Ordinary Differential Equations

Size: px
Start display at page:

Download "Ordinary Differential Equations"

Transcription

1 Ordinary Differential Equations Swaroop Nandan Bora Department of Mathematics Indian Institute of Technology Guwahati Guwahati

2

3 Modelling a situation We study a model, a sort of idealized world that contains things we do not see come across in everyday life. We study straight lines, rectangles, circles, spheres. NOT a burger or a chair or a hill or a human being. If one works in a practical area of mathematics then there will be two conflicting criteria which makes a good model. On the one hand, the model should be accurate enough to be useful. On the other hand, it should be simple and elegant enough to generate realistic and interesting mathematical problem.

4 Modelling a situation It is tempting, as a mathematician, to attach far more importance to the second criterion: mathematical interest and elegance rather to the first: accuracy.

5 Mathematicians Approach In particular, if mathematicians work on difficult practical problems they do not do so in isolation from the rest of mathematics. Rather, they bring to the problems several tools mathematical tricks, rules of thumb, theorems known to be useful and so on. They do not know in advance which of these tools they will use, but they hope that after they have thought hard about a problem they will realize what is needed to solve it. If they are lucky, they can simply apply their existing expertise straightforwardly. More often, they will have to adapt it to some extent.

6 Practical Problems: Applicable mathematics LET s now move to the practical side of mathematics in various stages. In doing so, we need to restrict ourselves since applications are also as vast as the subject itself.

7 Tea/Coffee Figure : Hot Coffee

8 Tea/Coffee Figure : Cold Coffee

9 Falling Body Figure : Falling Body

10 Pendulum Figure : Motion of a pendulum

11 Impulsive Force Figure : Impulsive Force

12 River Figure : River flow with current

13 River Figure : Quiet River flow

14 Sloshing Figure : Sloshing

15 Building Construction Figure : Building Construction

16 Flow through porous media Figure : Aquifer

17 Ocean wave mechanics Figure : An ocean wave

18 Ocean Engineering Figure : Rectangular platform in ocean

19 Ocean Engineering Figure : Offshore Oil drilling platform

20 Figure : An aeroplane in its flight

21 General Information Many of the general laws of nature in physics, chemistry, biology and astronomy find their most natural expression in differential equations. Applications are mainly in the areas of mathematics itself, engineering, economics and many other fields of applied sciences. Why is it so??

22 Differential Equations We know that if y = f(x) is a given function, then its derivative dy can be interpreted as the rate of change of y with respect to x. dx In many natural processes, the variables involved and their rates of changes are connected to one another by means of the basic scientific principles that govern the process. When this connection is expressed in mathematical symbols, the result is quite often a differential equation. Let us consider some examples we already know.

23 Example 1 According to Newton s second law of motion, the acceleration a of a body of mass m is proportional to the total force F acting on it, with 1/m as the constant of proportionality, so that a = F/m or ma = F. (1) Suppose, for instance, that a body of mass m falls freely under the action of gravity alone, then the only force acting on it is mg. If y is the distance down to the body from some fixed height, then its velocity v = dy is the rate of change of position and its acceleration dt a = dv dt = d2 y is the rate of change of velocity. dt2 With this notation, (22) becomes m d2 y dt 2 = mg, or, d 2 y = g. (2) dt2

24 Example 1 If we change the situation by assuming that there is an air resistance proportional to the velocity, then the total force acting on the body is mg k(dy/dt). (22) becomes m d2 y = mg kdy dt2 dt. (3) Equations (??) and (??) are the differential equations that express the essential attributes of the physical processes under consideration. They are respectively called undamped and damped motion of the body.

25 Example 2 Newton s Law of Cooling states that the rate of change of the temperature of an object is proportional to the difference between its own temperature and the ambient temperature (i.e. the temperature of its surroundings). Newton s Law makes a statement about an instantaneous rate of change of the temperature. When we translate this verbal statement into mathematical symbols, we arrive at a differential equation. The solution to this equation will then be a function that tracks the complete record of the temperature over time.

26 Example 2 If T is the temperature of an object at time t and S is the temperature of its surroundings, then this law formulates into dt = k(t S), (4) dt where k is a constant of proportionality. If T 0 is the initial temperature, the temperature of the object at any time t is given by T(t) = S +(T 0 S)e kt. (5)

27 Example 3 Consider a pendulum of length l whose bob has a mass m Then the equation of motion (undamped case) is given by Is this the equation we usually know? d 2 θ dt 2 + g sinθ = 0. l Or the equation we know is different from this? The accepted form is the linearized version d 2 θ dt 2 + g l θ = 0.

28 Boundary and Initial Conditions Boundary conditions are conditions prescribed on the boundary Boundary may be boundary with respect to any of the independent variables Initial conditions are conditions prescribed at one point only These conditions are in terms of some form of the dependent variable at some specific value of the independent variable The main component of this type of problems is what is called Governing Equation

29 Boundary and Initial Conditions (Contd.) With respect to ODEs we can have only boundary conditions or only initial conditions, not both for the same problem They are called boundary value problems or initial value problems. However, with respect to PDEs We can have both boundary conditions and initial conditions for the same problem This type of problems are called Initial Boundary Value Problems (IBVP)

30 BVPs and IVPs A boundary value problem is a differential equation together with a set of additional constraints, called the boundary conditions. In other words, a solution to a BVP is a solution to the differential equation which also satisfies the boundary conditions. To be useful in applications, a BVP should be well-posed. This means that given the input to the problem there exists a unique solution, which depends continuously on the input. An initial value problem (IVP) consists of a differential equation and a set of conditions to be satisfied at the initial value of the independent variable (for ODE) or at that of one of the independent variables (for PDE).

31 BVPs and IVPs A more mathematical way to picture the difference between a BVP and an IVP is an IVP has all of the conditions specified at the same value of the independent variable in the equation (and that value is at the lower value of the boundary of the domain, thus the term initial value), while a BVP has conditions specified at the extremes of the independent variable. For example for a second-order differential equation if the independent variable is time over the domain [0,1], an IVP would specify a value of y(t) and y (t) at time t = 0, to be precise, the initial conditions will be something like y(0) = α,y (0) = β. On the other hand a BVP would specify values for y(t) (or its derivatives) at both t = 0 and t = 1, to be precise, the boundary conditions will be something like y(0) = α 1,y(1) = β 1 or y (0) = α 2,y (1) = β 2.

32 IBVPs If the problem is dependent on both space and time (meaning the governing equation is a PDE) then instead of specifying the value of the problem at a given point for all time only, data could be given at a given time for all space also. This type of problems is known as initial boundary value problems (IBVP). Prime examples are the problems involving the wave equations and the transient heat conduction equations.

33 Types of conditions The type of boundary conditions that will be considered for a BVP will depend on the dimension of the object under consideration. For example for the heat conduction in a thin rod, the boundaries will be the two end points of the rod while for a thin rectangular plate, the boundary will consist of the four edges that bound the plate

34 Types of conditions If the boundary conditions are prescribed in terms of some values of the dependent variable (solution of the BVP) on the boundary, then these conditions are called Dirichlet Conditions and the corresponding BVPs are called Dirichlet boundary value problems If the boundary conditions are prescribed in terms of some values of the normal derivatives on the boundary, then these conditions are called Neumann conditions and the corresponding BVPs are called Neumann boundary value problems. Neumann conditions are also known as flux conditions. If there is no flux across the boundary, then the flux conditions become insulation conditions (for heat conduction problems).

35 Types of conditions If the boundary conditions for a specific problem contain both types, then these conditions are called mixed or Robin conditions and the corresponding BVPs are called Robin boundary value problems. For heat conduction problems, Robin conditions are also known as radiation conditions. A typical problem in heat conduction may have a combination of Dirichlet, flux/insulation and radiation boundary conditions.

36 Continuity conditions Sometimes there may be virtual boundaries. Say For a fluid problem, the fluid is of two layers. Then at the boundary of the layers, called interface, there exist some conditions known as continuity conditions They usually imply continuity of pressure and velocity along the boundary

37 Idealizations Given to us: a real life problem Can we solve the problem exactly with the given conditions? Perhaps not. Under this circumstances we need to idealize the situation, that is, we want to ignore some of the given situations/properties in order to obtain a feasible solution. What do we do?

38 Idealizations Idealization can take place in three ways Property Governing Equation Boundary Conditions We need to idealize the situation, that is, we want to ignore some of the given situations/properties in order to obtain a feasible solution.

39 Moving ahead Recall Newton s Second Law of Motion In terms of differential equation, it is F = ma and the solution can be obtained as Given two initial conditions the arbitrary constants can be eliminated d 2 y dt 2 = g y = gt2 2 +c 1t+c 2

40 Moving ahead Does the equation represent the real situation? Perhaps not. What was ignored?? The air resistance the particle encounters while falling down If air resistance is taken into account, m d2 y dt 2 = mg kdy dt A new term is appended due to the air resistance The former equation is an idealized version of the latter one.

41 Moving ahead Now consider the pendulum equation What was ignored?? The air resistance the bob encounters while moving from one end to the other Now what we will have a damped version of the equation.

42 Remarks There are many functions/polynomials which are solutions of some specific ODEs. They are called special functions, such as Bessel function, Legendre polynomial, Hermite polynomial, Laguerre polynomial etc. More interestingly, they are part of Mathematical Physics rather than only of Mathematics.

Ordinary Differential Equations

Ordinary Differential Equations Ordinary Differential Equations Swaroop Nandan Bora swaroop@iitg.ernet.in Department of Mathematics Indian Institute of Technology Guwahati Guwahati-781039 A first-order differential equation is an equation

More information

MA 201, Mathematics III, July-November 2016, Partial Differential Equations: 1D wave equation (contd.) and 1D heat conduction equation

MA 201, Mathematics III, July-November 2016, Partial Differential Equations: 1D wave equation (contd.) and 1D heat conduction equation MA 201, Mathematics III, July-November 2016, Partial Differential Equations: 1D wave equation (contd.) and 1D heat conduction equation Lecture 12 Lecture 12 MA 201, PDE (2016) 1 / 24 Formal Solution of

More information

Differential Equation (DE): An equation relating an unknown function and one or more of its derivatives.

Differential Equation (DE): An equation relating an unknown function and one or more of its derivatives. Lexicon Differential Equation (DE): An equation relating an unknown function and one or more of its derivatives. Ordinary Differential Equation (ODE): A differential equation that contains only ordinary

More information

Mathematical Models. MATH 365 Ordinary Differential Equations. J. Robert Buchanan. Spring Department of Mathematics

Mathematical Models. MATH 365 Ordinary Differential Equations. J. Robert Buchanan. Spring Department of Mathematics Mathematical Models MATH 365 Ordinary Differential Equations J. Robert Buchanan Department of Mathematics Spring 2018 Ordinary Differential Equations The topic of ordinary differential equations (ODEs)

More information

Mathematical Models. MATH 365 Ordinary Differential Equations. J. Robert Buchanan. Fall Department of Mathematics

Mathematical Models. MATH 365 Ordinary Differential Equations. J. Robert Buchanan. Fall Department of Mathematics Mathematical Models MATH 365 Ordinary Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Ordinary Differential Equations The topic of ordinary differential equations (ODEs) is

More information

MA 102 Mathematics II Lecture Feb, 2015

MA 102 Mathematics II Lecture Feb, 2015 MA 102 Mathematics II Lecture 1 20 Feb, 2015 Differential Equations An equation containing derivatives is called a differential equation. The origin of differential equations Many of the laws of nature

More information

Introduction to Partial Differential Equations

Introduction to Partial Differential Equations Introduction to Partial Differential Equations Philippe B. Laval KSU Current Semester Philippe B. Laval (KSU) Key Concepts Current Semester 1 / 25 Introduction The purpose of this section is to define

More information

Second-Order Linear ODEs (Textbook, Chap 2)

Second-Order Linear ODEs (Textbook, Chap 2) Second-Order Linear ODEs (Textbook, Chap ) Motivation Recall from notes, pp. 58-59, the second example of a DE that we introduced there. d φ 1 1 φ = φ 0 dx λ λ Q w ' (a1) This equation represents conservation

More information

INTRODUCTION TO PDEs

INTRODUCTION TO PDEs INTRODUCTION TO PDEs In this course we are interested in the numerical approximation of PDEs using finite difference methods (FDM). We will use some simple prototype boundary value problems (BVP) and initial

More information

13 PDEs on spatially bounded domains: initial boundary value problems (IBVPs)

13 PDEs on spatially bounded domains: initial boundary value problems (IBVPs) 13 PDEs on spatially bounded domains: initial boundary value problems (IBVPs) A prototypical problem we will discuss in detail is the 1D diffusion equation u t = Du xx < x < l, t > finite-length rod u(x,

More information

An Introduction to Numerical Methods for Differential Equations. Janet Peterson

An Introduction to Numerical Methods for Differential Equations. Janet Peterson An Introduction to Numerical Methods for Differential Equations Janet Peterson Fall 2015 2 Chapter 1 Introduction Differential equations arise in many disciplines such as engineering, mathematics, sciences

More information

Solutions to Homework 1, Introduction to Differential Equations, 3450: , Dr. Montero, Spring y(x) = ce 2x + e x

Solutions to Homework 1, Introduction to Differential Equations, 3450: , Dr. Montero, Spring y(x) = ce 2x + e x Solutions to Homewor 1, Introduction to Differential Equations, 3450:335-003, Dr. Montero, Spring 2009 problem 2. The problem says that the function yx = ce 2x + e x solves the ODE y + 2y = e x, and ass

More information

Tutorial-1, MA 108 (Linear Algebra)

Tutorial-1, MA 108 (Linear Algebra) Tutorial-1, MA 108 (Linear Algebra) 1. Verify that the function is a solution of the differential equation on some interval, for any choice of the arbitrary constants appearing in the function. (a) y =

More information

MTH 3311 Test #2 Solutions

MTH 3311 Test #2 Solutions Pat Rossi MTH 3311 Test #2 Solutions S 2018 Name Directions: Do two of the three exercises. 1. A paratrooper and parachute weigh 160 lb. At the instant the parachute opens, she is traveling vertically

More information

ORDINARY DIFFERENTIAL EQUATIONS

ORDINARY DIFFERENTIAL EQUATIONS ORDINARY DIFFERENTIAL EQUATIONS GABRIEL NAGY Mathematics Department, Michigan State University, East Lansing, MI, 4884 NOVEMBER 9, 7 Summary This is an introduction to ordinary differential equations We

More information

Math 5587 Lecture 2. Jeff Calder. August 31, Initial/boundary conditions and well-posedness

Math 5587 Lecture 2. Jeff Calder. August 31, Initial/boundary conditions and well-posedness Math 5587 Lecture 2 Jeff Calder August 31, 2016 1 Initial/boundary conditions and well-posedness 1.1 ODE vs PDE Recall that the general solutions of ODEs involve a number of arbitrary constants. Example

More information

Notes on numerical solution of differential equations

Notes on numerical solution of differential equations Notes on numerical solution of differential equations Some definitions, for those who don t know: A differential equation is any equation that relates a thing to its derivatives. For instance, Newton s

More information

MATH 308 Differential Equations

MATH 308 Differential Equations MATH 308 Differential Equations Summer, 2014, SET 1 JoungDong Kim Set 1: Section 1.1, 1.2, 1.3, 2.1 Chapter 1. Introduction 1. Why do we study Differential Equation? Many of the principles, or laws, underlying

More information

Introduction to First Order Equations Sections

Introduction to First Order Equations Sections A B I L E N E C H R I S T I A N U N I V E R S I T Y Department of Mathematics Introduction to First Order Equations Sections 2.1-2.3 Dr. John Ehrke Department of Mathematics Fall 2012 Course Goals The

More information

MB4018 Differential equations

MB4018 Differential equations MB4018 Differential equations Part II http://www.staff.ul.ie/natalia/mb4018.html Prof. Natalia Kopteva Spring 2015 MB4018 (Spring 2015) Differential equations Part II 0 / 69 Section 1 Second-Order Linear

More information

Computational Neuroscience. Session 1-2

Computational Neuroscience. Session 1-2 Computational Neuroscience. Session 1-2 Dr. Marco A Roque Sol 05/29/2018 Definitions Differential Equations A differential equation is any equation which contains derivatives, either ordinary or partial

More information

Math 266: Ordinary Differential Equations

Math 266: Ordinary Differential Equations Math 266: Ordinary Differential Equations Long Jin Purdue University, Spring 2018 Basic information Lectures: MWF 8:30-9:20(111)/9:30-10:20(121), UNIV 103 Instructor: Long Jin (long249@purdue.edu) Office

More information

13.7 Power Applied by a Constant Force

13.7 Power Applied by a Constant Force 13.7 Power Applied by a Constant Force Suppose that an applied force F a acts on a body during a time interval Δt, and the displacement of the point of application of the force is in the x -direction by

More information

Ordinary Differential Equations

Ordinary Differential Equations Ordinary Differential Equations (MA102 Mathematics II) Shyamashree Upadhyay IIT Guwahati Shyamashree Upadhyay ( IIT Guwahati ) Ordinary Differential Equations 1 / 1 Books Shyamashree Upadhyay ( IIT Guwahati

More information

McGill University April 20, Advanced Calculus for Engineers

McGill University April 20, Advanced Calculus for Engineers McGill University April 0, 016 Faculty of Science Final examination Advanced Calculus for Engineers Math 64 April 0, 016 Time: PM-5PM Examiner: Prof. R. Choksi Associate Examiner: Prof. A. Hundemer Student

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS Basic Concepts Paul Dawkins Table of Contents Preface... Basic Concepts... 1 Introduction... 1 Definitions... Direction Fields... 8 Final Thoughts...19 007 Paul Dawkins i http://tutorial.math.lamar.edu/terms.aspx

More information

Galerkin Finite Element Model for Heat Transfer

Galerkin Finite Element Model for Heat Transfer Galerkin Finite Element Model for Heat Transfer Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI bluebox.ippt.pan.pl/ tzielins/ Table of Contents 1 Notation remarks 1 2 Local differential

More information

Chapter 2 HEAT CONDUCTION EQUATION

Chapter 2 HEAT CONDUCTION EQUATION Heat and Mass Transfer: Fundamentals & Applications Fourth Edition Yunus A. Cengel, Afshin J. Ghajar McGraw-Hill, 2011 Chapter 2 HEAT CONDUCTION EQUATION Mehmet Kanoglu University of Gaziantep Copyright

More information

Sample Questions, Exam 1 Math 244 Spring 2007

Sample Questions, Exam 1 Math 244 Spring 2007 Sample Questions, Exam Math 244 Spring 2007 Remember, on the exam you may use a calculator, but NOT one that can perform symbolic manipulation (remembering derivative and integral formulas are a part of

More information

Solving the Heat Equation (Sect. 10.5).

Solving the Heat Equation (Sect. 10.5). Solving the Heat Equation Sect. 1.5. Review: The Stationary Heat Equation. The Heat Equation. The Initial-Boundary Value Problem. The separation of variables method. An example of separation of variables.

More information

Unit 5 ICM/AB Applications of the Derivative Fall Nov 10 Learn Velocity and Acceleration: HW p P ,103 p.

Unit 5 ICM/AB Applications of the Derivative Fall Nov 10 Learn Velocity and Acceleration: HW p P ,103 p. Unit 5 ICM/AB Applications of the Derivative Fall 2016 Nov 4 Learn Optimization, New PS up on Optimization, HW pg. 216 3,5,17,19,21,23,25,27,29,33,39,41,49,50 a,b,54 Nov 7 Continue on HW from Nov 4 and

More information

Lecture 1, August 21, 2017

Lecture 1, August 21, 2017 Engineering Mathematics 1 Fall 2017 Lecture 1, August 21, 2017 What is a differential equation? A differential equation is an equation relating a function (known sometimes as the unknown) to some of its

More information

Solving Differential Equations: First Steps

Solving Differential Equations: First Steps 30 ORDINARY DIFFERENTIAL EQUATIONS 3 Solving Differential Equations Solving Differential Equations: First Steps Now we start answering the question which is the theme of this book given a differential

More information

Elementary Differential Equations

Elementary Differential Equations Elementary Differential Equations George Voutsadakis 1 1 Mathematics and Computer Science Lake Superior State University LSSU Math 310 George Voutsadakis (LSSU) Differential Equations January 2014 1 /

More information

XXIX Applications of Differential Equations

XXIX Applications of Differential Equations MATHEMATICS 01-BNK-05 Advanced Calculus Martin Huard Winter 015 1. Suppose that the rate at which a population of size yt at time t changes is proportional to the amount present. This gives rise to the

More information

Unforced Mechanical Vibrations

Unforced Mechanical Vibrations Unforced Mechanical Vibrations Today we begin to consider applications of second order ordinary differential equations. 1. Spring-Mass Systems 2. Unforced Systems: Damped Motion 1 Spring-Mass Systems We

More information

Sketchy Notes on Lagrangian and Hamiltonian Mechanics

Sketchy Notes on Lagrangian and Hamiltonian Mechanics Sketchy Notes on Lagrangian and Hamiltonian Mechanics Robert Jones Generalized Coordinates Suppose we have some physical system, like a free particle, a pendulum suspended from another pendulum, or a field

More information

Introduction to Heat and Mass Transfer. Week 7

Introduction to Heat and Mass Transfer. Week 7 Introduction to Heat and Mass Transfer Week 7 Example Solution Technique Using either finite difference method or finite volume method, we end up with a set of simultaneous algebraic equations in terms

More information

Basic Theory of Differential Equations

Basic Theory of Differential Equations page 104 104 CHAPTER 1 First-Order Differential Equations 16. The following initial-value problem arises in the analysis of a cable suspended between two fixed points y = 1 a 1 + (y ) 2, y(0) = a, y (0)

More information

Homogeneous Equations with Constant Coefficients

Homogeneous Equations with Constant Coefficients Homogeneous Equations with Constant Coefficients MATH 365 Ordinary Differential Equations J. Robert Buchanan Department of Mathematics Spring 2018 General Second Order ODE Second order ODEs have the form

More information

Predicting the future with Newton s Second Law

Predicting the future with Newton s Second Law Predicting the future with Newton s Second Law To represent the motion of an object (ignoring rotations for now), we need three functions x(t), y(t), and z(t), which describe the spatial coordinates of

More information

Spotlight on Laplace s Equation

Spotlight on Laplace s Equation 16 Spotlight on Laplace s Equation Reference: Sections 1.1,1.2, and 1.5. Laplace s equation is the undriven, linear, second-order PDE 2 u = (1) We defined diffusivity on page 587. where 2 is the Laplacian

More information

Diffusion - The Heat Equation

Diffusion - The Heat Equation Chapter 6 Diffusion - The Heat Equation 6.1 Goal Understand how to model a simple diffusion process and apply it to derive the heat equation in one dimension. We begin with the fundamental conservation

More information

z x = f x (x, y, a, b), z y = f y (x, y, a, b). F(x, y, z, z x, z y ) = 0. This is a PDE for the unknown function of two independent variables.

z x = f x (x, y, a, b), z y = f y (x, y, a, b). F(x, y, z, z x, z y ) = 0. This is a PDE for the unknown function of two independent variables. Chapter 2 First order PDE 2.1 How and Why First order PDE appear? 2.1.1 Physical origins Conservation laws form one of the two fundamental parts of any mathematical model of Continuum Mechanics. These

More information

28. Pendulum phase portrait Draw the phase portrait for the pendulum (supported by an inextensible rod)

28. Pendulum phase portrait Draw the phase portrait for the pendulum (supported by an inextensible rod) 28. Pendulum phase portrait Draw the phase portrait for the pendulum (supported by an inextensible rod) θ + ω 2 sin θ = 0. Indicate the stable equilibrium points as well as the unstable equilibrium points.

More information

Ordinary Differential Equations (ODEs) Background. Video 17

Ordinary Differential Equations (ODEs) Background. Video 17 Ordinary Differential Equations (ODEs) Background Video 17 Daniel J. Bodony Department of Aerospace Engineering University of Illinois at Urbana-Champaign In this video you will learn... 1 What ODEs are

More information

The Liapunov Method for Determining Stability (DRAFT)

The Liapunov Method for Determining Stability (DRAFT) 44 The Liapunov Method for Determining Stability (DRAFT) 44.1 The Liapunov Method, Naively Developed In the last chapter, we discussed describing trajectories of a 2 2 autonomous system x = F(x) as level

More information

Lecture 2. Introduction to Differential Equations. Roman Kitsela. October 1, Roman Kitsela Lecture 2 October 1, / 25

Lecture 2. Introduction to Differential Equations. Roman Kitsela. October 1, Roman Kitsela Lecture 2 October 1, / 25 Lecture 2 Introduction to Differential Equations Roman Kitsela October 1, 2018 Roman Kitsela Lecture 2 October 1, 2018 1 / 25 Quick announcements URL for the class website: http://www.math.ucsd.edu/~rkitsela/20d/

More information

Thermal Systems. What and How? Physical Mechanisms and Rate Equations Conservation of Energy Requirement Control Volume Surface Energy Balance

Thermal Systems. What and How? Physical Mechanisms and Rate Equations Conservation of Energy Requirement Control Volume Surface Energy Balance Introduction to Heat Transfer What and How? Physical Mechanisms and Rate Equations Conservation of Energy Requirement Control Volume Surface Energy Balance Thermal Resistance Thermal Capacitance Thermal

More information

(1) Rate of change: A swimming pool is emptying at a constant rate of 90 gal/min.

(1) Rate of change: A swimming pool is emptying at a constant rate of 90 gal/min. CHAPTER 1 Introduction 1. Bacground Models of physical situations from Calculus (1) Rate of change: A swimming pool is emptying at a constant rate of 90 gal/min. With V = volume in gallons and t = time

More information

Math 308 Exam I Practice Problems

Math 308 Exam I Practice Problems Math 308 Exam I Practice Problems This review should not be used as your sole source of preparation for the exam. You should also re-work all examples given in lecture and all suggested homework problems..

More information

CHAPTER 1: FIRST ORDER ORDINARY DIFFERENTIAL EQUATION

CHAPTER 1: FIRST ORDER ORDINARY DIFFERENTIAL EQUATION Classification by type - Ordinary Differential Equations (ODE) Contains one or more dependent variables with respect to one independent variable is the dependent variable while is the independent variable

More information

Chapter1. Ordinary Differential Equations

Chapter1. Ordinary Differential Equations Chapter1. Ordinary Differential Equations In the sciences and engineering, mathematical models are developed to aid in the understanding of physical phenomena. These models often yield an equation that

More information

Arial Bombing Techniques

Arial Bombing Techniques Arial Bombing Techniques By Crystal Pepper and Chris Wilson March 30, 2009 Abstract In this article we will explore the bombing techniques used by the United States Army during World War II in order to

More information

Diffusion Processes. Lectures INF2320 p. 1/72

Diffusion Processes. Lectures INF2320 p. 1/72 Diffusion Processes Lectures INF2320 p. 1/72 Lectures INF2320 p. 2/72 Diffusion processes Examples of diffusion processes Heat conduction Heat moves from hot to cold places Diffusive (molecular) transport

More information

Chapter 7: Natural Convection

Chapter 7: Natural Convection 7-1 Introduction 7- The Grashof Number 7-3 Natural Convection over Surfaces 7-4 Natural Convection Inside Enclosures 7-5 Similarity Solution 7-6 Integral Method 7-7 Combined Natural and Forced Convection

More information

Math 308, Sections 301, 302, Summer 2008 Review before Test I 06/09/2008

Math 308, Sections 301, 302, Summer 2008 Review before Test I 06/09/2008 Math 308, Sections 301, 302, Summer 2008 Review before Test I 06/09/2008 Chapter 1. Introduction Section 1.1 Background Definition Equation that contains some derivatives of an unknown function is called

More information

PLANAR KINETICS OF A RIGID BODY FORCE AND ACCELERATION

PLANAR KINETICS OF A RIGID BODY FORCE AND ACCELERATION PLANAR KINETICS OF A RIGID BODY FORCE AND ACCELERATION I. Moment of Inertia: Since a body has a definite size and shape, an applied nonconcurrent force system may cause the body to both translate and rotate.

More information

Section 8.0 Introduction to Boundary Value Problems. How do initial value problems (IVPs) and boundary value problems (BVPs) differ?

Section 8.0 Introduction to Boundary Value Problems. How do initial value problems (IVPs) and boundary value problems (BVPs) differ? Section 8.0 Introduction to Boundary Value Problems Key terms/ideas How do initial value problems (IVPs) and boundary value problems (BVPs) differ? What are boundary conditions? In what type of problems

More information

Chapter 2 HEAT CONDUCTION EQUATION

Chapter 2 HEAT CONDUCTION EQUATION Heat and Mass Transfer: Fundamentals & Applications 5th Edition in SI Units Yunus A. Çengel, Afshin J. Ghajar McGraw-Hill, 2015 Chapter 2 HEAT CONDUCTION EQUATION Mehmet Kanoglu University of Gaziantep

More information

(1 2t), y(1) = 2 y. dy dt = t. e t y, y(0) = 1. dr, r(1) = 2 (r = r(θ)) y = t(t2 + 1) 4y 3, y(0) = 1. 2t y + t 2 y, y(0) = 2. 2t 1 + 2y, y(2) = 0

(1 2t), y(1) = 2 y. dy dt = t. e t y, y(0) = 1. dr, r(1) = 2 (r = r(θ)) y = t(t2 + 1) 4y 3, y(0) = 1. 2t y + t 2 y, y(0) = 2. 2t 1 + 2y, y(2) = 0 MATH 307 Due: Problem 1 Text: 2.2.9-20 Solve the following initial value problems (this problem should mainly be a review of MATH 125). 1. y = (1 2t)y 2, y(0) = 1/6 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.

More information

CHAPTER 4. Introduction to the. Heat Conduction Model

CHAPTER 4. Introduction to the. Heat Conduction Model A SERIES OF CLASS NOTES FOR 005-006 TO INTRODUCE LINEAR AND NONLINEAR PROBLEMS TO ENGINEERS, SCIENTISTS, AND APPLIED MATHEMATICIANS DE CLASS NOTES 4 A COLLECTION OF HANDOUTS ON PARTIAL DIFFERENTIAL EQUATIONS

More information

MA 201: Method of Separation of Variables Finite Vibrating String Problem Lecture - 11 MA201(2016): PDE

MA 201: Method of Separation of Variables Finite Vibrating String Problem Lecture - 11 MA201(2016): PDE MA 201: Method of Separation of Variables Finite Vibrating String Problem ecture - 11 IBVP for Vibrating string with no external forces We consider the problem in a computational domain (x,t) [0,] [0,

More information

Last Update: April 7, 201 0

Last Update: April 7, 201 0 M ath E S W inter Last Update: April 7, Introduction to Partial Differential Equations Disclaimer: his lecture note tries to provide an alternative approach to the material in Sections.. 5 in the textbook.

More information

Motion Along a Straight Line (Motion in One-Dimension)

Motion Along a Straight Line (Motion in One-Dimension) Chapter 2 Motion Along a Straight Line (Motion in One-Dimension) Learn the concepts of displacement, velocity, and acceleration in one-dimension. Describe motions at constant acceleration. Be able to graph

More information

Outline. Calculus for the Life Sciences. What is a Differential Equation? Introduction. Lecture Notes Introduction to Differential Equa

Outline. Calculus for the Life Sciences. What is a Differential Equation? Introduction. Lecture Notes Introduction to Differential Equa Outline Calculus for the Life Sciences Lecture Notes to Differential Equations Joseph M. Mahaffy, jmahaffy@mail.sdsu.edu 1 Department of Mathematics and Statistics Dynamical Systems Group Computational

More information

Differential Vector Calculus

Differential Vector Calculus Contents 8 Differential Vector Calculus 8. Background to Vector Calculus 8. Differential Vector Calculus 7 8.3 Orthogonal Curvilinear Coordinates 37 Learning outcomes In this Workbook you will learn about

More information

M1 January Immediately after the collision Q moves with speed 5 m s 1. Calculate. the speed of P immediately after the collision,

M1 January Immediately after the collision Q moves with speed 5 m s 1. Calculate. the speed of P immediately after the collision, M1 January 2003 1. railway truck P of mass 2000 kg is moving along a straight horizontal track with speed 10 m s 1. The truck P collides with a truck Q of mass 3000 kg, which is at rest on the same track.

More information

Vibration Control Prof. Dr. S. P. Harsha Department of Mechanical & Industrial Engineering Indian Institute of Technology, Roorkee

Vibration Control Prof. Dr. S. P. Harsha Department of Mechanical & Industrial Engineering Indian Institute of Technology, Roorkee Vibration Control Prof. Dr. S. P. Harsha Department of Mechanical & Industrial Engineering Indian Institute of Technology, Roorkee Module - 1 Review of Basics of Mechanical Vibrations Lecture - 2 Introduction

More information

The Method Of Direction Fields With Illustrative Examples

The Method Of Direction Fields With Illustrative Examples The Method Of Direction Fields With Illustrative Examples By Lei Zeng Abstract. When the exact solution of a differential equation is impossible to find, the study of its direction field can provide valuable

More information

Laplace Transforms Chapter 3

Laplace Transforms Chapter 3 Laplace Transforms Important analytical method for solving linear ordinary differential equations. - Application to nonlinear ODEs? Must linearize first. Laplace transforms play a key role in important

More information

Chapter 6. Second order differential equations

Chapter 6. Second order differential equations Chapter 6. Second order differential equations A second order differential equation is of the form y = f(t, y, y ) where y = y(t). We shall often think of t as parametrizing time, y position. In this case

More information

Lesson 6 MA Nick Egbert

Lesson 6 MA Nick Egbert Overview In this lesson we start our stu of differential equations. We start by considering only exponential growth and decay, and in the next lesson we will extend this idea to the general method of separation

More information

Math 308 Exam I Practice Problems

Math 308 Exam I Practice Problems Math 308 Exam I Practice Problems This review should not be used as your sole source for preparation for the exam. You should also re-work all examples given in lecture and all suggested homework problems..

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS Basic Terminology A differential equation is an equation that contains an unknown function together with one or more of its derivatives. 1 Examples: 1. y = 2x + cos x 2. dy dt =

More information

The integrating factor method (Sect. 1.1)

The integrating factor method (Sect. 1.1) The integrating factor method (Sect. 1.1) Overview of differential equations. Linear Ordinary Differential Equations. The integrating factor method. Constant coefficients. The Initial Value Problem. Overview

More information

Physics 200 Lecture 4. Integration. Lecture 4. Physics 200 Laboratory

Physics 200 Lecture 4. Integration. Lecture 4. Physics 200 Laboratory Physics 2 Lecture 4 Integration Lecture 4 Physics 2 Laboratory Monday, February 21st, 211 Integration is the flip-side of differentiation in fact, it is often possible to write a differential equation

More information

Do not turn over until you are told to do so by the Invigilator.

Do not turn over until you are told to do so by the Invigilator. UNIVERSITY OF EAST ANGLIA School of Mathematics Main Series UG Examination 2012 2013 MECHANICS AND MODELLING MTH-1C32 Time allowed: 2 Hours Attempt QUESTIONS 1 AND 2 and THREE other questions. Notes are

More information

2.12: Derivatives of Exp/Log (cont d) and 2.15: Antiderivatives and Initial Value Problems

2.12: Derivatives of Exp/Log (cont d) and 2.15: Antiderivatives and Initial Value Problems 2.12: Derivatives of Exp/Log (cont d) and 2.15: Antiderivatives and Initial Value Problems Mathematics 3 Lecture 14 Dartmouth College February 03, 2010 Derivatives of the Exponential and Logarithmic Functions

More information

Introduction and some preliminaries

Introduction and some preliminaries 1 Partial differential equations Introduction and some preliminaries A partial differential equation (PDE) is a relationship among partial derivatives of a function (or functions) of more than one variable.

More information

Computational Fluid Dynamics Prof. Dr. SumanChakraborty Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Computational Fluid Dynamics Prof. Dr. SumanChakraborty Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Computational Fluid Dynamics Prof. Dr. SumanChakraborty Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture No. #11 Fundamentals of Discretization: Finite Difference

More information

Problem Set. Assignment #1. Math 3350, Spring Feb. 6, 2004 ANSWERS

Problem Set. Assignment #1. Math 3350, Spring Feb. 6, 2004 ANSWERS Problem Set Assignment #1 Math 3350, Spring 2004 Feb. 6, 2004 ANSWERS i Problem 1. [Section 1.4, Problem 4] A rocket is shot straight up. During the initial stages of flight is has acceleration 7t m /s

More information

MA 201: Partial Differential Equations D Alembert s Solution Lecture - 7 MA 201 (2016), PDE 1 / 20

MA 201: Partial Differential Equations D Alembert s Solution Lecture - 7 MA 201 (2016), PDE 1 / 20 MA 201: Partial Differential Equations D Alembert s Solution Lecture - 7 MA 201 (2016), PDE 1 / 20 MA 201 (2016), PDE 2 / 20 Vibrating string and the wave equation Consider a stretched string of length

More information

Some Cool ODEs. Overview. Key words. See also

Some Cool ODEs. Overview. Key words. See also 3 Some Cool ODEs C H A P T E R Temperature (degrees Fahrenheit) 80 76 72 68 64 60 0 30 60 90 120 150 Time (minutes) A room heats up in the morning, and the air conditioner in the room starts its on-off

More information

Introduction - Motivation. Many phenomena (physical, chemical, biological, etc.) are model by differential equations. f f(x + h) f(x) (x) = lim

Introduction - Motivation. Many phenomena (physical, chemical, biological, etc.) are model by differential equations. f f(x + h) f(x) (x) = lim Introduction - Motivation Many phenomena (physical, chemical, biological, etc.) are model by differential equations. Recall the definition of the derivative of f(x) f f(x + h) f(x) (x) = lim. h 0 h Its

More information

Mass on a Horizontal Spring

Mass on a Horizontal Spring Course- B.Sc. Applied Physical Science (Computer Science) Year- IInd, Sem- IVth Subject Physics Paper- XIVth, Electromagnetic Theory Lecture No. 22, Simple Harmonic Motion Introduction Hello friends in

More information

θ + mgl θ = 0 or θ + ω 2 θ = 0 (2) ω 2 = I θ = mgl sinθ (1) + Ml 2 I = I CM mgl Kater s Pendulum The Compound Pendulum

θ + mgl θ = 0 or θ + ω 2 θ = 0 (2) ω 2 = I θ = mgl sinθ (1) + Ml 2 I = I CM mgl Kater s Pendulum The Compound Pendulum Kater s Pendulum The Compound Pendulum A compound pendulum is the term that generally refers to an arbitrary lamina that is allowed to oscillate about a point located some distance from the lamina s center

More information

CHAPTER 6 WORK AND ENERGY

CHAPTER 6 WORK AND ENERGY CHAPTER 6 WORK AND ENERGY ANSWERS TO FOCUS ON CONCEPTS QUESTIONS (e) When the force is perpendicular to the displacement, as in C, there is no work When the force points in the same direction as the displacement,

More information

Ideas from Vector Calculus Kurt Bryan

Ideas from Vector Calculus Kurt Bryan Ideas from Vector Calculus Kurt Bryan Most of the facts I state below are for functions of two or three variables, but with noted exceptions all are true for functions of n variables..1 Tangent Line Approximation

More information

Transient Heat Transfer Experiment. ME 331 Introduction to Heat Transfer. June 1 st, 2017

Transient Heat Transfer Experiment. ME 331 Introduction to Heat Transfer. June 1 st, 2017 Transient Heat Transfer Experiment ME 331 Introduction to Heat Transfer June 1 st, 2017 Abstract The lumped capacitance assumption for transient conduction was tested for three heated spheres; a gold plated

More information

Chapter 5 Time-Dependent Conduction

Chapter 5 Time-Dependent Conduction Chapter 5 Time-Dependent Conduction 5.1 The Lumped Capacitance Method This method assumes spatially uniform solid temperature at any instant during the transient process. It is valid if the temperature

More information

THE WAVE EQUATION. F = T (x, t) j + T (x + x, t) j = T (sin(θ(x, t)) + sin(θ(x + x, t)))

THE WAVE EQUATION. F = T (x, t) j + T (x + x, t) j = T (sin(θ(x, t)) + sin(θ(x + x, t))) THE WAVE EQUATION The aim is to derive a mathematical model that describes small vibrations of a tightly stretched flexible string for the one-dimensional case, or of a tightly stretched membrane for the

More information

Coordinate Curves for Trajectories

Coordinate Curves for Trajectories 43 The material on linearizations and Jacobian matrices developed in the last chapter certainly expanded our ability to deal with nonlinear systems of differential equations Unfortunately, those tools

More information

For those of you who are taking Calculus AB concurrently with AP Physics, I have developed a

For those of you who are taking Calculus AB concurrently with AP Physics, I have developed a AP Physics C: Mechanics Greetings, For those of you who are taking Calculus AB concurrently with AP Physics, I have developed a brief introduction to Calculus that gives you an operational knowledge of

More information

PHYS208 RECITATIONS PROBLEMS: Week 2. Electric fields

PHYS208 RECITATIONS PROBLEMS: Week 2. Electric fields Electric fields Prob.#1 Prob.#2 Prob.#3 Prob.#4 Prob.#5 Total Your Name: Your UIN: Your section# These are the problems that you and a team of other 2-3 students will be asked to solve during the recitation

More information

Section 11.1 What is a Differential Equation?

Section 11.1 What is a Differential Equation? 1 Section 11.1 What is a Differential Equation? Example 1 Suppose a ball is dropped from the top of a building of height 50 meters. Let h(t) denote the height of the ball after t seconds, then it is known

More information

In the presence of viscous damping, a more generalized form of the Lagrange s equation of motion can be written as

In the presence of viscous damping, a more generalized form of the Lagrange s equation of motion can be written as 2 MODELING Once the control target is identified, which includes the state variable to be controlled (ex. speed, position, temperature, flow rate, etc), and once the system drives are identified (ex. force,

More information

Math 3313: Differential Equations Second-order ordinary differential equations

Math 3313: Differential Equations Second-order ordinary differential equations Math 3313: Differential Equations Second-order ordinary differential equations Thomas W. Carr Department of Mathematics Southern Methodist University Dallas, TX Outline Mass-spring & Newton s 2nd law Properties

More information

Second-Order Linear ODEs

Second-Order Linear ODEs C0.tex /4/011 16: 3 Page 13 Chap. Second-Order Linear ODEs Chapter presents different types of second-order ODEs and the specific techniques on how to solve them. The methods are systematic, but it requires

More information

Exercise 4) Newton's law of cooling is a model for how objects are heated or cooled by the temperature of an ambient medium surrounding them.

Exercise 4) Newton's law of cooling is a model for how objects are heated or cooled by the temperature of an ambient medium surrounding them. Exercise 4) Newton's law of cooling is a model for how objects are heated or cooled by the temperature of an ambient medium surrounding them. In this model, the body temperature T = T t changes at a rate

More information