A Coupled VOF-Eulerian Multiphase CFD Model To Simulate Breaking Wave Impacts On Offshore Structures

Size: px
Start display at page:

Download "A Coupled VOF-Eulerian Multiphase CFD Model To Simulate Breaking Wave Impacts On Offshore Structures"

Transcription

1 A Coupled VOF-Eulerian Multiphase CFD Model To Simulate Breaking Wave Impacts On Offshore Structures Pietro Danilo Tomaselli Ph.d. student Section for Fluid Mechanics, Coastal and Maritime Engineering Department of Mechanical Engineering 24th February 2016

2 Outline Introduction Model set-up Description of the model Validation of the model Application of the model Conclusions References

3 Introduction

4 Offshore wind farms in the future Multi-use platform (wind farms, aquaculture and exploitation of wave energy) Massive development in the intermediate depth region (20-60 m) EU Project MERMAID - Innovative Multi-purpose offshore platforms: planning, design and operation.

5 Spilling breaking waves impact on secondary structures Waves often break as spilling breakers in the intermediate depth area under storm conditions Spilling waves are characterized by a mixture of dispersed air bubbles and water traveling with the wave front Impact on secondary structures (external access platforms, boat-landings, railings..) can cause severe damages Spilling and plunging waves Breaking waves impact at a Horns Rev wind turbine

6 The study Which is the scope? Development of a CFD solver that can simulate the air entrainment in breaking waves How is it realized? The solver is built by the means of the open source package OpenFOAM What is it applicable for? - The solver is optimized for spilling breaking waves - The compressibility of the air is neglected

7 Model set-up

8 Which is the main problem from the numerical point of view? Wave breaking is an unsteady multiphase flow where a wide range of interfacial length scales is involved air Wave propagation O(m)! scales larger than the grid size Volume Of Fluid water air bubbles Breaking event: entrainment of air bubbles O(10 4 m)! scales smaller than the grid size method for dispersed flow

9 Which method to handle the motion of bubbles? Balachandar,2009: St = τ p τ ξ = ( )( 2ρ Re p )( d ξ ) 2 ( ) 4/3 ξ η Assuming: ρ = 0.001, ξ = 0.01 m, η m, d = [ ] m Lagrangian Eulerian St [-] Equilibrium Eulerian Dusty gas d/η [-]

10 A quick look at the multiphase Eulerian methodology N-S equations discretized in a control volume with n phases inside n equations for the bulk of the volume + n 1 jump conditions across interfaces among phases. Equations are spatially averaged: - phase fraction α stems - the momentum transfer at the interface is not resolved and then needs to be modeled by a sub-grid term (α i ρ i u i ) t (α i ρ i ) t + (α i ρ i u i ) = S i + (α i ρ i u i u i ) = α i p + (α i ρ i T i )+α i ρ i g+m i Set of equations solved per each phase 2n equations

11 How can the coupling be realized? Coupling means that the VOF-like solver is combined with the multiphase Eulerian methodology. Which phases are involved? water + air above the free surface + n bubble classes = n+2! Different couplings exist, two have been tried: Eulerian framework for all phases Eulerian for bubbles in the mixture VOF for the mixture Numerical sharpening and Mi Numerical sharpening air air bubbles mixture air bubbles water

12 VOF with momentum transfer modeling at the free surface Glass of water Propagation of a solitary wave 0.15 Instabilities at the free surface in both cases! Surface elevation from SWL [m] x [m] 6 8

13 VOF without momentum transfer modeling at the free surface Calculation of void fractions (MULES algorithm) Glass of water water (w) continuous air (air) n classes ρ mixt = α wρ w +α air ρ air α w +α air ν mixt = α wν w +α air ν air α w +α air Calculation of pressure and velocities (PISO algorithm) mixture (mixt) n classes Main achievement: modeling of the momentum transfer between water and continuous air not needed anymore!

14 Description of the model

15 Governing equations Averaged mass and momentum conservation equations: (α i ρ i u i ) t (α i ρ i ) t + (α i ρ i u i ) = S i + (α i ρ i u i u i ) = α i p + (α i ρ i T eff i )+α i ρ i g+m i The n classes have the same density and viscosity but they have different diameter S i and M i represent mass transfer and interfacial forces among phases respectively

16 Effective stress tensor T eff i By employing the eddy-viscosity approximation, the effective stress tensor is: [ 1 T eff = 2(νi eff ]) 2 ( u i + u T i ) 1 ] 3 ( u i)i 2 3 k ii The effective viscosity of the mixture phase ν eff is (Deen et al., 2001): ν eff = ν +ν t +ν BI ν = ν mixt and ν t is the turbulent viscosity calculated by a dynamic Smagorinsky model ν BI is an extra-term accounting for the bubble-induced turbulence (Sato et al., 1975): ν BI = 0.6 n α i d i u i u mixt i=1

17 Mass exchange among phases S i S i = B + i +B i +C + i +C i +E i +D i breakage Mass transfer among the n classes: - breakage B i + +Bi (Prinche et Blanch, 1990) - coalescence C i + +Ci (Martinez-Bazan et al., 1999) coalescence d j < d i < d k Mass transfer between the dispersed bubbles and air -from air into the n classes air entrainment E i -from the n classes into air degassing D i Degassing modeled as (Hänsch et al., 2012): D i = ϕ air ρ i α i / (a t t) where t is the time step, a t = 20 a constant and ϕ air = 0.5tanh[100(α air 0.5)]+0.5

18 Air entrainment modeling The air entrainment is reproduced by a sub-grid scale model (Derakhti and Kirby, 2014): ( ) E i = c enρ mixt 4π σ α f i mixt n ǫ i (d i sgs 2 )2 f i - c en is a parameter which regulates the amount of entrained bubbles - f i is the size spectrum of the entrained bubbles (Deane and Stokes, 2002): { ( d i f i = 2 ) 10 3 if ( d i 2 ) > 1 mm. ( d i 2 ) 3 2 if ( d i 2 ) 1 mm. - i is the width of each bubble class Bubbles are entrained at the free surface cells when ǫ sgs is larger than a fixed threshold! ǫ sgs is the rate of transfer of energy from the resolved to the sub-grid scales modeled by LES turbulence model: ǫ sgs = 2ν t 0.5( u mixt + u T mixt) 2

19 Momentum transfer among phases M i Between every class and mixture phase: M i = M D,i +M L,i +M VM,i +M TD,i - Drag force M D,i = 3 4 ρ mixtα mixt α i C D u i u mixt (u i u mixt ) d i - Lift force M L,i = ρ mixt α mixt α i C L (u i u mixt ) ( u mixt ) ( - Virtual mass force M VM,i = ρ mixt α mixt α i C Dumixt ) VM Dt Du i Dt - Turbulent dispersion force M TD,i = 3 4 C D ρ mixt d i (ν t +ν BI ) S b u i u mixt α i Between water and continuous air, i.e. at the free surface, the tension force is accounted as (Brackbill et al., 1992): σ = N/m and κ is the free surface curvature. M surf,i = σκ α (1)

20 Free surface sharpening method An additional term is added to the interface transport equations of water and continuous air: (α i ρ i ) t + (α i ρ i u i )+ [u c α i (1 α i )] = S i The compression velocity u c compresses the interface counteracting the numerical diffusion: u c = min(c u r,max( u r )) α α C is a coefficient that the user can specify and was taken as 1

21 Validation of the model

22 Bubble column of (Deen et al., 2001): simulation set-up z y x 1.00 m Uniform 3D hexaedral mesh of size 0.01 m LES dynamic Smagorinsky model employed Flow simulated for 600 s Turbulence quantities time-averaged after the first 30 s. Two different number of classes n: - n = 1 d i = 4 mm - n = 11 d i = [ ] mm initial water level 0.45 m measurement point (0,0,-0.20m) air 0.15 m Why this case? It resembles the motion of the bubble plume in waves. The difference is that the air entrainment is imposed by boundary conditions m

23 Bubble column of (Deen et al., 2001): results uz,w [m s 1 ] experiment 1 n = x [m] Mean water axial velocity uz,air [m s 1 ] experiment n = x [m] Mean air axial velocity αair [-] n = 1 n = x [m] Mean gas hold-up u 2 x,y,z,w [m s 1 ] experiment u 2 x,w 0.05 u 2 y,w 0.1 u 2 z,w x [m] Mean water turbulence fluctuations kw [m 2 s 2 ] experiment 1 n = x [m] Mean turbulent kinetic energy Spectral density [m 2 s] u x,w u y,w u z,w 5/ Frequency [Hz] Spectrum of turbulence 3

24 Bubble column of (Deen et al., 2001): the flow

25 Application of the model

26 An isolated unsteady spilling wave Case set-up: - Flume is 25 m long by 0.6 wide by 0.6 m high. Still water level at 0.4 m from the constant bottom - Breaking event by a dispersive focusing method:80 linear components of a JONSWAP spectrum (T p = 1.7 s, H s = m, γ = 3.3.) - Linear superposition at focusing point x = 15.0 m Simulation: - Quasi-uniform 3D mesh of size m - Flow simulated for 25 s. - LES dynamic Smagorinsky employed - waves2foam (Jacobsen et al., 2012) coupled with the model and used for wave generation

27 An isolated unsteady spilling wave: surface elevation η [m] linear CFD t [-] 0.2 Simulated breaking point x b 15.0 m Simulated breaking time t b s Period of highest wave T c 1.6 s t = t t ob T c η [m] linear CFD t [-] Upper: x=8 m. Lower: x = x b = 15.0 m Comparison reveals second order effects

28 An isolated unsteady spilling wave: bubble entrainment Parameters c en and ǫ sgs of the air entrainment model need to be calibrated. How? (Lamarre and Melville, 1991) measured void fraction in similar waves c en = 20 and ǫ sgs = 0.01 m 2 s 3 V b /V 0 [ ] A b /V 0 [ ] experiment 7phases 14phases t [-] experiment 7phases 14phases t [-] - Two simulations: 7 phases and 14 phases - Volume per unit length of crest: V b = α b H(α b α b thld )da A - Cross-sectional area: A b = H(α b α b thld )da A

29 An isolated unsteady spilling wave: the bubble plume As in study of (Rojas and Loewen, 2010), the roller moved downstream with a speed 100% of the celerity of the highest wave (C c = L c /T c 1.8 m s 1 ) and the thickness of the roller was around 5 cm.

30 An isolated spilling wave: impact on a cylinder In the same domain a (slender) cylinder with a diameter D = 0.05 was placed at x = 15.7 m (why? to let the plume develop!) Computation of computed of in-line force without and with bubbles (7 phases) No-slip condition for water velocity at the cylinder surface

31 An isolated spilling wave: impact without bubbles Comparison with the Morison force: - the cylinder center x = 15.7 m used for analytical surface elevation, velocity and acceleration - C D and C M evaluated according to Re and KC at different depths - Based on LWT: 10 Re and KC 20 η [m] In line Force [N] linear CFD t [-] Morison CFD t [-]

32 An isolated spilling wave: impact with bubbles

33 An isolated spilling wave: impact without VS with bubbles Differences are recognized at the interval 0.15 t 0.4 when the bubble plume passed over the cylinder Largest differences are localized at around t = 0.25 t when the volume of the bubble plume was maximum In line Force [N] In line Force [N] t [-] CFD no bubbles CFD with bubbles CFD no bubbles CFD with bubbles t [-]

34 The boundary layer around the cylinder In the adopted model, the cell size must be larger the biggest bubble ( 1 cm usually) For the highest Re - just near the roller! - separation and vortex shedding occur The resolution of mesh around the cylinder may not be enough high to capture the separation - uniform current in the 3D flume - Re = C D CD [-] dynamic Smagorinsky 0.5 dynamic Smagorinsky with WF constant Smagorinsky with vd DES t [s]

35 Conclusions

36 Main conclusions and on-going work A CFD simulation of the entire breaking wave process involves interfacial length scales both smaller and larger than the grid size. An Eulerian model coupled with a VOF-type interface capturing algorithm was developed to handle such multi-scale problem. A bubble column flow was analyzed to test the momentum transfer modeling and the implemented mass transfer formulations. An isolated breaking wave generated by a dispersive focusing method was simulated to test the air entrainment model The impact of the spilling wave on a slender cylinder was reproduced to estimate the effect of bubbles on the exerted in-line force. Further investigations are needed, especially concerning the flow around the cylinder.

37 References

38 References References I Balachandar S A scaling analysis for point-particle approaches to turbulent multiphase flows. Int. J. Multiphase Flow 35: Sato, Y., and Sekoguchi, K., Liquid velocity distribution in two-phase bubble flow. International Journal of Multiphase Flow, 2(1), pp Martinez-Bazan, C., Montanes, J., and Lasheras, J., On the breakup of an air bubble injected into a fully developed turbulent flow. Part 1. Breakup frequency. Journal of Fluid Mechanics, 401, pp Martinez-Bazan, C., Montanes, J. L., and Lasheras, J., On the breakup of an air bubble injected into a fully developed turbulent flow. Part 2. Size PDF of the resulting daughter bubbles. Journal of Fluid Mechanics, 401, pp Prince, M. J., and Blanch, H. W., Bubble Coalescence and Break-Up in Air-Sparged Bubble Columns. AIChE Journal, 36(10), pp Hansch, S., Lucas, D., Krepper, E., and Hohne, T., A multi-field two-fluid concept for transitions between different scales of interfacial structures. International Journal of Multiphase Flow, 47, Dec., pp

39 References References II Derakhti, M., and Kirby, J. T., Bubble entrainment and liquid-bubble interaction under unsteady breaking waves. Journal of Fluid Mechanics, 761, Nov., pp Deane, G. B., and Stokes, M. D., Scale dependence of bubble creation mechanisms in breaking waves.. Nature, 418(6900), Aug., pp Brackbill, J., Kothe, D., and Zemach, C., A continuum method for modeling surface tension. Journal of Computational Physics, 100, pp Deen, N. G., Solberg, T., and Hjertager, B. H., Large eddy simulation of the Gas Liquid flow in a square cross-sectioned bubble column. Chemical Engineering Science, 56, pp Rojas, G., and Loewen, M. R., Void fraction measurements beneath plunging and spilling breaking waves. J. Geophys. Res., 115(C8), p. C08001.

MULTIDIMENSIONAL TURBULENCE SPECTRA - STATISTICAL ANALYSIS OF TURBULENT VORTICES

MULTIDIMENSIONAL TURBULENCE SPECTRA - STATISTICAL ANALYSIS OF TURBULENT VORTICES Ninth International Conference on CFD in the Minerals and Process Industries CSIRO, Melbourne, Australia 10-12 December 2012 MULTIDIMENSIONAL TURBULENCE SPECTRA - STATISTICAL ANALYSIS OF TURBULENT VORTICES

More information

Validation analyses of advanced turbulence model approaches for stratified two-phase flows

Validation analyses of advanced turbulence model approaches for stratified two-phase flows Computational Methods in Multiphase Flow VIII 361 Validation analyses of advanced turbulence model approaches for stratified two-phase flows M. Benz & T. Schulenberg Institute for Nuclear and Energy Technologies,

More information

A STUDY ON SLUG INDUCED STRESSES USING FILE-BASED COUPLING TECHNIQUE

A STUDY ON SLUG INDUCED STRESSES USING FILE-BASED COUPLING TECHNIQUE A STUDY ON SLUG INDUCED STRESSES USING FILE-BASED COUPLING TECHNIQUE Abdalellah O. Mohmmed, Mohammad S. Nasif and Hussain H. Al-Kayiem Department of Mechanical Engineering, Universiti Teknologi Petronas,

More information

BUBBLE ENTRAINMENT AND LIQUID-BUBBLE INTERACTION UNDER UNSTEADY BREAKING WAVES. Morteza Derakhti

BUBBLE ENTRAINMENT AND LIQUID-BUBBLE INTERACTION UNDER UNSTEADY BREAKING WAVES. Morteza Derakhti BUBBLE ENTRAINMENT AND LIQUID-BUBBLE INTERACTION UNDER UNSTEADY BREAKING WAVES by Morteza Derakhti A thesis submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements

More information

Modeling Complex Flows! Direct Numerical Simulations! Computational Fluid Dynamics!

Modeling Complex Flows! Direct Numerical Simulations! Computational Fluid Dynamics! http://www.nd.edu/~gtryggva/cfd-course/! Modeling Complex Flows! Grétar Tryggvason! Spring 2011! Direct Numerical Simulations! In direct numerical simulations the full unsteady Navier-Stokes equations

More information

Model Studies on Slag-Metal Entrainment in Gas Stirred Ladles

Model Studies on Slag-Metal Entrainment in Gas Stirred Ladles Model Studies on Slag-Metal Entrainment in Gas Stirred Ladles Anand Senguttuvan Supervisor Gordon A Irons 1 Approach to Simulate Slag Metal Entrainment using Computational Fluid Dynamics Introduction &

More information

The effect of momentum flux ratio and turbulence model on the numerical prediction of atomization characteristics of air assisted liquid jets

The effect of momentum flux ratio and turbulence model on the numerical prediction of atomization characteristics of air assisted liquid jets ILASS Americas, 26 th Annual Conference on Liquid Atomization and Spray Systems, Portland, OR, May 204 The effect of momentum flux ratio and turbulence model on the numerical prediction of atomization

More information

Numerical simulation of wave breaking in turbulent two-phase Couette flow

Numerical simulation of wave breaking in turbulent two-phase Couette flow Center for Turbulence Research Annual Research Briefs 2012 171 Numerical simulation of wave breaking in turbulent two-phase Couette flow By D. Kim, A. Mani AND P. Moin 1. Motivation and objectives When

More information

Detailed Numerical Simulation of Liquid Jet in Cross Flow Atomization: Impact of Nozzle Geometry and Boundary Condition

Detailed Numerical Simulation of Liquid Jet in Cross Flow Atomization: Impact of Nozzle Geometry and Boundary Condition ILASS-Americas 25th Annual Conference on Liquid Atomization and Spray Systems, Pittsburgh, PA, May 23 Detailed Numerical Simulation of Liquid Jet in Cross Flow Atomization: Impact of Nozzle Geometry and

More information

OpenFOAM simulations of irregular waves and free surface effects around a monopile offshore wind turbine

OpenFOAM simulations of irregular waves and free surface effects around a monopile offshore wind turbine OpenFOAM simulations of irregular waves and free surface effects around a monopile offshore wind turbine Ariel J. Edesess 1 4 th Year PhD Candidate Supervisors: Dr. Denis Kelliher 1, Dr. Gareth Thomas

More information

Numerical Simulation of Gas-Liquid-Reactors with Bubbly Flows using a Hybrid Multiphase-CFD Approach

Numerical Simulation of Gas-Liquid-Reactors with Bubbly Flows using a Hybrid Multiphase-CFD Approach Numerical Simulation of Gas-Liquid-Reactors with Bubbly Flows using a Hybrid Multiphase-CFD Approach TFM Hybrid Interface Resolving Two-Fluid Model (HIRES-TFM) by Coupling of the Volume-of-Fluid (VOF)

More information

Engineering. Spring Department of Fluid Mechanics, Budapest University of Technology and Economics. Large-Eddy Simulation in Mechanical

Engineering. Spring Department of Fluid Mechanics, Budapest University of Technology and Economics. Large-Eddy Simulation in Mechanical Outline Geurts Book Department of Fluid Mechanics, Budapest University of Technology and Economics Spring 2013 Outline Outline Geurts Book 1 Geurts Book Origin This lecture is strongly based on the book:

More information

Turbulence Dispersion Force Physics, Model Derivation and Evaluation

Turbulence Dispersion Force Physics, Model Derivation and Evaluation Turbulence Dispersion Force Physics, Model Derivation and Evaluation J.-M. Shi, T. Frank, A. Burns 3 Institute of Safety Research, FZ Rossendorf shi@fz-rossendorf.de ANSYS CFX Germany 3 ANSYS CFX FZR ANSYS

More information

Turbulent Boundary Layers & Turbulence Models. Lecture 09

Turbulent Boundary Layers & Turbulence Models. Lecture 09 Turbulent Boundary Layers & Turbulence Models Lecture 09 The turbulent boundary layer In turbulent flow, the boundary layer is defined as the thin region on the surface of a body in which viscous effects

More information

Paper ID ICLASS MODELING THE EFFECT OF THE INJECTION VELOCITY ON THE DISINTEGRATION OF ROUND TURBULENT LIQUID JETS USING LES/VOF TECHNIQUES

Paper ID ICLASS MODELING THE EFFECT OF THE INJECTION VELOCITY ON THE DISINTEGRATION OF ROUND TURBULENT LIQUID JETS USING LES/VOF TECHNIQUES ICLASS-2006 Aug.27-Sept.1, 2006, Kyoto, Japan Paper ID ICLASS06-282 MODELING THE EFFECT OF THE INJECTION VELOCITY ON THE DISINTEGRATION OF ROUND TURBULENT LIQUID JETS USING LES/VOF TECHNIQUES Vedanth Srinivasan

More information

Numerical Simulation of the Hagemann Entrainment Experiments

Numerical Simulation of the Hagemann Entrainment Experiments CCC Annual Report UIUC, August 14, 2013 Numerical Simulation of the Hagemann Entrainment Experiments Kenneth Swartz (BSME Student) Lance C. Hibbeler (Ph.D. Student) Department of Mechanical Science & Engineering

More information

Numerical study of turbulent two-phase Couette flow

Numerical study of turbulent two-phase Couette flow Center for Turbulence Research Annual Research Briefs 2014 41 Numerical study of turbulent two-phase Couette flow By A.Y. Ovsyannikov, D. Kim, A. Mani AND P. Moin 1. Motivation and objectives The motivation

More information

Pairwise Interaction Extended Point-Particle (PIEP) Model for droplet-laden flows: Towards application to the mid-field of a spray

Pairwise Interaction Extended Point-Particle (PIEP) Model for droplet-laden flows: Towards application to the mid-field of a spray Pairwise Interaction Extended Point-Particle (PIEP) Model for droplet-laden flows: Towards application to the mid-field of a spray Georges Akiki, Kai Liu and S. Balachandar * Department of Mechanical &

More information

, where the -function is equal to:

, where the -function is equal to: Paper ID ILASS08-000 ILASS08-9-4 ILASS 2008 Sep. 8-10, 2008, Como Lake, Italy BINARY COLLISION BETWEEN UNEQUAL SIZED DROPLETS. A NUMERICAL INVESTIGATION. N. Nikolopoulos 1, A. Theodorakakos 2 and G. Bergeles

More information

Investigation of an implicit solver for the simulation of bubble oscillations using Basilisk

Investigation of an implicit solver for the simulation of bubble oscillations using Basilisk Investigation of an implicit solver for the simulation of bubble oscillations using Basilisk D. Fuster, and S. Popinet Sorbonne Universités, UPMC Univ Paris 6, CNRS, UMR 79 Institut Jean Le Rond d Alembert,

More information

Nonlinear shape evolution of immiscible two-phase interface

Nonlinear shape evolution of immiscible two-phase interface Nonlinear shape evolution of immiscible two-phase interface Francesco Capuano 1,2,*, Gennaro Coppola 1, Luigi de Luca 1 1 Dipartimento di Ingegneria Industriale (DII), Università di Napoli Federico II,

More information

Eulerian interface-sharpening methods for hyperbolic problems

Eulerian interface-sharpening methods for hyperbolic problems Eulerian interface-sharpening methods for hyperbolic problems Application to compressible multiphase flow Keh-Ming Shyue Department of Mathematics National Taiwan University Taiwan 11:55-12:25, March 05,

More information

CFD modelling of multiphase flows

CFD modelling of multiphase flows 1 Lecture CFD-3 CFD modelling of multiphase flows Simon Lo CD-adapco Trident House, Basil Hill Road Didcot, OX11 7HJ, UK simon.lo@cd-adapco.com 2 VOF Free surface flows LMP Droplet flows Liquid film DEM

More information

Wind Flow Modeling The Basis for Resource Assessment and Wind Power Forecasting

Wind Flow Modeling The Basis for Resource Assessment and Wind Power Forecasting Wind Flow Modeling The Basis for Resource Assessment and Wind Power Forecasting Detlev Heinemann ForWind Center for Wind Energy Research Energy Meteorology Unit, Oldenburg University Contents Model Physics

More information

Direct Numerical Simulation of Single Bubble Rising in Viscous Stagnant Liquid

Direct Numerical Simulation of Single Bubble Rising in Viscous Stagnant Liquid Direct Numerical Simulation of Single Bubble Rising in Viscous Stagnant Liquid Nima. Samkhaniani, Azar. Ajami, Mohammad Hassan. Kayhani, Ali. Sarreshteh Dari Abstract In this paper, direct numerical simulation

More information

Modelling of Break-up and Coalescence in Bubbly Two-Phase Flows

Modelling of Break-up and Coalescence in Bubbly Two-Phase Flows Modelling of Break-up and Coalescence in Bubbly Two-Phase Flows Simon Lo and Dongsheng Zhang CD-adapco, Trident Park, Didcot OX 7HJ, UK e-mail: simon.lo@uk.cd-adapco.com Abstract Numerical simulations

More information

MODELLING OF MULTIPHASE FLOWS

MODELLING OF MULTIPHASE FLOWS MODELLING OF MULTIPHASE FLOWS FROM MICRO-SCALE TO MACRO-SCALE Department of Applied Mechanics, University of Technology, Gothenburg, Sweden. Siamuf Seminar October 2006 OUTLINE 1 GROUP PHILOSOPHY 2 PROJECTS

More information

Project Topic. Simulation of turbulent flow laden with finite-size particles using LBM. Leila Jahanshaloo

Project Topic. Simulation of turbulent flow laden with finite-size particles using LBM. Leila Jahanshaloo Project Topic Simulation of turbulent flow laden with finite-size particles using LBM Leila Jahanshaloo Project Details Turbulent flow modeling Lattice Boltzmann Method All I know about my project Solid-liquid

More information

Numerical Simulation of the Gas-Liquid Flow in a Square Crosssectioned

Numerical Simulation of the Gas-Liquid Flow in a Square Crosssectioned Numerical Simulation of the as-iquid Flow in a Square Crosssectioned Bubble Column * N.. Deen, T. Solberg and B.H. Hjertager Chem. Eng. ab., Aalborg Univ. Esbjerg, Niels Bohrs Vej 8, DK-6700 Esbjerg; Tel.

More information

AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS

AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS 1 / 29 AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS Hierarchy of Mathematical Models 1 / 29 AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS 2 / 29

More information

Fluid Dynamics Exercises and questions for the course

Fluid Dynamics Exercises and questions for the course Fluid Dynamics Exercises and questions for the course January 15, 2014 A two dimensional flow field characterised by the following velocity components in polar coordinates is called a free vortex: u r

More information

On the Breakup of Fluid Particles in Turbulent Flows

On the Breakup of Fluid Particles in Turbulent Flows On the Breakup of Fluid Particles in Turbulent Flows Ronnie Andersson and Bengt Andersson Dept. of Chemical and Biological Engineering, Chalmers University of Technology, SE-41296, Gothenburg, Sweden DOI

More information

Euler-Euler Modeling of Mass-Transfer in Bubbly Flows

Euler-Euler Modeling of Mass-Transfer in Bubbly Flows Euler-Euler Modeling of Mass-Transfer in Bubbly Flows Roland Rzehak Eckhard Krepper Text optional: Institutsname Prof. Dr. Hans Mustermann www.fzd.de Mitglied der Leibniz-Gemeinschaft Overview Motivation

More information

An OpenFOAM-based electro-hydrodynamical model

An OpenFOAM-based electro-hydrodynamical model An OpenFOAM-based electro-hydrodynamical model Ivo Roghair, Dirk van den Ende, Frieder Mugele Department of Science and Technology, University of Twente, Enschede, The Netherlands Keywords: modelling,

More information

CFD SIMULATIONS OF SINGLE AND TWO-PHASE MIXING PROESSES IN STIRRED TANK REACTORS

CFD SIMULATIONS OF SINGLE AND TWO-PHASE MIXING PROESSES IN STIRRED TANK REACTORS CFD SIMULATIONS OF SINGLE AND TWO-PHASE MIXING PROESSES IN STIRRED TANK REACTORS Hristo Vesselinov Hristov, Stephan Boden, Günther Hessel, Holger Kryk, Horst-Michael Prasser, and Wilfried Schmitt. Introduction

More information

Application of the immersed boundary method to simulate flows inside and outside the nozzles

Application of the immersed boundary method to simulate flows inside and outside the nozzles Application of the immersed boundary method to simulate flows inside and outside the nozzles E. Noël, A. Berlemont, J. Cousin 1, T. Ménard UMR 6614 - CORIA, Université et INSA de Rouen, France emeline.noel@coria.fr,

More information

RANS-LES inlet boundary condition for aerodynamic and aero-acoustic. acoustic applications. Fabrice Mathey Davor Cokljat Fluent Inc.

RANS-LES inlet boundary condition for aerodynamic and aero-acoustic. acoustic applications. Fabrice Mathey Davor Cokljat Fluent Inc. RANS-LES inlet boundary condition for aerodynamic and aero-acoustic acoustic applications Fabrice Mathey Davor Cokljat Fluent Inc. Presented by Fredrik Carlsson Fluent Sweden ZONAL MULTI-DOMAIN RANS/LES

More information

The Turbulent Rotational Phase Separator

The Turbulent Rotational Phase Separator The Turbulent Rotational Phase Separator J.G.M. Kuerten and B.P.M. van Esch Dept. of Mechanical Engineering, Technische Universiteit Eindhoven, The Netherlands j.g.m.kuerten@tue.nl Summary. The Rotational

More information

A unifying model for fluid flow and elastic solid deformation: a novel approach for fluid-structure interaction and wave propagation

A unifying model for fluid flow and elastic solid deformation: a novel approach for fluid-structure interaction and wave propagation A unifying model for fluid flow and elastic solid deformation: a novel approach for fluid-structure interaction and wave propagation S. Bordère a and J.-P. Caltagirone b a. CNRS, Univ. Bordeaux, ICMCB,

More information

3D Numerical Simulation of Supercritical Flow in Bends of Channel

3D Numerical Simulation of Supercritical Flow in Bends of Channel 3D Numerical Simulation of Supercritical Flow in Bends of Channel Masoud. Montazeri-Namin, Reyhaneh-Sadat. Ghazanfari-Hashemi, and Mahnaz. Ghaeini- Hessaroeyeh Abstract An attempt has been made to simulate

More information

Application of a buoyancy-modified k-ω SST turbulence model to simulate wave run-up around a monopile subjected to

Application of a buoyancy-modified k-ω SST turbulence model to simulate wave run-up around a monopile subjected to Application of a buoyancy-modified k-ω SST turbulence model to simulate wave run-up around a monopile subjected to regular waves using OpenFOAM Brecht Devolder a,b, *, Pieter Rauwoens b, Peter Troch a

More information

DEVELOPMENT OF A MULTIPLE VELOCITY MULTIPLE SIZE GROUP MODEL FOR POLY-DISPERSED MULTIPHASE FLOWS

DEVELOPMENT OF A MULTIPLE VELOCITY MULTIPLE SIZE GROUP MODEL FOR POLY-DISPERSED MULTIPHASE FLOWS DEVELOPMENT OF A MULTIPLE VELOCITY MULTIPLE SIZE GROUP MODEL FOR POLY-DISPERSED MULTIPHASE FLOWS Jun-Mei Shi, Phil Zwart 1, Thomas Frank 2, Ulrich Rohde, and Horst-Michael Prasser 1. Introduction Poly-dispersed

More information

Computational fluid dynamics study of flow depth in an open Venturi channel for Newtonian fluid

Computational fluid dynamics study of flow depth in an open Venturi channel for Newtonian fluid Computational fluid dynamics study of flow depth in an open Venturi channel for Newtonian fluid Prasanna Welahettige 1, Bernt Lie 1, Knut Vaagsaether 1 1 Department of Process, Energy and Environmental

More information

AER1310: TURBULENCE MODELLING 1. Introduction to Turbulent Flows C. P. T. Groth c Oxford Dictionary: disturbance, commotion, varying irregularly

AER1310: TURBULENCE MODELLING 1. Introduction to Turbulent Flows C. P. T. Groth c Oxford Dictionary: disturbance, commotion, varying irregularly 1. Introduction to Turbulent Flows Coverage of this section: Definition of Turbulence Features of Turbulent Flows Numerical Modelling Challenges History of Turbulence Modelling 1 1.1 Definition of Turbulence

More information

1D-3D COUPLED SIMULATION OF THE FUEL INJECTION INSIDE A HIGH PERFORMANCE ENGINE FOR MOTORSPORT APPLICATION: SPRAY TARGETING AND INJECTION TIMING

1D-3D COUPLED SIMULATION OF THE FUEL INJECTION INSIDE A HIGH PERFORMANCE ENGINE FOR MOTORSPORT APPLICATION: SPRAY TARGETING AND INJECTION TIMING 1D-3D COUPLED SIMULATION OF THE FUEL INJECTION INSIDE A HIGH PERFORMANCE ENGINE FOR MOTORSPORT APPLICATION: SPRAY TARGETING AND INJECTION TIMING M. Fiocco, D. Borghesi- Mahindra Racing S.P.A. Outline Introduction

More information

Simulating the effect of in-nozzle cavitation on liquid atomisation using a three-phase model

Simulating the effect of in-nozzle cavitation on liquid atomisation using a three-phase model Simulating the effect of in-nozzle cavitation on liquid atomisation using a three-phase model M.G. Mithun*,1, P. Koukouvnis 1, I. K. Karathanassis 1, M. Gavaises 1 1 City, University of London, UK Abstract

More information

FVM for Fluid-Structure Interaction with Large Structural Displacements

FVM for Fluid-Structure Interaction with Large Structural Displacements FVM for Fluid-Structure Interaction with Large Structural Displacements Željko Tuković and Hrvoje Jasak Zeljko.Tukovic@fsb.hr, h.jasak@wikki.co.uk Faculty of Mechanical Engineering and Naval Architecture

More information

On the validity of the twofluid model for simulations of bubbly flow in nuclear reactors

On the validity of the twofluid model for simulations of bubbly flow in nuclear reactors On the validity of the twofluid model for simulations of bubbly flow in nuclear reactors Henrik Ström 1, Srdjan Sasic 1, Klas Jareteg 2, Christophe Demazière 2 1 Division of Fluid Dynamics, Department

More information

A SHORT INTRODUCTION TO TWO-PHASE FLOWS Two-phase flows balance equations

A SHORT INTRODUCTION TO TWO-PHASE FLOWS Two-phase flows balance equations A SHORT INTRODUCTION TO TWO-PHASE FLOWS Two-phase flows balance equations Hervé Lemonnier DM2S/STMF/LIEFT, CEA/Grenoble, 38054 Grenoble Cedex 9 Ph. +33(0)4 38 78 45 40 herve.lemonnier@cea.fr, herve.lemonnier.sci.free.fr/tpf/tpf.htm

More information

Dispersed Multiphase Flow Modeling using Lagrange Particle Tracking Methods Dr. Markus Braun Ansys Germany GmbH

Dispersed Multiphase Flow Modeling using Lagrange Particle Tracking Methods Dr. Markus Braun Ansys Germany GmbH Dispersed Multiphase Flow Modeling using Lagrange Particle Tracking Methods Dr. Markus Braun Ansys Germany GmbH 2011 ANSYS, Inc., Markus Braun 1 Overview The Euler/Lagrange concept Breaking the barrier

More information

MODENA. Deliverable 3.2. WP s leader: TU/e. Simulations for foams, dispersion and mixing and developed SW. Principal investigator:

MODENA. Deliverable 3.2. WP s leader: TU/e. Simulations for foams, dispersion and mixing and developed SW. Principal investigator: Delivery date: 11-4-2015 MODENA Authors: Patrick Anderson, Martien Hulsen, Christos Mitrias TU/e E-mail : pda@tue.nl Deliverable 3.2 Simulations for foams, dispersion and mixing and developed SW Daniele

More information

Computations of unsteady cavitating flow on wing profiles using a volume fraction method and mass transfer models

Computations of unsteady cavitating flow on wing profiles using a volume fraction method and mass transfer models Computations of unsteady cavitating flow on wing profiles using a volume fraction method and mass transfer models Tobias Huuva *, Aurelia Cure, Göran Bark * and Håkan Nilsson * Chalmers University of Technology,

More information

International Engineering Research Journal Comparative Study of Sloshing Phenomenon in a Tank Using CFD

International Engineering Research Journal Comparative Study of Sloshing Phenomenon in a Tank Using CFD International Engineering Research Journal Comparative Study of Sloshing Phenomenon in a Tank Using CFD Vilas P. Ingle, Dattatraya Nalawade and Mahesh Jagadale ϯ PG Student, Mechanical Engineering Department,

More information

Flow Structure Investigations in a "Tornado" Combustor

Flow Structure Investigations in a Tornado Combustor Flow Structure Investigations in a "Tornado" Combustor Igor Matveev Applied Plasma Technologies, Falls Church, Virginia, 46 Serhiy Serbin National University of Shipbuilding, Mikolayiv, Ukraine, 545 Thomas

More information

TABLE OF CONTENTS CHAPTER TITLE PAGE

TABLE OF CONTENTS CHAPTER TITLE PAGE v TABLE OF CONTENTS CHAPTER TITLE PAGE TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS LIST OF APPENDICES v viii ix xii xiv CHAPTER 1 INTRODUCTION 1.1 Introduction 1 1.2 Literature Review

More information

Reduction of parasitic currents in the DNS VOF code FS3D

Reduction of parasitic currents in the DNS VOF code FS3D M. Boger a J. Schlottke b C.-D. Munz a B. Weigand b Reduction of parasitic currents in the DNS VOF code FS3D Stuttgart, March 2010 a Institut für Aerodynamik und Gasdynamik, Universität Stuttgart, Pfaffenwaldring

More information

Numerical Simulation of Flow Around An Elliptical Cylinder at High Reynolds Numbers

Numerical Simulation of Flow Around An Elliptical Cylinder at High Reynolds Numbers International Journal of Fluids Engineering. ISSN 0974-3138 Volume 5, Number 1 (2013), pp. 29-37 International Research Publication House http://www.irphouse.com Numerical Simulation of Flow Around An

More information

INFLUENCE OF JOULE THOMPSON EFFECT ON THE TEMPERATURE DISTRIBUTION IN VERTICAL TWO PHASE FLOW

INFLUENCE OF JOULE THOMPSON EFFECT ON THE TEMPERATURE DISTRIBUTION IN VERTICAL TWO PHASE FLOW INFLUENCE OF JOULE THOMPSON EFFECT ON THE TEMPERATURE DISTRIBUTION IN VERTICAL TWO PHASE FLOW Daniel Merino Gabriel S. Bassani, Luiz Eduardo A. P. Duarte Deibi E. Garcia Angela O. Nieckele Two-phase Flow

More information

The Role of Water Droplets in Air-sea Interaction: Rain and Sea Spray

The Role of Water Droplets in Air-sea Interaction: Rain and Sea Spray The Role of Water Droplets in Air-sea Interaction: Rain and Sea Spray Fabrice Veron Air-Sea Interaction Laboratory School of Marine Science and Policy College of Earth, Ocean, & Environment University

More information

Inter-phase heat transfer and energy coupling in turbulent dispersed multiphase flows. UPMC Univ Paris 06, CNRS, UMR 7190, Paris, F-75005, France a)

Inter-phase heat transfer and energy coupling in turbulent dispersed multiphase flows. UPMC Univ Paris 06, CNRS, UMR 7190, Paris, F-75005, France a) Inter-phase heat transfer and energy coupling in turbulent dispersed multiphase flows Y. Ling, 1 S. Balachandar, 2 and M. Parmar 2 1) Institut Jean Le Rond d Alembert, Sorbonne Universités, UPMC Univ Paris

More information

A. Kovacevic N. Stosic I. Smith. Screw Compressors. Three Dimensional Computational Fluid Dynamics and Solid Fluid Interaction.

A. Kovacevic N. Stosic I. Smith. Screw Compressors. Three Dimensional Computational Fluid Dynamics and Solid Fluid Interaction. Screw Compressors A. Kovacevic N. Stosic I. Smith Screw Compressors Three Dimensional Computational Fluid Dynamics and Solid Fluid Interaction With 83 Figures Ahmed Kovacevic Nikola Stosic Ian Smith School

More information

Height function interface reconstruction algorithm for the simulation of boiling flows

Height function interface reconstruction algorithm for the simulation of boiling flows Computational Methods in Multiphase Flow VI 69 Height function interface reconstruction algorithm for the simulation of boiling flows M. Magnini & B. Pulvirenti Dipartimento di Ingegneria Energetica, Nucleare

More information

CFD SIMULATION OF SOLID-LIQUID STIRRED TANKS

CFD SIMULATION OF SOLID-LIQUID STIRRED TANKS CFD SIMULATION OF SOLID-LIQUID STIRRED TANKS Divyamaan Wadnerkar 1, Ranjeet P. Utikar 1, Moses O. Tade 1, Vishnu K. Pareek 1 Department of Chemical Engineering, Curtin University Perth, WA 6102 r.utikar@curtin.edu.au

More information

Modelling multiphase flows in the Chemical and Process Industry

Modelling multiphase flows in the Chemical and Process Industry Modelling multiphase flows in the Chemical and Process Industry Simon Lo 9/11/09 Contents Breakup and coalescence in bubbly flows Particle flows with the Discrete Element Modelling approach Multiphase

More information

CFD Simulation and Experimental Study of New Developed Centrifugal Trays

CFD Simulation and Experimental Study of New Developed Centrifugal Trays CFD Simulation and Experimental Study of New Developed Centrifugal Trays N. Naziri, R. Zadghaffari, and H. Naziri Abstract In this work, a computational fluid dynamics (CFD) model is developed to predict

More information

Computational Fluid Dynamics 2

Computational Fluid Dynamics 2 Seite 1 Introduction Computational Fluid Dynamics 11.07.2016 Computational Fluid Dynamics 2 Turbulence effects and Particle transport Martin Pietsch Computational Biomechanics Summer Term 2016 Seite 2

More information

Simulation of Cross Flow Induced Vibration

Simulation of Cross Flow Induced Vibration Simulation of Cross Flow Induced Vibration Eric Williams, P.Eng Graduate Student, University of New Brunswic, Canada Andrew Gerber, PhD, P.Eng Associate Professor, University of New Brunswic, Canada Marwan

More information

Detailed 3D modelling of mass transfer processes in two phase flows with dynamic interfaces

Detailed 3D modelling of mass transfer processes in two phase flows with dynamic interfaces Detailed 3D modelling of mass transfer processes in two phase flows with dynamic interfaces D. Darmana, N.G. Deen, J.A.M. Kuipers Fundamentals of Chemical Reaction Engineering, Faculty of Science and Technology,

More information

INTRODUCTION TO MULTIPHASE FLOW. Mekanika Fluida II -Haryo Tomo-

INTRODUCTION TO MULTIPHASE FLOW. Mekanika Fluida II -Haryo Tomo- 1 INTRODUCTION TO MULTIPHASE FLOW Mekanika Fluida II -Haryo Tomo- 2 Definitions Multiphase flow is simultaneous flow of Matters with different phases( i.e. gas, liquid or solid). Matters with different

More information

Numerical Studies of Droplet Deformation and Break-up

Numerical Studies of Droplet Deformation and Break-up ILASS Americas 14th Annual Conference on Liquid Atomization and Spray Systems, Dearborn, MI, May 2001 Numerical Studies of Droplet Deformation and Break-up B. T. Helenbrook Department of Mechanical and

More information

Evaluation of Liquid Fuel Spray Models for Hybrid RANS/LES and DLES Prediction of Turbulent Reactive Flows

Evaluation of Liquid Fuel Spray Models for Hybrid RANS/LES and DLES Prediction of Turbulent Reactive Flows Evaluation of Liquid Fuel Spray Models for Hybrid RANS/LES and DLES Prediction of Turbulent Reactive Flows by Ali Afshar A thesis submitted in conformity with the requirements for the degree of Masters

More information

P = 1 3 (σ xx + σ yy + σ zz ) = F A. It is created by the bombardment of the surface by molecules of fluid.

P = 1 3 (σ xx + σ yy + σ zz ) = F A. It is created by the bombardment of the surface by molecules of fluid. CEE 3310 Thermodynamic Properties, Aug. 27, 2010 11 1.4 Review A fluid is a substance that can not support a shear stress. Liquids differ from gasses in that liquids that do not completely fill a container

More information

Numerical Methods in Aerodynamics. Turbulence Modeling. Lecture 5: Turbulence modeling

Numerical Methods in Aerodynamics. Turbulence Modeling. Lecture 5: Turbulence modeling Turbulence Modeling Niels N. Sørensen Professor MSO, Ph.D. Department of Civil Engineering, Alborg University & Wind Energy Department, Risø National Laboratory Technical University of Denmark 1 Outline

More information

Simulating Interfacial Tension of a Falling. Drop in a Moving Mesh Framework

Simulating Interfacial Tension of a Falling. Drop in a Moving Mesh Framework Simulating Interfacial Tension of a Falling Drop in a Moving Mesh Framework Anja R. Paschedag a,, Blair Perot b a TU Berlin, Institute of Chemical Engineering, 10623 Berlin, Germany b University of Massachusetts,

More information

RANS COMPUTATIONS OF A CAVITATING VORTEX ROPE AT FULL LOAD

RANS COMPUTATIONS OF A CAVITATING VORTEX ROPE AT FULL LOAD 6 th IAHR International Meeting of the Workgroup on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems, September 9-11, 2015, Ljubljana, Slovenia RANS COMPUTATIONS OF A CAVITATING VORTEX

More information

A Discussion on The Effect of Mesh Resolution on Convective Boundary Layer Statistics and Structures Generated by Large-Eddy Simulation by Sullivan

A Discussion on The Effect of Mesh Resolution on Convective Boundary Layer Statistics and Structures Generated by Large-Eddy Simulation by Sullivan 耶鲁 - 南京信息工程大学大气环境中心 Yale-NUIST Center on Atmospheric Environment A Discussion on The Effect of Mesh Resolution on Convective Boundary Layer Statistics and Structures Generated by Large-Eddy Simulation

More information

FINITE ELEMENT METHOD IN

FINITE ELEMENT METHOD IN FINITE ELEMENT METHOD IN FLUID DYNAMICS Part 6: Particles transport model Marcela B. Goldschmit 2 3 Lagrangean Model The particles movement equations are solved. The trajectory of each particles can be

More information

Evaluation of turbulence closure models under spilling and plunging breakers in the surf zone

Evaluation of turbulence closure models under spilling and plunging breakers in the surf zone University of Plymouth PEARL https://pearl.plymouth.ac.uk 1 University of Plymouth Research Outputs University of Plymouth Research Outputs 216-8-1 Evaluation of turbulence closure models under spilling

More information

Chapter 1 Fluid Characteristics

Chapter 1 Fluid Characteristics Chapter 1 Fluid Characteristics 1.1 Introduction 1.1.1 Phases Solid increasing increasing spacing and intermolecular liquid latitude of cohesive Fluid gas (vapor) molecular force plasma motion 1.1.2 Fluidity

More information

Turbulence - Theory and Modelling GROUP-STUDIES:

Turbulence - Theory and Modelling GROUP-STUDIES: Lund Institute of Technology Department of Energy Sciences Division of Fluid Mechanics Robert Szasz, tel 046-0480 Johan Revstedt, tel 046-43 0 Turbulence - Theory and Modelling GROUP-STUDIES: Turbulence

More information

GRAVITY-DRIVEN MOTION OF A SWARM OF BUBBLES IN A VERTICAL PIPE

GRAVITY-DRIVEN MOTION OF A SWARM OF BUBBLES IN A VERTICAL PIPE 27th International Conference on Parallel Computational Fluid Dynamics Parallel CFD2015 GRAVITY-DRIVEN MOTION OF A SWARM OF BUBBLES IN A VERTICAL PIPE Néstor Balcázar, Oriol Lehmkuhl, Jesús Castro, Joaquim

More information

Pressure corrected SPH for fluid animation

Pressure corrected SPH for fluid animation Pressure corrected SPH for fluid animation Kai Bao, Hui Zhang, Lili Zheng and Enhua Wu Analyzed by Po-Ram Kim 2 March 2010 Abstract We present pressure scheme for the SPH for fluid animation In conventional

More information

Jumper Analysis with Interacting Internal Two-phase Flow

Jumper Analysis with Interacting Internal Two-phase Flow Jumper Analysis with Interacting Internal Two-phase Flow Leonardo Chica University of Houston College of Technology Mechanical Engineering Technology March 20, 2012 Overview Problem Definition Jumper Purpose

More information

The Truth about diffusion (in liquids)

The Truth about diffusion (in liquids) The Truth about diffusion (in liquids) Aleksandar Donev Courant Institute, New York University & Eric Vanden-Eijnden, Courant In honor of Berni Julian Alder LLNL, August 20th 2015 A. Donev (CIMS) Diffusion

More information

Simulation analysis using CFD on vibration behaviors of circular cylinders subjected to free jets through narrow gaps in the vicinity of walls

Simulation analysis using CFD on vibration behaviors of circular cylinders subjected to free jets through narrow gaps in the vicinity of walls Fluid Structure Interaction V 85 Simulation analysis using CFD on vibration behaviors of circular cylinders subjected to free jets through narrow gaps in the vicinity of walls K. Fujita Osaka City University,

More information

Wall-Functions and Boundary Layer Response to Pulsating and Oscillating Turbulent Channel Flows

Wall-Functions and Boundary Layer Response to Pulsating and Oscillating Turbulent Channel Flows K. Hanjalić, Y. Nagano and S. Jakirlić (Editors) Wall-Functions and Boundary Layer Response to Pulsating and Oscillating Turbulent Channel Flows D. Panara 1, M. Porta 2,R. Dannecker 1, and B. Noll 1 1

More information

International Journal of Modern Trends in Engineering and Research e-issn No.: , Date: April, 2016

International Journal of Modern Trends in Engineering and Research   e-issn No.: , Date: April, 2016 International Journal of Modern Trends in Engineering and Research www.ijmter.com e-issn No.:2349-9745, Date: 28-30 April, 2016 Study of Sloshing Phenomenon in an Automotive Irregular Shaped Fuel Tank

More information

ANSYS Advanced Solutions for Gas Turbine Combustion. Gilles Eggenspieler 2011 ANSYS, Inc.

ANSYS Advanced Solutions for Gas Turbine Combustion. Gilles Eggenspieler 2011 ANSYS, Inc. ANSYS Advanced Solutions for Gas Turbine Combustion Gilles Eggenspieler ANSYS, Inc. 1 Agenda Steady State: New and Existing Capabilities Reduced Order Combustion Models Finite-Rate Chemistry Models Chemistry

More information

CLASS SCHEDULE 2013 FALL

CLASS SCHEDULE 2013 FALL CLASS SCHEDULE 2013 FALL Class # or Lab # 1 Date Aug 26 2 28 Important Concepts (Section # in Text Reading, Lecture note) Examples/Lab Activities Definition fluid; continuum hypothesis; fluid properties

More information

Considerations on bubble fragmentation models

Considerations on bubble fragmentation models J. Fluid Mech. 21), vol. 661, pp. 159 177. c Cambridge University Press 21 doi:1.117/s2211213186 159 Considerations on bubble fragmentation models C. MARTÍNEZ-BAZÁN 1, J. RODRÍGUEZ-RODRÍGUEZ 2, G. B. DEANE

More information

Choice of urea-spray models in CFD simulations of urea-scr systems

Choice of urea-spray models in CFD simulations of urea-scr systems Choice of urea-sray models in CFD simulations of urea-scr systems Andreas Lundström & Henrik Ström Cometence Centre for Catalysis / Chemical Reaction Engineering Deartment of Chemical Engineering and Environmental

More information

Prediction of Minimum Fluidisation Velocity Using a CFD-PBM Coupled Model in an Industrial Gas Phase Polymerisation Reactor

Prediction of Minimum Fluidisation Velocity Using a CFD-PBM Coupled Model in an Industrial Gas Phase Polymerisation Reactor Journal of Engineering Science, Vol. 10, 95 105, 2014 Prediction of Minimum Fluidisation Velocity Using a CFD-PBM Coupled Model in an Industrial Gas Phase Polymerisation Reactor Vahid Akbari and Mohd.

More information

Computational Analysis of an Imploding Gas:

Computational Analysis of an Imploding Gas: 1/ 31 Direct Numerical Simulation of Navier-Stokes Equations Stephen Voelkel University of Notre Dame October 19, 2011 2/ 31 Acknowledges Christopher M. Romick, Ph.D. Student, U. Notre Dame Dr. Joseph

More information

MULTISCALE NUMERICAL STUDY OF TURBULENT FLOW AND BUBBLE ENTRAINMENT

MULTISCALE NUMERICAL STUDY OF TURBULENT FLOW AND BUBBLE ENTRAINMENT MULTISCALE NUMERICAL STUDY OF TURBULENT FLOW AND BUBBLE ENTRAINMENT IN THE SURF ZONE BY GANGFENG MA, JAMES T. KIRBY AND FENGYAN SHI RESEARCH REPORT NO. CACR-12-8 JUNE 212 This study was supported by the

More information

Simulation of unsteady muzzle flow of a small-caliber gun

Simulation of unsteady muzzle flow of a small-caliber gun Advances in Fluid Mechanics VI 165 Simulation of unsteady muzzle flow of a small-caliber gun Y. Dayan & D. Touati Department of Computational Mechanics & Ballistics, IMI, Ammunition Group, Israel Abstract

More information

CFD in COMSOL Multiphysics

CFD in COMSOL Multiphysics CFD in COMSOL Multiphysics Mats Nigam Copyright 2016 COMSOL. Any of the images, text, and equations here may be copied and modified for your own internal use. All trademarks are the property of their respective

More information

A G-equation formulation for large-eddy simulation of premixed turbulent combustion

A G-equation formulation for large-eddy simulation of premixed turbulent combustion Center for Turbulence Research Annual Research Briefs 2002 3 A G-equation formulation for large-eddy simulation of premixed turbulent combustion By H. Pitsch 1. Motivation and objectives Premixed turbulent

More information

Multi-Scale Modeling of Turbulence and Microphysics in Clouds. Steven K. Krueger University of Utah

Multi-Scale Modeling of Turbulence and Microphysics in Clouds. Steven K. Krueger University of Utah Multi-Scale Modeling of Turbulence and Microphysics in Clouds Steven K. Krueger University of Utah 10,000 km Scales of Atmospheric Motion 1000 km 100 km 10 km 1 km 100 m 10 m 1 m 100 mm 10 mm 1 mm Planetary

More information

Modelling of turbulent flows: RANS and LES

Modelling of turbulent flows: RANS and LES Modelling of turbulent flows: RANS and LES Turbulenzmodelle in der Strömungsmechanik: RANS und LES Markus Uhlmann Institut für Hydromechanik Karlsruher Institut für Technologie www.ifh.kit.edu SS 2012

More information

Numerical Simulation of Core- Annular Flow in a Curved Pipe

Numerical Simulation of Core- Annular Flow in a Curved Pipe Numerical Simulation of Core- Annular Flow in a Curved Pipe Simulation of two phase flow with OpenFOAM Report Number:2625(MEAH:277) Master of Science Thesis Process and Energy Numerical Simulation of

More information