (a) Neither term will get simpler through differentiation, so let s try some choice for u and dv, and see how it works out (we can always go back and try

More information

MTH 234 Exam 1 February 20th, Without fully opening the exam, check that you have pages 1 through 11.

MTH 234 Exam 1 February 20th, Without fully opening the exam, check that you have pages 1 through 11. Name: Section: Recitation Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages 1 through 11. Show all your work on the standard

More information

5 Integrals reviewed Basic facts U-substitution... 4

5 Integrals reviewed Basic facts U-substitution... 4 Contents 5 Integrals reviewed 5. Basic facts............................... 5.5 U-substitution............................. 4 6 Integral Applications 0 6. Area between two curves.......................

More information

FINAL EXAM CALCULUS 2. Name PRACTICE EXAM SOLUTIONS

FINAL EXAM CALCULUS 2. Name PRACTICE EXAM SOLUTIONS FINAL EXAM CALCULUS MATH 00 FALL 08 Name PRACTICE EXAM SOLUTIONS Please answer all of the questions, and show your work. You must explain your answers to get credit. You will be graded on the clarity of

More information

- - - - - - - - - - - - - - - - - - DISCLAIMER - - - - - - - - - - - - - - - - - - General Information: This midterm is a sample midterm. This means: The sample midterm contains problems that are of similar,

More information

Review: Exam Material to be covered: 6.1, 6.2, 6.3, 6.5 plus review of u, du substitution.

Review: Exam Material to be covered: 6.1, 6.2, 6.3, 6.5 plus review of u, du substitution. Review: Exam. Goals for this portion of the course: Be able to compute the area between curves, the volume of solids of revolution, and understand the mean value of a function. We had three basic volumes:

More information

DO NOT WRITE ABOVE THIS LINE!! MATH 181 Final Exam. December 8, 2016

DO NOT WRITE ABOVE THIS LINE!! MATH 181 Final Exam. December 8, 2016 MATH 181 Final Exam December 8, 2016 Directions. Fill in each of the lines below. Circle your instructor s name and write your TA s name. Then read the directions that follow before beginning the exam.

More information

Math 180, Final Exam, Fall 2012 Problem 1 Solution

Math 180, Final Exam, Fall 2012 Problem 1 Solution Math 80, Final Exam, Fall 0 Problem Solution. Find the derivatives of the following functions: (a) ln(ln(x)) (b) x 6 + sin(x) e x (c) tan(x ) + cot(x ) (a) We evaluate the derivative using the Chain Rule.

More information

Change of Variables: Indefinite Integrals

Change of Variables: Indefinite Integrals Change of Variables: Indefinite Integrals Mathematics 11: Lecture 39 Dan Sloughter Furman University November 29, 2007 Dan Sloughter (Furman University) Change of Variables: Indefinite Integrals November

More information

Final exam for MATH 1272: Calculus II, Spring 2015

Final exam for MATH 1272: Calculus II, Spring 2015 Final exam for MATH 1272: Calculus II, Spring 2015 Name: ID #: Signature: Section Number: Teaching Assistant: General Instructions: Please don t turn over this page until you are directed to begin. There

More information

Math 241 Final Exam, Spring 2013

Math 241 Final Exam, Spring 2013 Math 241 Final Exam, Spring 2013 Name: Section number: Instructor: Read all of the following information before starting the exam. Question Points Score 1 5 2 5 3 12 4 10 5 17 6 15 7 6 8 12 9 12 10 14

More information