Optimal combination forecasts for hierarchical time series

Size: px
Start display at page:

Download "Optimal combination forecasts for hierarchical time series"

Transcription

1 Optimal combination forecasts for hierarchical time series Rob J. Hyndman Roman A. Ahmed Department of Econometrics and Business Statistics

2 Outline 1 Review of hierarchical forecasting 2 3 Simulation study 4 Summary

3 Introduction Review of hierarchical forecasting Total A B C AA AB AC BA BB BC CA CB CC Examples Manufacturing product hierarchies Pharmaceutical sales Net labour turnover

4 Hierarchical time series Review of hierarchical forecasting A hierarchical time series is a collection of several time series that are linked together in a hierarchical structure. Forecasts should be aggregate consistent, unbiased, minimum variance. Existing methods: Bottom-up Top-down Middle-out How to compute forecast intervals? Most research is concerned about relative performance of existing methods.

5 Top-down method Advantages Works well in presence of low counts. Single forecasting model easy to build Provides reliable forecasts for aggregate levels. Disadvantages Review of hierarchical forecasting Loss of information, especially individual series dynamics. Distribution of forecasts to lower levels can be difficult No prediction intervals

6 Bottom-up method Advantages No loss of information. Better captures dynamics of individual series. Disadvantages Review of hierarchical forecasting Laborious because of number of series to be forecast. Constructing forecasting models is harder because of noisy data at bottom level. No prediction intervals

7 We aim to develop a new statistical methodology for forecasting hierarchical time series which: 1 provides point forecasts that are consistent across the hierarchy; 2 allows for correlations and interaction between series at each level; 3 provides estimates of forecast uncertainty which are consistent across the hierarchy; 4 allows for ad hoc adjustments and inclusion of covariates at any level.

8 Notation Total A B C K : number of levels in the hierarchy (excl. Total). Y t : observed aggregate of all series at time t. Y X,t : observation on series X at time t. Y i,t : vector of all series at level i in time t. Y t = [Y t, Y 1,t,..., Y K,t ] Y t = [Y t, Y A,t, Y B,t, Y C,t ] = Y A,t Y B,t Y A,t Y B,t Y C,t Y C,t }{{}}{{} Y Y K,t t = SY K,t S

9 Notation Total A B C AA AB AC Y t = Y t Y A,t Y B,t Y C,t Y AA,t Y AB,t Y AC,t Y BA,t Y BB,t Y BC,t Y CA,t Y CB,t Y CC,t = BA BB BC }{{} S CA CB CC Y AA,t Y AB,t Y AC,t Y BA,t Y BB,t Y BC,t Y CA,t Y CB,t Y CC,t }{{} Y K,t

10 Forecasts Y t = SY K,t Let Ŷ n (h) be vector of independent (base) forecasts for horizon h, stacked in same order as Y t. Write where Ŷ n (h) = Sβ n (h) + ε h β n (h) = E[Y K,n+h Y 1,..., Y n ] is unknown mean of bottom level K ε h has zero mean and covariance matrix Σ h. Idea: Estimate β n (h) using regression.

11 Optimal combination forecasts ˆβ n (h) = (S Σ h S) 1 S Σ hŷn(h) where Σ h is generalized inverse of Σ h. Ỹ n (h) = S ˆβ n (h) = S(S Σ h S) 1 S Σ hŷn(h) Revised forecasts Base forecasts Revised forecasts unbiased if Ŷ n (h) unbiased: E[Ỹn(h)] = S(S Σ h S) 1 S Σ h Sβ n(h) = Sβ n (h). Minimum variance by construction: Var[Ỹn(h)] = S(S Σ h S) 1 S

12 Optimal combination forecasts Ỹ n (h) = S(S Σ h S) 1 S Σ hŷn(h) Revised forecasts Base forecasts Problem: Don t know Σ h and hard to estimate. Solution: Assume ε h Sε K,h where ε K,h is the forecast error at bottom level. Then Σ h SΩ h S where Ω h = Var(ε K,h ). If Moore-Penrose generalized inverse used, then (S Σ S) 1 S Σ = (S S) 1 S. Ỹ n (h) = S(S S) 1 S Ŷ n (h)

13 Optimal combination forecasts Ỹ n (h) = S(S S) 1 S Ŷ n (h) OLS solution. Optimal weighted average of base forecasts. Computational difficulties in big hierarchies due to size of S matrix. Optimal weights are S(S S) 1 S Weights are independent of the data! Total A B C Weights: S(S S) 1 S =

14 Optimal combination forecasts Total A B C AA AB AC Weights: S(S S) 1 S = BA BB BC CA CB CC

15 Variances Ỹ n (h) = S(S S) 1 S Ŷ n (h) Var[Ỹ n (h)] = SΩ h S = Σ h. Revised forecasts have the same variance matrix as original forecasts. Revised forecasts have the same variance matrix as bottom-up forecasts. The assumption Σ h SΩ h S results in loss of minimum variance property. Need to estimate Ω h to produce prediction intervals.

16 Adjustments and covariates Adjustments can be made to base forecasts at any level. These will automatically propagate through to other levels of the hierarchy. Covariates can be included in the base forecasts at any level. Point forecasts are always consistent across the hierarchy. Relationships between series at any level are handled automatically. However, some simplifying assumptions have been made. Estimates of forecast uncertainty are consistent across the hierarchy, but we need an estimate of Ω h.

17 Simulation design Simulation study Hierarchy of four levels with each disaggregation into four series. Bottom level: 64 series. Total series: 85. Series length: n = 100 (90 used for fitting, 10 for evaluation) Data generated for each series by ARIMA(p, d, q) process with random order and coefficients. Aggregate and three components generated. Fourth series obtained by subtraction. 600 hierarchies Base forecasts using Hyndman et al. (IJF 2002)

18 Simulation results Simulation study Average MAE by level Level Top-down Bottom-up Optimal combination 0 (Top) (Bottom) Average Top-down uses disaggregation by historical proportions

19 Summary Summary Very flexible method. Can work with any base forecasts. Method outperforms bottom-up and top-down, especially for middle levels. Conceptually easy to implement: OLS on base forecasts. Weights independent of the data. So calculate once and reapply when new data available. Remaining problems How to explain variance results compared to simulation? How to compute Ω h in order to obtain prediction intervals? Computationally it may be difficult for large hierarchies. (But solution coming up!)

20 For more information Summary Paper and computer code will appear at Paper will also appear on RePEc and in NEP-FOR report

Forecasting hierarchical (and grouped) time series

Forecasting hierarchical (and grouped) time series George Athanasopoulos (with Rob J. Hyndman, Nikos Kourentzes and Fotis Petropoulos) Forecasting hierarchical (and grouped) time series Total A B C AA AB AC BA BB BC CA CB CC 1 Outline 1 Hierarchical and

More information

Forecasting in Hierarchical Models

Forecasting in Hierarchical Models Forecasting in Hierarchical Models Lucy Morgan Supervisor: Nikolaos Kourentzes 20 th February 2015 Introduction Forecasting is the process of making statements about events whose actual outcomes (typically)

More information

Optimal forecast reconciliation for big time series data

Optimal forecast reconciliation for big time series data Rob J Hyndman Optimal forecast reconciliation for big time series data Total A AA AB AC B BA BB BC C CA CB CC Follow along using R Requirements Install the hts package and its dependencies. Optimal forecast

More information

Forecasting: principles and practice. Rob J Hyndman 4 Hierarchical forecasting

Forecasting: principles and practice. Rob J Hyndman 4 Hierarchical forecasting Forecasting: principles and practice Rob J Hyndman 4 Hierarchical forecasting 1 Outline 1 Hierarchical and grouped time series 2 Optimal forecast reconciliation 3 hts package for R 4 Application: Australian

More information

Fast computation of reconciled forecasts for hierarchical and grouped time series

Fast computation of reconciled forecasts for hierarchical and grouped time series ISSN 1440-771X Department of Econometrics and Business Statistics http://wwwbusecomonasheduau/depts/ebs/pubs/wpapers/ Fast computation of reconciled forecasts for hierarchical and grouped time series Rob

More information

Optimal forecast reconciliation for hierarchical and grouped time series through trace minimization

Optimal forecast reconciliation for hierarchical and grouped time series through trace minimization ISSN 1440-771X Department of Econometrics and Business Statistics http://business.monash.edu/econometrics-and-businessstatistics/research/publications Optimal forecast reconciliation for hierarchical and

More information

Fast computation of reconciled forecasts in hierarchical and grouped time series

Fast computation of reconciled forecasts in hierarchical and grouped time series Rob J Hyndman Fast computation of reconciled forecasts in hierarchical and grouped time series Total A B C AX AY AZ BX BY BZ CX CY CZ 1 Outline 1 Optimally reconciled forecasts 2 Fast computation 3 hts

More information

Optimal forecast reconciliation for hierarchical and grouped time series through trace minimization

Optimal forecast reconciliation for hierarchical and grouped time series through trace minimization Optimal forecast reconciliation for hierarchical and grouped time series through trace minimization Shanika L Wickramasuriya Department of Econometrics and Business Statistics, Monash University, VIC 3800,

More information

Time series can often be naturally disaggregated

Time series can often be naturally disaggregated Optimally Reconciling Forecasts in a Hierarchy Rob J. Hyndman and George Athanasopoulos Preview We know that when forecasting the product hierarchy, reconciliation is invariably needed to make the sum

More information

Forecasting hierarchical and grouped time series through trace minimization

Forecasting hierarchical and grouped time series through trace minimization ISSN 1440-771X Department of Econometrics and Business Statistics http://business.monash.edu/econometrics-and-business-statistics/research/publications Forecasting hierarchical and grouped time series

More information

Rob J Hyndman. Visualizing and forecasting. big time series data. Victoria: scaled

Rob J Hyndman. Visualizing and forecasting. big time series data. Victoria: scaled Rob J Hyndman Visualizing and forecasting big time series data Victoria: scaled Outline 1 Examples of biggish time series 2 Time series visualisation 3 BLUF: Best Linear Unbiased Forecasts 4 Application:

More information

Applied Econometrics (QEM)

Applied Econometrics (QEM) Applied Econometrics (QEM) The Simple Linear Regression Model based on Prinicples of Econometrics Jakub Mućk Department of Quantitative Economics Jakub Mućk Applied Econometrics (QEM) Meeting #2 The Simple

More information

Measuring the fit of the model - SSR

Measuring the fit of the model - SSR Measuring the fit of the model - SSR Once we ve determined our estimated regression line, we d like to know how well the model fits. How far/close are the observations to the fitted line? One way to do

More information

Simple Linear Regression (Part 3)

Simple Linear Regression (Part 3) Chapter 1 Simple Linear Regression (Part 3) 1 Write an Estimated model Statisticians/Econometricians usually write an estimated model together with some inference statistics, the following are some formats

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression In simple linear regression we are concerned about the relationship between two variables, X and Y. There are two components to such a relationship. 1. The strength of the relationship.

More information

Weighted Least Squares

Weighted Least Squares Weighted Least Squares The standard linear model assumes that Var(ε i ) = σ 2 for i = 1,..., n. As we have seen, however, there are instances where Var(Y X = x i ) = Var(ε i ) = σ2 w i. Here w 1,..., w

More information

Applied Time Series Topics

Applied Time Series Topics Applied Time Series Topics Ivan Medovikov Brock University April 16, 2013 Ivan Medovikov, Brock University Applied Time Series Topics 1/34 Overview 1. Non-stationary data and consequences 2. Trends and

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression ST 430/514 Recall: A regression model describes how a dependent variable (or response) Y is affected, on average, by one or more independent variables (or factors, or covariates)

More information

DEPARTMENT OF ECONOMETRICS AND BUSINESS STATISTICS

DEPARTMENT OF ECONOMETRICS AND BUSINESS STATISTICS ISSN 1440-771X ISBN 0 7326 1085 0 Unmasking the Theta Method Rob J. Hyndman and Baki Billah Working Paper 5/2001 2001 DEPARTMENT OF ECONOMETRICS AND BUSINESS STATISTICS AUSTRALIA Unmasking the Theta method

More information

Grouped time-series forecasting: Application to regional infant mortality counts

Grouped time-series forecasting: Application to regional infant mortality counts Grouped time-series forecasting: Application to regional infant mortality counts Han Lin Shang and Peter W. F. Smith University of Southampton Motivation 1 Multiple time series can be disaggregated by

More information

Modelling and Forecasting Australian Domestic Tourism

Modelling and Forecasting Australian Domestic Tourism Modelling and Forecasting Australian Domestic Tourism George Athanasopoulos & Rob Hyndman Outline Background 1 Background 2 Data 3 Regression models 4 Exponential smoothing via innovations state space

More information

Kostas Triantafyllopoulos University of Sheffield. Motivation / algorithmic pairs trading. Model set-up Detection of local mean-reversion

Kostas Triantafyllopoulos University of Sheffield. Motivation / algorithmic pairs trading. Model set-up Detection of local mean-reversion Detecting Mean Reverted Patterns in Statistical Arbitrage Outline Kostas Triantafyllopoulos University of Sheffield Motivation / algorithmic pairs trading Model set-up Detection of local mean-reversion

More information

2. Regression Review

2. Regression Review 2. Regression Review 2.1 The Regression Model The general form of the regression model y t = f(x t, β) + ε t where x t = (x t1,, x tp ), β = (β 1,..., β m ). ε t is a random variable, Eε t = 0, Var(ε t

More information

Automatic forecasting with a modified exponential smoothing state space framework

Automatic forecasting with a modified exponential smoothing state space framework ISSN 1440-771X Department of Econometrics and Business Statistics http://www.buseco.monash.edu.au/depts/ebs/pubs/wpapers/ Automatic forecasting with a modified exponential smoothing state space framework

More information

Section 3: Simple Linear Regression

Section 3: Simple Linear Regression Section 3: Simple Linear Regression Carlos M. Carvalho The University of Texas at Austin McCombs School of Business http://faculty.mccombs.utexas.edu/carlos.carvalho/teaching/ 1 Regression: General Introduction

More information

Forecast UPC-Level FMCG Demand, Part III: Grouped Reconciliation

Forecast UPC-Level FMCG Demand, Part III: Grouped Reconciliation 2016 IEEE International Conference on Big Data (Big Data) Forecast UPC-Level FMCG Demand, Part III: Grouped Reconciliation Dazhi Yang, Gary S. W. Goh, Siwei Jiang and Allan N. Zhang Singapore Institute

More information

Quantitative Analysis of Financial Markets. Summary of Part II. Key Concepts & Formulas. Christopher Ting. November 11, 2017

Quantitative Analysis of Financial Markets. Summary of Part II. Key Concepts & Formulas. Christopher Ting. November 11, 2017 Summary of Part II Key Concepts & Formulas Christopher Ting November 11, 2017 christopherting@smu.edu.sg http://www.mysmu.edu/faculty/christophert/ Christopher Ting 1 of 16 Why Regression Analysis? Understand

More information

Assessing others rationality in real time

Assessing others rationality in real time Assessing others rationality in real time Gaetano GABALLO Ph.D.candidate University of Siena, Italy June 4, 2009 Gaetano GABALLO Ph.D.candidate University of Siena, Italy Assessing () others rationality

More information

Hierarchical Probabilistic Forecasting of Electricity Demand with Smart Meter Data

Hierarchical Probabilistic Forecasting of Electricity Demand with Smart Meter Data Hierarchical Probabilistic Forecasting of Electricity Demand with Smart Meter Data Souhaib Ben Taieb Department of Econometrics and Business Statistics, Monash University James W. Taylor Saïd Business

More information

Introduction to Econometrics Midterm Examination Fall 2005 Answer Key

Introduction to Econometrics Midterm Examination Fall 2005 Answer Key Introduction to Econometrics Midterm Examination Fall 2005 Answer Key Please answer all of the questions and show your work Clearly indicate your final answer to each question If you think a question is

More information

of being selected and varying such probability across strata under optimal allocation leads to increased accuracy.

of being selected and varying such probability across strata under optimal allocation leads to increased accuracy. 5 Sampling with Unequal Probabilities Simple random sampling and systematic sampling are schemes where every unit in the population has the same chance of being selected We will now consider unequal probability

More information

Nonparametric time series forecasting with dynamic updating

Nonparametric time series forecasting with dynamic updating 18 th World IMAS/MODSIM Congress, Cairns, Australia 13-17 July 2009 http://mssanz.org.au/modsim09 1 Nonparametric time series forecasting with dynamic updating Han Lin Shang and Rob. J. Hyndman Department

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression September 24, 2008 Reading HH 8, GIll 4 Simple Linear Regression p.1/20 Problem Data: Observe pairs (Y i,x i ),i = 1,...n Response or dependent variable Y Predictor or independent

More information

Using Temporal Hierarchies to Predict Tourism Demand

Using Temporal Hierarchies to Predict Tourism Demand Using Temporal Hierarchies to Predict Tourism Demand International Symposium on Forecasting 29 th June 2015 Nikolaos Kourentzes Lancaster University George Athanasopoulos Monash University n.kourentzes@lancaster.ac.uk

More information

Are Forecast Updates Progressive?

Are Forecast Updates Progressive? CIRJE-F-736 Are Forecast Updates Progressive? Chia-Lin Chang National Chung Hsing University Philip Hans Franses Erasmus University Rotterdam Michael McAleer Erasmus University Rotterdam and Tinbergen

More information

Weighted Least Squares

Weighted Least Squares Weighted Least Squares The standard linear model assumes that Var(ε i ) = σ 2 for i = 1,..., n. As we have seen, however, there are instances where Var(Y X = x i ) = Var(ε i ) = σ2 w i. Here w 1,..., w

More information

Linear regression methods

Linear regression methods Linear regression methods Most of our intuition about statistical methods stem from linear regression. For observations i = 1,..., n, the model is Y i = p X ij β j + ε i, j=1 where Y i is the response

More information

Covariance and Correlation

Covariance and Correlation Covariance and Correlation ST 370 The probability distribution of a random variable gives complete information about its behavior, but its mean and variance are useful summaries. Similarly, the joint probability

More information

Lecture: Simultaneous Equation Model (Wooldridge s Book Chapter 16)

Lecture: Simultaneous Equation Model (Wooldridge s Book Chapter 16) Lecture: Simultaneous Equation Model (Wooldridge s Book Chapter 16) 1 2 Model Consider a system of two regressions y 1 = β 1 y 2 + u 1 (1) y 2 = β 2 y 1 + u 2 (2) This is a simultaneous equation model

More information

Chapter 2: simple regression model

Chapter 2: simple regression model Chapter 2: simple regression model Goal: understand how to estimate and more importantly interpret the simple regression Reading: chapter 2 of the textbook Advice: this chapter is foundation of econometrics.

More information

13 Simple Linear Regression

13 Simple Linear Regression B.Sc./Cert./M.Sc. Qualif. - Statistics: Theory and Practice 3 Simple Linear Regression 3. An industrial example A study was undertaken to determine the effect of stirring rate on the amount of impurity

More information

ECON 3150/4150 spring term 2014: Exercise set for the first seminar and DIY exercises for the first few weeks of the course

ECON 3150/4150 spring term 2014: Exercise set for the first seminar and DIY exercises for the first few weeks of the course ECON 3150/4150 spring term 2014: Exercise set for the first seminar and DIY exercises for the first few weeks of the course Ragnar Nymoen 13 January 2014. Exercise set to seminar 1 (week 6, 3-7 Feb) This

More information

Ch 2: Simple Linear Regression

Ch 2: Simple Linear Regression Ch 2: Simple Linear Regression 1. Simple Linear Regression Model A simple regression model with a single regressor x is y = β 0 + β 1 x + ɛ, where we assume that the error ɛ is independent random component

More information

variability of the model, represented by σ 2 and not accounted for by Xβ

variability of the model, represented by σ 2 and not accounted for by Xβ Posterior Predictive Distribution Suppose we have observed a new set of explanatory variables X and we want to predict the outcomes ỹ using the regression model. Components of uncertainty in p(ỹ y) variability

More information

Ma 3/103: Lecture 25 Linear Regression II: Hypothesis Testing and ANOVA

Ma 3/103: Lecture 25 Linear Regression II: Hypothesis Testing and ANOVA Ma 3/103: Lecture 25 Linear Regression II: Hypothesis Testing and ANOVA March 6, 2017 KC Border Linear Regression II March 6, 2017 1 / 44 1 OLS estimator 2 Restricted regression 3 Errors in variables 4

More information

Fitting a regression model

Fitting a regression model Fitting a regression model We wish to fit a simple linear regression model: y = β 0 + β 1 x + ɛ. Fitting a model means obtaining estimators for the unknown population parameters β 0 and β 1 (and also for

More information

Kriging Luc Anselin, All Rights Reserved

Kriging Luc Anselin, All Rights Reserved Kriging Luc Anselin Spatial Analysis Laboratory Dept. Agricultural and Consumer Economics University of Illinois, Urbana-Champaign http://sal.agecon.uiuc.edu Outline Principles Kriging Models Spatial Interpolation

More information

Quantitative Methods I: Regression diagnostics

Quantitative Methods I: Regression diagnostics Quantitative Methods I: Regression University College Dublin 10 December 2014 1 Assumptions and errors 2 3 4 Outline Assumptions and errors 1 Assumptions and errors 2 3 4 Assumptions: specification Linear

More information

MS&E 226: Small Data

MS&E 226: Small Data MS&E 226: Small Data Lecture 6: Bias and variance (v5) Ramesh Johari ramesh.johari@stanford.edu 1 / 49 Our plan today We saw in last lecture that model scoring methods seem to be trading off two different

More information

Problems. Suppose both models are fitted to the same data. Show that SS Res, A SS Res, B

Problems. Suppose both models are fitted to the same data. Show that SS Res, A SS Res, B Simple Linear Regression 35 Problems 1 Consider a set of data (x i, y i ), i =1, 2,,n, and the following two regression models: y i = β 0 + β 1 x i + ε, (i =1, 2,,n), Model A y i = γ 0 + γ 1 x i + γ 2

More information

Forecasting 1 to h steps ahead using partial least squares

Forecasting 1 to h steps ahead using partial least squares Forecasting 1 to h steps ahead using partial least squares Philip Hans Franses Econometric Institute, Erasmus University Rotterdam November 10, 2006 Econometric Institute Report 2006-47 I thank Dick van

More information

Introduction to Econometrics Final Examination Fall 2006 Answer Sheet

Introduction to Econometrics Final Examination Fall 2006 Answer Sheet Introduction to Econometrics Final Examination Fall 2006 Answer Sheet Please answer all of the questions and show your work. If you think a question is ambiguous, clearly state how you interpret it before

More information

Ph.D. Qualifying Exam Monday Tuesday, January 4 5, 2016

Ph.D. Qualifying Exam Monday Tuesday, January 4 5, 2016 Ph.D. Qualifying Exam Monday Tuesday, January 4 5, 2016 Put your solution to each problem on a separate sheet of paper. Problem 1. (5106) Find the maximum likelihood estimate of θ where θ is a parameter

More information

STAT5044: Regression and Anova. Inyoung Kim

STAT5044: Regression and Anova. Inyoung Kim STAT5044: Regression and Anova Inyoung Kim 2 / 47 Outline 1 Regression 2 Simple Linear regression 3 Basic concepts in regression 4 How to estimate unknown parameters 5 Properties of Least Squares Estimators:

More information

A Short Introduction to Curve Fitting and Regression by Brad Morantz

A Short Introduction to Curve Fitting and Regression by Brad Morantz A Short Introduction to Curve Fitting and Regression by Brad Morantz bradscientist@machine-cognition.com Overview What can regression do for me? Example Model building Error Metrics OLS Regression Robust

More information

Regression with correlation for the Sales Data

Regression with correlation for the Sales Data Regression with correlation for the Sales Data Scatter with Loess Curve Time Series Plot Sales 30 35 40 45 Sales 30 35 40 45 0 10 20 30 40 50 Week 0 10 20 30 40 50 Week Sales Data What is our goal with

More information

Chapter 5 Matrix Approach to Simple Linear Regression

Chapter 5 Matrix Approach to Simple Linear Regression STAT 525 SPRING 2018 Chapter 5 Matrix Approach to Simple Linear Regression Professor Min Zhang Matrix Collection of elements arranged in rows and columns Elements will be numbers or symbols For example:

More information

Making sense of Econometrics: Basics

Making sense of Econometrics: Basics Making sense of Econometrics: Basics Lecture 2: Simple Regression Egypt Scholars Economic Society Happy Eid Eid present! enter classroom at http://b.socrative.com/login/student/ room name c28efb78 Outline

More information

Internal vs. external validity. External validity. This section is based on Stock and Watson s Chapter 9.

Internal vs. external validity. External validity. This section is based on Stock and Watson s Chapter 9. Section 7 Model Assessment This section is based on Stock and Watson s Chapter 9. Internal vs. external validity Internal validity refers to whether the analysis is valid for the population and sample

More information

INTRODUCING LINEAR REGRESSION MODELS Response or Dependent variable y

INTRODUCING LINEAR REGRESSION MODELS Response or Dependent variable y INTRODUCING LINEAR REGRESSION MODELS Response or Dependent variable y Predictor or Independent variable x Model with error: for i = 1,..., n, y i = α + βx i + ε i ε i : independent errors (sampling, measurement,

More information

F9 F10: Autocorrelation

F9 F10: Autocorrelation F9 F10: Autocorrelation Feng Li Department of Statistics, Stockholm University Introduction In the classic regression model we assume cov(u i, u j x i, x k ) = E(u i, u j ) = 0 What if we break the assumption?

More information

ECON The Simple Regression Model

ECON The Simple Regression Model ECON 351 - The Simple Regression Model Maggie Jones 1 / 41 The Simple Regression Model Our starting point will be the simple regression model where we look at the relationship between two variables In

More information

CHAPTER 4 STATISTICAL MODELS FOR STRENGTH USING SPSS

CHAPTER 4 STATISTICAL MODELS FOR STRENGTH USING SPSS 69 CHAPTER 4 STATISTICAL MODELS FOR STRENGTH USING SPSS 4.1 INTRODUCTION Mix design for concrete is a process of search for a mixture satisfying the required performance of concrete, such as workability,

More information

Applied Regression. Applied Regression. Chapter 2 Simple Linear Regression. Hongcheng Li. April, 6, 2013

Applied Regression. Applied Regression. Chapter 2 Simple Linear Regression. Hongcheng Li. April, 6, 2013 Applied Regression Chapter 2 Simple Linear Regression Hongcheng Li April, 6, 2013 Outline 1 Introduction of simple linear regression 2 Scatter plot 3 Simple linear regression model 4 Test of Hypothesis

More information

Analisi Statistica per le Imprese

Analisi Statistica per le Imprese , Analisi Statistica per le Imprese Dip. di Economia Politica e Statistica 4.3. 1 / 33 You should be able to:, Underst model building using multiple regression analysis Apply multiple regression analysis

More information

Regularization in Hierarchical Time Series Forecasting With Application to Electricity Smart Meter Data

Regularization in Hierarchical Time Series Forecasting With Application to Electricity Smart Meter Data Regularization in Hierarchical Time Series Forecasting With Application to Electricity Smart Meter Data Souhaib Ben Taieb Monash Business School Monash University Jiafan Yu Dept. of CEE Stanford University

More information

Lecture 14 Simple Linear Regression

Lecture 14 Simple Linear Regression Lecture 4 Simple Linear Regression Ordinary Least Squares (OLS) Consider the following simple linear regression model where, for each unit i, Y i is the dependent variable (response). X i is the independent

More information

A state space model for exponential smoothing with group seasonality

A state space model for exponential smoothing with group seasonality ISSN 1440-771X Department of Econometrics and Business Statistics http://www.buseco.monash.edu.au/depts/ebs/pubs/wpapers/ A state space model for exponential smoothing with group seasonality Pim Ouwehand,

More information

Regression. ECO 312 Fall 2013 Chris Sims. January 12, 2014

Regression. ECO 312 Fall 2013 Chris Sims. January 12, 2014 ECO 312 Fall 2013 Chris Sims Regression January 12, 2014 c 2014 by Christopher A. Sims. This document is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License What

More information

MFin Econometrics I Session 4: t-distribution, Simple Linear Regression, OLS assumptions and properties of OLS estimators

MFin Econometrics I Session 4: t-distribution, Simple Linear Regression, OLS assumptions and properties of OLS estimators MFin Econometrics I Session 4: t-distribution, Simple Linear Regression, OLS assumptions and properties of OLS estimators Thilo Klein University of Cambridge Judge Business School Session 4: Linear regression,

More information

Lecture 5: Clustering, Linear Regression

Lecture 5: Clustering, Linear Regression Lecture 5: Clustering, Linear Regression Reading: Chapter 10, Sections 3.1-2 STATS 202: Data mining and analysis Sergio Bacallado September 19, 2018 1 / 23 Announcements Starting next week, Julia Fukuyama

More information

Regression Models - Introduction

Regression Models - Introduction Regression Models - Introduction In regression models, two types of variables that are studied: A dependent variable, Y, also called response variable. It is modeled as random. An independent variable,

More information

Well-developed and understood properties

Well-developed and understood properties 1 INTRODUCTION TO LINEAR MODELS 1 THE CLASSICAL LINEAR MODEL Most commonly used statistical models Flexible models Well-developed and understood properties Ease of interpretation Building block for more

More information

TMA4255 Applied Statistics V2016 (5)

TMA4255 Applied Statistics V2016 (5) TMA4255 Applied Statistics V2016 (5) Part 2: Regression Simple linear regression [11.1-11.4] Sum of squares [11.5] Anna Marie Holand To be lectured: January 26, 2016 wiki.math.ntnu.no/tma4255/2016v/start

More information

Linear Regression Model. Badr Missaoui

Linear Regression Model. Badr Missaoui Linear Regression Model Badr Missaoui Introduction What is this course about? It is a course on applied statistics. It comprises 2 hours lectures each week and 1 hour lab sessions/tutorials. We will focus

More information

Forecasting. Simultaneous equations bias (Lect 16)

Forecasting. Simultaneous equations bias (Lect 16) Forecasting. Simultaneous equations bias (Lect 16) Ragnar Nymoen University of Oslo 11 April 2013 1 / 20 References Same as to Lecture 15 (as a background to the forecasting part) HGL, Ch 9.7.2 (forecasting

More information

SF2930: REGRESION ANALYSIS LECTURE 1 SIMPLE LINEAR REGRESSION.

SF2930: REGRESION ANALYSIS LECTURE 1 SIMPLE LINEAR REGRESSION. SF2930: REGRESION ANALYSIS LECTURE 1 SIMPLE LINEAR REGRESSION. Tatjana Pavlenko 17 January 2018 WHAT IS REGRESSION? INTRODUCTION Regression analysis is a statistical technique for investigating and modeling

More information

Introduction to Estimation Methods for Time Series models. Lecture 1

Introduction to Estimation Methods for Time Series models. Lecture 1 Introduction to Estimation Methods for Time Series models Lecture 1 Fulvio Corsi SNS Pisa Fulvio Corsi Introduction to Estimation () Methods for Time Series models Lecture 1 SNS Pisa 1 / 19 Estimation

More information

Reading Assignment. Distributed Lag and Autoregressive Models. Chapter 17. Kennedy: Chapters 10 and 13. AREC-ECON 535 Lec G 1

Reading Assignment. Distributed Lag and Autoregressive Models. Chapter 17. Kennedy: Chapters 10 and 13. AREC-ECON 535 Lec G 1 Reading Assignment Distributed Lag and Autoregressive Models Chapter 17. Kennedy: Chapters 10 and 13. AREC-ECON 535 Lec G 1 Distributed Lag and Autoregressive Models Distributed lag model: y t = α + β

More information

Combining country-specific forecasts when forecasting Euro area macroeconomic aggregates

Combining country-specific forecasts when forecasting Euro area macroeconomic aggregates Combining country-specific forecasts when forecasting Euro area macroeconomic aggregates Jing Zeng March 26, 215 Abstract European Monetary Union (EMU) member countries forecasts are often combined to

More information

Max. Likelihood Estimation. Outline. Econometrics II. Ricardo Mora. Notes. Notes

Max. Likelihood Estimation. Outline. Econometrics II. Ricardo Mora. Notes. Notes Maximum Likelihood Estimation Econometrics II Department of Economics Universidad Carlos III de Madrid Máster Universitario en Desarrollo y Crecimiento Económico Outline 1 3 4 General Approaches to Parameter

More information

Hierarchical Modelling for Multivariate Spatial Data

Hierarchical Modelling for Multivariate Spatial Data Hierarchical Modelling for Multivariate Spatial Data Geography 890, Hierarchical Bayesian Models for Environmental Spatial Data Analysis February 15, 2011 1 Point-referenced spatial data often come as

More information

Multiple Linear Regression

Multiple Linear Regression Multiple Linear Regression Simple linear regression tries to fit a simple line between two variables Y and X. If X is linearly related to Y this explains some of the variability in Y. In most cases, there

More information

Lecture 5: Clustering, Linear Regression

Lecture 5: Clustering, Linear Regression Lecture 5: Clustering, Linear Regression Reading: Chapter 10, Sections 3.1-3.2 STATS 202: Data mining and analysis October 4, 2017 1 / 22 .0.0 5 5 1.0 7 5 X2 X2 7 1.5 1.0 0.5 3 1 2 Hierarchical clustering

More information

3 Multiple Linear Regression

3 Multiple Linear Regression 3 Multiple Linear Regression 3.1 The Model Essentially, all models are wrong, but some are useful. Quote by George E.P. Box. Models are supposed to be exact descriptions of the population, but that is

More information

Time Series Analysis

Time Series Analysis Time Series Analysis hm@imm.dtu.dk Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby 1 Outline of the lecture Regression based methods, 1st part: Introduction (Sec.

More information

Monitoring and data filtering II. Dan Jensen IPH, KU

Monitoring and data filtering II. Dan Jensen IPH, KU Monitoring and data filtering II Dan Jensen IPH, KU Outline Introduction to Dynamic Linear Models (DLM) - Conceptual introduction - Difference between the Classical methods and DLM - A very simple DLM

More information

THE APPLICATION OF GREY SYSTEM THEORY TO EXCHANGE RATE PREDICTION IN THE POST-CRISIS ERA

THE APPLICATION OF GREY SYSTEM THEORY TO EXCHANGE RATE PREDICTION IN THE POST-CRISIS ERA International Journal of Innovative Management, Information & Production ISME Internationalc20 ISSN 285-5439 Volume 2, Number 2, December 20 PP. 83-89 THE APPLICATION OF GREY SYSTEM THEORY TO EXCHANGE

More information

Hierarchical Modeling for Multivariate Spatial Data

Hierarchical Modeling for Multivariate Spatial Data Hierarchical Modeling for Multivariate Spatial Data Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department

More information

2.4.3 Estimatingσ Coefficient of Determination 2.4. ASSESSING THE MODEL 23

2.4.3 Estimatingσ Coefficient of Determination 2.4. ASSESSING THE MODEL 23 2.4. ASSESSING THE MODEL 23 2.4.3 Estimatingσ 2 Note that the sums of squares are functions of the conditional random variables Y i = (Y X = x i ). Hence, the sums of squares are random variables as well.

More information

Econometrics of Panel Data

Econometrics of Panel Data Econometrics of Panel Data Jakub Mućk Meeting # 1 Jakub Mućk Econometrics of Panel Data Meeting # 1 1 / 31 Outline 1 Course outline 2 Panel data Advantages of Panel Data Limitations of Panel Data 3 Pooled

More information

Gaussian with mean ( µ ) and standard deviation ( σ)

Gaussian with mean ( µ ) and standard deviation ( σ) Slide from Pieter Abbeel Gaussian with mean ( µ ) and standard deviation ( σ) 10/6/16 CSE-571: Robotics X ~ N( µ, σ ) Y ~ N( aµ + b, a σ ) Y = ax + b + + + + 1 1 1 1 1 1 1 1 1 1, ~ ) ( ) ( ), ( ~ ), (

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression Reading: Hoff Chapter 9 November 4, 2009 Problem Data: Observe pairs (Y i,x i ),i = 1,... n Response or dependent variable Y Predictor or independent variable X GOALS: Exploring

More information

Introductory Econometrics

Introductory Econometrics Based on the textbook by Wooldridge: : A Modern Approach Robert M. Kunst robert.kunst@univie.ac.at University of Vienna and Institute for Advanced Studies Vienna October 16, 2013 Outline Introduction Simple

More information

Econometrics of Panel Data

Econometrics of Panel Data Econometrics of Panel Data Jakub Mućk Meeting # 2 Jakub Mućk Econometrics of Panel Data Meeting # 2 1 / 26 Outline 1 Fixed effects model The Least Squares Dummy Variable Estimator The Fixed Effect (Within

More information

Confidence Estimation Methods for Neural Networks: A Practical Comparison

Confidence Estimation Methods for Neural Networks: A Practical Comparison , 6-8 000, Confidence Estimation Methods for : A Practical Comparison G. Papadopoulos, P.J. Edwards, A.F. Murray Department of Electronics and Electrical Engineering, University of Edinburgh Abstract.

More information

Economics 582 Random Effects Estimation

Economics 582 Random Effects Estimation Economics 582 Random Effects Estimation Eric Zivot May 29, 2013 Random Effects Model Hence, the model can be re-written as = x 0 β + + [x ] = 0 (no endogeneity) [ x ] = = + x 0 β + + [x ] = 0 [ x ] = 0

More information

Sample Problems. Note: If you find the following statements true, you should briefly prove them. If you find them false, you should correct them.

Sample Problems. Note: If you find the following statements true, you should briefly prove them. If you find them false, you should correct them. Sample Problems 1. True or False Note: If you find the following statements true, you should briefly prove them. If you find them false, you should correct them. (a) The sample average of estimated residuals

More information

MS&E 226: Small Data

MS&E 226: Small Data MS&E 226: Small Data Lecture 12: Frequentist properties of estimators (v4) Ramesh Johari ramesh.johari@stanford.edu 1 / 39 Frequentist inference 2 / 39 Thinking like a frequentist Suppose that for some

More information

Are Forecast Updates Progressive?

Are Forecast Updates Progressive? MPRA Munich Personal RePEc Archive Are Forecast Updates Progressive? Chia-Lin Chang and Philip Hans Franses and Michael McAleer National Chung Hsing University, Erasmus University Rotterdam, Erasmus University

More information