EXERCISES (PRACTICAL SESSION II):

Size: px
Start display at page:

Download "EXERCISES (PRACTICAL SESSION II):"

Transcription

1 EXERCISES (PRACTICAL SESSION II): Exercise 1 Generate all the atomic positions for a structure with symmetry Cmcm and atoms located on 4a and 4c sites (y=0.2). Which is the total number of atoms in the cell? Hints: Use the WYCKPOS tool and choose the space group. Exercise 2 Which are the cartesian coordinates in units of 2π/a of the special X and M k-points for the space group Fm3m?. Click on KVEC tool and choose the space group. A table with the k-vector types appear. Hint: CDML refers to a primitive reciprocal basis. Go to for a definition of the reciprocal lattice vectors for a fcc structure. Exercise 3 Which are the cartesian coordinates in units of 2π/a of the special S and R k-points for a structure with the space group Cmcm and lattice parameters a=4.5 Å, b=6 Å and c= 7 Å?. Click on KVEC tool and choose the space group. A table with the k-vector types appear. Hint: The conventional reciprocal lattice is orthorhombic base centered with lattice parameters 4π/a, 4π/b y 2π/c. A. Basics on subgroup-groups relationships Relations between crystal structures imply relations between their space groups, which can often be expressed by group-subgroup relations. A set {H i } of symmetry operations of a space group G is called a subgroup H of G if {H i } obeys the group conditions. The subgroup H is called a proper subgroup of G if there are symmetry operations of G not contained in H. A subgroup H of a space group G is called a maximal subgroup of G if there is no proper supergroup M of G, such that H < M < G. The symmetry reduction in the subgroups can occur in three different ways: (i) by reducing the order of the point group, i.e. by eliminating all symmetry operations of some kind, (ii) by loss of translations, (iii) by combination of (i) and (ii). Subgroups of the first kind (i) are called t subgroups because the set of translations is retained. In case (ii), the point group is unchanged. These groups are called k subgroups. In the general case (iii), the subgroup has lost translations and belongs to a crystal class of lower order. Fortunately, the Theorem of Hermann states that the maximal subgroups os a space group G are of type (i) or (ii). Go to and read the definition of the transformation index. Any non maximal subgroup H of a given space group G may be obtained via a chain of maximal subgroups s Z i : G > Z 1 >... > Z n > H. The index of H is given by the multiplication of the intermediate indexes. A1. Transformation matrix A point X in a crystal is defined with respect to the basis vectors a, b, c and the origin O by the coordinates (x,y,z) of the position vector r. The same point is given with respect to a new coordinate system ( a, b, c and origin O ) by the position vector, r = x a +y b +z c. (1) The transformation of the coordinate system consists of two parts, the (3x3) matrix P and the the column matrix p. (i) The matrix P implies a change of orientation, lenght or both of the

2 basis vectors a, b, c, ( a b c ) = ( a b c ) P = ( a b c ) P 11 P 12 P 13 P 21 P 22 P 23 P 31 P 32 P 33. (2) (ii) A shift of origin is defined by the shift vector, p = p 1 a+p 2 b+p3 c, (3) The new basis vectors are fixed at the origin O which has the coordinates p 1,p 2,p 3 in the old coordinate system. The transformation of the components of a position vector r (coordinates of a point X in direct space x,y,z is given by, x y z = Q where Q is the inverse matrix of P Q = P 1 and q = P 1 p. x y z + q. (4) For more information, go to Exercise 4 Consider the B1 structure of NaCl, Fm 3m (B1), Z=4; a I = 4.84 Å; Na 0, 0, 0 (4a m 3m), Cl 1, 1, 1 (4b m 3m); Using SUBGROUPGRAPH find the lowest index relating the space groups F m 3m (No. 225) and R 3m (No. 166). Trough the associated matrix transformation, determine the lattice parameters and atomic positions in the R 3m subgroup. Hint: WYCKSPLIT can be used to check that your atomic positions are OK. A2. Structural analysis of the phase transition S1 S2 The conventional S1 and S2 cells can be represented in the basis of a common subgroup thanks to the previous equations. It is useful to analyze the transformation mechanism S1 S2. It is also reasonable to think that those transformations involving smaller lattice strains and atomic displacements should be favoured. (a) Lattice strain Consider an homogenous deformation of the crystal lattice that changes the parameters from the initial values (a 0.b 0,c 0,α 0,β 0,γ 0 ) to the end values (a.b,c,α,β,γ). The components of a cartesian basis with orthonormal vectors with respect to the basis of the lattices without/with deformation are given by, ( i, j, k) = ( a 0, b 0, c 0 )R 0 = ( a, b, c)r A reference crystallographic system can be orthonormalized in infinite ways. For instance, R 0 = 1/a 0 cosγ 0 /(a 0 sinγ 0 ) a 0cosβ 0 0 1/(b 0 sinγ 0 ) b 0cosα c 0,

3 withananalogousexpressionforr,andwherea = bcsinα/v,b = acsinβ/v,c = absinγ/v, cosα = (cosβcosγ cosα)/(sinβsinγ) y cosβ = (cosαcosγ cosβ)/(sinαsinγ), V being the unit cell volume, V = a. b c. Thefractionalcoordinatesx = (x,y,z) t ofageneralpointonthespacedonotchangewhenahomogenous deformation happens. Therefore, if X 0 y X (X 0 = (X 0,Y 0,Z 0 ) t and X = (X,Y,Z) t ) are the cartesian coordinates of that point before and after the deformation (X 0 = R 1 0 x, X = R 1 x), the equality condition of the coordinates with respect to the undeformed and deformed lattice is, RX = R 0 X 0 The strain tensor e is defined as, X X 0 = ex 0, X = (I+e)X 0 = DX 0, and using RX = R 0 X 0, where I is the identity matrix. e = XX 1 0 I = R 1 R 0 I = D I, In general, the e tensor consist of a antisymmetric component (rigid rotation) and a symmetry component (ǫ = 1 2 (e+et )), that corresponds to the physically relevant part of the deformation ǫ. The lineal Lagrangian strain tensor, is adequate for small strains, whereas, η = 1 2 (e+et +ee t ), the finite Lagrangian strain tensor is adequate for finite strains of any magnitude order. η can be written as, η = 1 2 (DDt I) and, using the relation G = (R 1 ) t R 1 (it comes from ( i, j, k) t ( i, j, k) = I = R t GR), where G is the metric matrix of the deformed lattice, η = 1 2 Rt 0(G G 0 )R 0, where G 0 is the metric matrix of the undeformed lattice. The strain tensor η depends only on the metrics of the deformed lattice, not on its orientation with respect to the undeformed lattice. In short, η is a transformation to a cartesian basis of the change in the metric tensor G G 0 induced by the deformation of the crystal lattice. The η tensor is symmetric and can be diagonalized. A convenient parameter for a quantitative evaluation of the degree of deformation of a lattice is given by,

4 S = 1 η1 2 +η2 2 +η where η 1, η 2 and η 3 are the eigenvalues of the finite Lagrangian strain tensor. (b) Atomic mappings. The strain tensor, η, relates to a change of the metric tensor G G 0 that corresponds to a homogeneous deformation with fixed atomic positions. If the atomic coordinates change, a internal deformation emerges. The internal deformation (relaxation of the atomic positions) happens generally to minimize the energy of the deformed lattice. The total deformation includes both effects. The changes of the interatomic distances only due to the internal deformation can be used to establish the atom-atom relation in the two structures. It seems reasonable to choose the atomic correspondence (i and j atoms) that gives the smallest distances between the same type atoms in both structures. The distances are calculated using the cell parameters in the S1 structures (atomic displacements δ S1 (i j) or δ 0 (i j)): where δ 2 0 = V t 0V 0 = (X 0 X 0 ) t (X 0 X 0 ) = (x x) t G 0 (x x), V 0 = X 0 X 0 = R 0 1 (x x) represents the pure internal deformation in the cartesian reference system whereas x x refers to the lattice. The coordinates of the i atom can be referred to, (i) the lattice basis before (x(i)) and after (x (i)) the internal deformation; and (ii) the cartesian basis before (X 0 (i)) and after (X 0(i)) the internal deformation. Exercise 5 Consider the transformation B3 B1 for BeO. F 43m (B3), Z=4; a I = Å; Be 1 4, 1 4, 1 4 (4c 43m), O 0, 0, 0 (4a 43m); Fm 3m (B1), Z=4; a II = Å; Be 1, 1, 1 (4b m 3m), O 0, 0, 0 (4a m 3m); a) Find the transformation matrices relating the B3 and B1 structures with the intermediate R3m structure. Hint: you can use the utilities MAXSUB, SUBGROUPGRAPH and WYCKS- PLIT. b) Calculate the lattice parameters and atomic positions in the R3m structure for B3 and B1. Do they agree with the data shown on the slide? You can use the SETSTRU tool in structure utilites to transform the hexagonal setting to a rombohedral one. Exercise 6 Propose an alternative B3 B1 mechanism involving an body centered intermediate structure (Z=2). Hint: you can use the COMMONSUB tool. a) Calculate the lattice parameters and atomic positions in this intermediate structure. b) Which order paramater would you choose? Exercise 7 Consider the Buerger s mechanism for the B1 B2 transformation in NaCl. Fm 3m (B1), Z=4; a I = 4.84 Å; Na 0, 0, 0 (4a m 3m), Cl 1, 1, 1 (4b m 3m);

5 Pm 3m (B2), Z=1; a II = 2.98 Å; Na 0, 0, 0 (1a m 3m), Cl 1, 1, 1 (1b m 3m); The mechanism involves an intermediate state with space group R 3m (166) and Z = 1 (rombohedral axis). Consider the cells of the B1 and B2 structures represented in the basis of the intermediate subgroup R 3m. a) Calculate the lattice parameters and the positions of atoms. b) Which order parameter would you choose? c) Can you propose an alternative mechanism involving a intermediate structure with symmetry P mmm and Z=2? Exercise 8 How many paths do you find for the B1 B2 transformation in NaCl, with maximum lattice strain (S tot =0.5) and maximum displacement tol =2.5Å(maximum k-index equal to 2)? a) Can you identify the Buerger s mechanism? b) If you had to choose another one, which one would you choose? c) Can you find more paths if you relax the thresholds? Exercise 9 Consider the two mechanisms described above for the B3 B1 transformation. Which one would you select? Exercise 10 Look for three different experimental structures for Sn using the COD Database. Go to Search in Accesing COD Data (left bar) and read the hints and tips. Save the.cif files and visualize the different structures using VESTA. Which are the IC, distances and coordination polyhedra? Exercise 11 Visualize the Buerger s mechanism for NaCl using VESTA. Which are the changes of IC, coordination polyhedra and distances along the transition? Exercise 12 The β and γ phases of C 3 N 4 belong to the hexagonal P6 3 /m and the cubic Fd 3m space groups, respectively. The primitive hexagonal cell contains 14 atoms. All C atoms are located at 6h (x C,y C, 1 4 ) sites. The nitrogen atoms are located at 6h (x N,y N, 1 4 ) sites) and 2d (1 3,2 3,3 4 ) sites. The conventional cell of the γ phase (Fd 3m) contains 56 atoms. All N atoms at 32e (u,u,u) sites are equivalent and four-fold coordinated. C atoms located at 8a ( 1 8,1 8,1 ) sites occupy the center 8 of regular tetrahedra, whereas C atoms located at 16d ( 1 2,1 2,1 ) sites are the centers of distorted 2 octahedra. Determine the irreducible representations of the Γ-point vibrational modes for both structure. Which are the numbers of expected Raman and Infrared peaks? Hint: You can use the SAM tool. References S. Bhagavantam. Crystal Symmetry and Physical Properties. Academic Press, London (1966). C. Giacovazzo, H.L. Monaco, D. Viterbo, F. Scordari, et al., Fundamentals of Crystallography, 1st Edition, Oxford Universtiy Press, 1992, Chapt. 2 (C. Giacovazzo), Chapt. 9 (M. Catti). M. Catti. Acta Cryst. A41, (1985); A45, (1989). César Capillas López. Métodos de la cristalografía computacional en el análisis de transiciones de fase estructurales. Tesis Doctoral, Universidad del País Vasco, Mayo 2006.

6 M. I. Aroyo, J. M. Perez-Mato, C. Capillas, E. Kroumova, S. Ivantchev, G. Madariaga, A. Kirov & H. Wondratschek. Bilbao Crystallographic Server I: Databases and crystallographic computing programs. Zeitschrift fuer Kristallographie 221, 1, (2006). M. I. Aroyo, A. Kirov, C. Capillas, J. M. Perez-Mato & H. Wondratschek. Bilbao Crystallographic Server II: Representations of crystallographic point groups and space groups. Acta Cryst. A62, (2006). M. A. Blanco, J. M. Recio, A. Costales, & R. Pandey. Phys. Rev. B 62, R (2000). M. Catti, Phys. Rev. Lett. 87, (2001). J. M. Buerger. Phase Transformations in Solids NewYork: Willey (1951).

INTERNATIONAL SCHOOL ON FUNDAMENTAL CRYSTALLOGRAPHY AND WORKSHOP ON STRUCTURAL PHASE TRANSITIONS. 30 August - 4 September 2017

INTERNATIONAL SCHOOL ON FUNDAMENTAL CRYSTALLOGRAPHY AND WORKSHOP ON STRUCTURAL PHASE TRANSITIONS. 30 August - 4 September 2017 INTERNATIONAL SCHOOL ON FUNDAMENTAL CRYSTALLOGRAPHY AND WORKSHOP ON STRUCTURAL PHASE TRANSITIONS 30 August - 4 September 2017 ROURKELA INTERNATIONAL CRYSTALLOGRAPHY SCHOOL BILBAO CRYSTALLOGRAPHIC SERVER

More information

CRYSTAL-STRUCTURE TOOLS BILBAO CRYSTALLOGRAPHIC SERVER PRACTICAL EXERCISES

CRYSTAL-STRUCTURE TOOLS BILBAO CRYSTALLOGRAPHIC SERVER PRACTICAL EXERCISES CRYSTAL-STRUCTURE TOOLS BILBAO CRYSTALLOGRAPHIC SERVER PRACTICAL EXERCISES Mois I. Aroyo Universidad del Pais Vasco, Bilbao, Spain Bilbao Crystallographic Server http://www.cryst.ehu.es STRUCTURE UTILITIES

More information

SYMMETRY RELATIONS OF SPACE GROUPS. Mois I. Aroyo Universidad del País Vasco Bilbao, Spain

SYMMETRY RELATIONS OF SPACE GROUPS. Mois I. Aroyo Universidad del País Vasco Bilbao, Spain SYMMETRY RELATIONS OF SPACE GROUPS Mois I. Aroyo Universidad del País Vasco Bilbao, Spain Subgroups: Some basic results (summary) Subgroup H < G 1. H={e,h1,h2,...,hk} G 2. H satisfies the group axioms

More information

CRYSTAL-STRUCTURE TOOLS BILBAO CRYSTALLOGRAPHIC SERVER PRACTICAL EXERCISES

CRYSTAL-STRUCTURE TOOLS BILBAO CRYSTALLOGRAPHIC SERVER PRACTICAL EXERCISES CRYSTAL-STRUCTURE TOOLS BILBAO CRYSTALLOGRAPHIC SERVER PRACTICAL EXERCISES Mois I. Aroyo Universidad del Pais Vasco, Bilbao, Spain Bilbao Crystallographic Server http://www.cryst.ehu.es STRUCTURE UTILITIES

More information

SPACE GROUPS. International Tables for Crystallography, Volume A: Space-group Symmetry. Mois I. Aroyo Universidad del Pais Vasco, Bilbao, Spain

SPACE GROUPS. International Tables for Crystallography, Volume A: Space-group Symmetry. Mois I. Aroyo Universidad del Pais Vasco, Bilbao, Spain SPACE GROUPS International Tables for Crystallography, Volume A: Space-group Symmetry Mois I. Aroyo Universidad del Pais Vasco, Bilbao, Spain SPACE GROUPS Crystal pattern: Space group G: A model of the

More information

THE BILBAO CRYSTALLOGRAPHIC SERVER EXERCISES

THE BILBAO CRYSTALLOGRAPHIC SERVER EXERCISES INTERNATIONAL TABLES FOR CRYSTALLOGRAPHY Volume A: Space-group Symmetry Volume A1: Symmetry Relations between Space Groups THE BILBAO CRYSTALLOGRAPHIC SERVER EXERCISES Mois I. Aroyo Departamento Física

More information

Representation analysis vs. Magnetic Symmetry

Representation analysis vs. Magnetic Symmetry Representation analysis vs. Magnetic Symmetry J. Manuel Perez-Mato Facultad de Ciencia y Tecnología Universidad del País Vasco, UPV-EHU BILBAO, SPAIN WHAT IS SYMMETRY? A symmetry operation in a solid IS

More information

INTERNATIONAL SCHOOL ON FUNDAMENTAL CRYSTALLOGRAPHY

INTERNATIONAL SCHOOL ON FUNDAMENTAL CRYSTALLOGRAPHY INTERNATIONAL SCHOOL ON FUNDAMENTAL CRYSTALLOGRAPHY SPACE-GROUP SYMMETRY (short overview) Mois I. Aroyo Universidad del Pais Vasco, Bilbao, Spain SPACE GROUPS Crystal pattern: infinite, idealized crystal

More information

INTERNATIONAL SCHOOL ON FUNDAMENTAL CRYSTALLOGRAPHY AND WORKSHOP ON STRUCTURAL PHASE TRANSITIONS. 30 August - 4 September 2017

INTERNATIONAL SCHOOL ON FUNDAMENTAL CRYSTALLOGRAPHY AND WORKSHOP ON STRUCTURAL PHASE TRANSITIONS. 30 August - 4 September 2017 INTERNATIONAL SCHOOL ON FUNDAMENTAL CRYSTALLOGRAPHY AND WORKSHOP ON STRUCTURAL PHASE TRANSITIONS 30 August - 4 September 2017 ROURKELA INTERNATIONAL CRYSTALLOGRAPHY SCHOOL BILBAO CRYSTALLOGRAPHIC SERVER

More information

SUPLEMENTARY INFORMATIONS

SUPLEMENTARY INFORMATIONS Electronic Supplementary Material (ESI) for CrystEngComm. This journal is The Royal Society of Chemistry 2014 Effect of High Pressure on the Crystal Structure and Properties of (2-fluoro-3-pyridyl)(4-iodophenyl)borinic

More information

Preparation for the workshop. Part 1. Introduction to the Java applet

Preparation for the workshop. Part 1. Introduction to the Java applet ISODISPLACE Workshop Harold T. Stokes International School in the Use and Applications of the Bilbao Crystallographic Server June 2009, Lekeitio, Spain isodisplace is a tool for exploring the structural

More information

Symmetry considerations in structural phase transitions

Symmetry considerations in structural phase transitions EPJ Web of Conferences 22, 00008 (2012) DOI: 10.1051/epjconf/20122200008 C Owned by the authors, published by EDP Sciences, 2012 Symmetry considerations in structural phase transitions J.M. Perez-Mato,

More information

CRYSTALLOGRAPHIC SYMMETRY OPERATIONS. Mois I. Aroyo Universidad del Pais Vasco, Bilbao, Spain

CRYSTALLOGRAPHIC SYMMETRY OPERATIONS. Mois I. Aroyo Universidad del Pais Vasco, Bilbao, Spain CRYSTALLOGRAPHIC SYMMETRY OPERATIONS Mois I. Aroyo Universidad del Pais Vasco, Bilbao, Spain SYMMETRY OPERATIONS AND THEIR MATRIX-COLUMN PRESENTATION Mappings and symmetry operations Definition: A mapping

More information

Double Antisymmetry and the Rotation-Reversal Space Groups

Double Antisymmetry and the Rotation-Reversal Space Groups Double Antisymmetry and the Rotation-Reversal Space Groups Brian K. VanLeeuwen a *, Venkatraman Gopalan a * and Daniel B. Litvin b * a Department of Materials Science and Engineering, The Pennsylvania

More information

Decomposition of direct product at an arbitrary Brillouin zone point: D p Rqpmq b D p Rqpmq

Decomposition of direct product at an arbitrary Brillouin zone point: D p Rqpmq b D p Rqpmq arxiv:1405.0467v1 [cond-mat.mtrl-sci] 4 Mar 2014 Decomposition of direct product at an arbitrary Brillouin zone point: D p Rqpmq b D p Rqpmq Jian Li, Jiufeng J. Tu, Joseph L. Birman Physics Department,

More information

Procedure for obtaining microscopic mechanisms of reconstructive phase transitions in crystalline solids

Procedure for obtaining microscopic mechanisms of reconstructive phase transitions in crystalline solids PHYSICAL REVIEW B, VOLUME 65, 144114 Procedure for obtaining microscopic mechanisms of reconstructive phase transitions in crystalline solids Harold T. Stokes and Dorian M. Hatch Department of Physics

More information

Translational symmetry, point and space groups in solids

Translational symmetry, point and space groups in solids Translational symmetry, point and space groups in solids Michele Catti Dipartimento di Scienza dei Materiali, Universita di Milano Bicocca, Milano, Italy ASCS26 Spokane Michele Catti a = b = 4.594 Å; Å;

More information

Tim Hughbanks CHEMISTRY 634. Two Covers. Required Books, etc.

Tim Hughbanks CHEMISTRY 634. Two Covers. Required Books, etc. CHEMISTRY 634 This course is for 3 credits. Lecture: 2 75 min/week; TTh 11:10-12:25, Room 2122 Grades will be based on the homework (roughly 25%), term paper (15%), midterm and final exams Web site: http://www.chem.tamu.edu/rgroup/

More information

research papers The application of Hermann's group M in group± subgroup relations between space groups 1. Introduction

research papers The application of Hermann's group M in group± subgroup relations between space groups 1. Introduction Acta Crystallographica Section A Foundations of Crystallography ISSN 0108-7673 Received 23 October 2000 Accepted 28 November 2000 The application of Hermann's group M in group± subgroup relations between

More information

Earth Materials Lab 2 - Lattices and the Unit Cell

Earth Materials Lab 2 - Lattices and the Unit Cell Earth Materials Lab 2 - Lattices and the Unit Cell Unit Cell Minerals are crystallographic solids and therefore are made of atoms arranged into lattices. The average size hand specimen is made of more

More information

Tutorial on the use of the program AMPLIMODES of the Bilbao Crystallographic Server (www.cryst.ehu.es).

Tutorial on the use of the program AMPLIMODES of the Bilbao Crystallographic Server (www.cryst.ehu.es). Tutorial on the use of the program AMPLIMODES of the Bilbao Crystallographic Server (www.cryst.ehu.es). J. Manuel Perez-Mato, D. Orobengoa, Mois I. Aroyo and C. Capillas Dept. de Fisica de la Materia Condensada,

More information

Overview - Macromolecular Crystallography

Overview - Macromolecular Crystallography Overview - Macromolecular Crystallography 1. Overexpression and crystallization 2. Crystal characterization and data collection 3. The diffraction experiment 4. Phase problem 1. MIR (Multiple Isomorphous

More information

MATRIX CALCULUS APPLIED TO CRYSTALLOGRAPHY. (short revision) Mois I. Aroyo Universidad del Pais Vasco, Bilbao, Spain

MATRIX CALCULUS APPLIED TO CRYSTALLOGRAPHY. (short revision) Mois I. Aroyo Universidad del Pais Vasco, Bilbao, Spain MATRIX CALCULUS APPLIED TO CRYSTALLOGRAPHY (short revision) Mois I. Aroyo Universidad del Pais Vasco, Bilbao, Spain INTRODUCTION TO MATRIX CALCULUS Some of the slides are taken from the presentation Introduction

More information

research papers Homogeneous sphere packings with triclinic symmetry 1. Introduction 2. Sphere packings corresponding to lattice complex P11 1a

research papers Homogeneous sphere packings with triclinic symmetry 1. Introduction 2. Sphere packings corresponding to lattice complex P11 1a Acta Crystallographica Section A Foundations of Crystallography ISSN 008-7673 Received 3 May 2002 Accepted 7 July 2002 Homogeneous sphere packings with triclinic symmetry W. Fischer and E. Koch* Institut

More information

Crystallographic Symmetry. Jeremy Karl Cockcroft

Crystallographic Symmetry. Jeremy Karl Cockcroft Crystallographic Symmetry Jeremy Karl Cockcroft Why bother? To describe crystal structures Simplifies the description, e.g. NaCl structure Requires coordinates for just 2 atoms + space group symmetry!

More information

Symmetry of commensurate magnetic structures: Magnetic space groups

Symmetry of commensurate magnetic structures: Magnetic space groups Symmetry of commensurate magnetic structures: Magnetic space groups J. Manuel Perez-Mato Facultad de Ciencia y Tecnología Universidad del País Vasco, UPV-EHU BILBAO, SPAIN WHAT IS SYMMETRY? A symmetry

More information

Group Theory and Its Applications in Physics

Group Theory and Its Applications in Physics T. Inui Y Tanabe Y. Onodera Group Theory and Its Applications in Physics With 72 Figures Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona Contents Sections marked with

More information

Phys 460 Describing and Classifying Crystal Lattices

Phys 460 Describing and Classifying Crystal Lattices Phys 460 Describing and Classifying Crystal Lattices What is a material? ^ crystalline Regular lattice of atoms Each atom has a positively charged nucleus surrounded by negative electrons Electrons are

More information

Tensorial and physical properties of crystals

Tensorial and physical properties of crystals Tensorial and physical properties of crystals Michele Catti Dipartimento di Scienza dei Materiali, Universita di Milano Bicocca, Milano, Italy (catti@mater.unimib.it) MaThCryst Nancy 2005 International

More information

Crystallography Reading: Warren, Chapters 2.1, 2.2, 2.6, 8 Surface symmetry: Can be a clue to underlying structure. Examples:

Crystallography Reading: Warren, Chapters 2.1, 2.2, 2.6, 8 Surface symmetry: Can be a clue to underlying structure. Examples: Crystallography Reading: Warren, Chapters 2.1, 2.2, 2.6, 8 Surface symmetry: Can be a clue to underlying structure. Examples: Snow (SnowCrystals.com) Bismuth (Bao, Kavanagh, APL 98 66103 (2005) Hexagonal,

More information

UNIT I SOLID STATE PHYSICS

UNIT I SOLID STATE PHYSICS UNIT I SOLID STATE PHYSICS CHAPTER 1 CRYSTAL STRUCTURE 1.1 INTRODUCTION When two atoms are brought together, two kinds of forces: attraction and repulsion come into play. The force of attraction increases

More information

2.3 Band structure and lattice symmetries: example of diamond

2.3 Band structure and lattice symmetries: example of diamond 2.2.9 Product of representaitons Besides the sums of representations, one can also define their products. Consider two groups G and H and their direct product G H. If we have two representations D 1 and

More information

Part 1. Theory. Space-Group Symmetry and Atomic Displacements

Part 1. Theory. Space-Group Symmetry and Atomic Displacements Introduction to Isotropy Subgroups and Displacive Phase Transitions Harold T. Stokes and Dorian M. Hatch Brigham Young University, Provo, Utah April 2006 This is an introduction to the concepts of isotropy

More information

Table of Contents. Table of Contents Converting lattices: Rhombohedral to hexagonal and back

Table of Contents. Table of Contents Converting lattices: Rhombohedral to hexagonal and back Table of Contents Table of Contents Converting lattices: Rhombohedral to hexagonal and back Conversion between hp and hr representations Converting hp supercell to hr primitive cell Crystal classifications

More information

ISODISPLACE: a web-based tool for exploring structural distortions

ISODISPLACE: a web-based tool for exploring structural distortions Journal of Applied Crystallography ISSN 0021-8898 Editor: Gernot Kostorz ISODISPLACE: a web-based tool for exploring structural distortions Branton J. Campbell, Harold T. Stokes, David E. Tanner and Dorian

More information

Phys 412 Solid State Physics. Lecturer: Réka Albert

Phys 412 Solid State Physics. Lecturer: Réka Albert Phys 412 Solid State Physics Lecturer: Réka Albert What is a solid? A material that keeps its shape Can be deformed by stress Returns to original shape if it is not strained too much Solid structure

More information

Symmetry mode analysis in the Bilbao Crystallographic Server: The program AMPLIMODES

Symmetry mode analysis in the Bilbao Crystallographic Server: The program AMPLIMODES Symmetry mode analysis in the Bilbao Crystallographic Server: The program AMPLIMODES Acknowledgements: Bilbao: M. Aroyo, D. Orobengoa, J.M. Igartua Grenoble: J. Rodriguez-Carvajal Provo, Utah: H.T. Stokes,

More information

Lecture 2 Symmetry in the solid state -

Lecture 2 Symmetry in the solid state - Lecture 2 Symmetry in the solid state - Part II: Crystallographic coordinates and Space Groups. 1 Coordinate systems in crystallography and the mathematical form of the symmetry operators 1.1 Introduction

More information

TILES, TILES, TILES, TILES, TILES, TILES

TILES, TILES, TILES, TILES, TILES, TILES 3.012 Fund of Mat Sci: Structure Lecture 15 TILES, TILES, TILES, TILES, TILES, TILES Photo courtesy of Chris Applegate. Homework for Fri Nov 4 Study: Allen and Thomas from 3.1.1 to 3.1.4 and 3.2.1, 3.2.4

More information

Wednesday, April 12. Today:

Wednesday, April 12. Today: Wednesday, April 2 Last Time: - The solid state - atomic arrangement in solids - why do solids form: energetics - Lattices, translations, rotation, & other symmetry operations Today: Continue with lattices,

More information

Basic Crystallography Part 1. Theory and Practice of X-ray Crystal Structure Determination

Basic Crystallography Part 1. Theory and Practice of X-ray Crystal Structure Determination Basic Crystallography Part 1 Theory and Practice of X-ray Crystal Structure Determination We have a crystal How do we get there? we want a structure! The Unit Cell Concept Ralph Krätzner Unit Cell Description

More information

Understanding Single-Crystal X-Ray Crystallography Exercises and Solutions

Understanding Single-Crystal X-Ray Crystallography Exercises and Solutions Understanding Single-Crystal X-Ray Crystallography Exercises and Solutions Dennis W. Bennett Department of Chemistry and Biochemistry University of Wisconsin-Milwaukee Chapter Crystal Lattices. The copper

More information

Molecular Symmetry 10/25/2018

Molecular Symmetry 10/25/2018 Symmetry helps us understand molecular structure, some chemical properties, and characteristics of physical properties (spectroscopy). Predict IR spectra or Interpret UV-Vis spectra Predict optical activity

More information

INTERNATIONAL TABLES FOR CRYSTALLOGRAPHY

INTERNATIONAL TABLES FOR CRYSTALLOGRAPHY INTERNATIONAL TABLES FOR CRYSTALLOGRAPHY Volume A SYMMETRY RELATIONS BETWEEN SPACE GROUPS Edited by H. WONDRATSCHEK AND U. MÜLLER Second Edition Published for THE INTERNATIONAL UNION OF CRYSTALLOGRAPHY

More information

Analytical Methods for Materials

Analytical Methods for Materials Analytical Methods for Materials Lesson 11 Crystallography and Crystal Structures, Part 3 Suggested Reading Chapter 6 in Waseda Chapter 1 in F.D. Bloss, Crystallography and Crystal Chemistry: An Introduction,

More information

Crystallographic Point Groups and Space Groups

Crystallographic Point Groups and Space Groups Crystallographic Point Groups and Space Groups Physics 251 Spring 2011 Matt Wittmann University of California Santa Cruz June 8, 2011 Mathematical description of a crystal Definition A Bravais lattice

More information

Raman and IR spectroscopy in materials science. Symmetry analysis of normal phonon modes Boriana Mihailova

Raman and IR spectroscopy in materials science. Symmetry analysis of normal phonon modes Boriana Mihailova University of Hamburg, Institute of Mineralogy and Petrology Raman and IR spectroscopy in materials science. Symmetry analysis of normal phonon modes Boriana Mihailova Outline. The dynamics of atoms in

More information

Tables of crystallographic properties of double antisymmetry space groups

Tables of crystallographic properties of double antisymmetry space groups Tables of crystallographic properties of double antisymmetry space groups Mantao Huang a, Brian K. VanLeeuwen a, Daniel B. Litvin b and Venkatraman Gopalan a * a Department of Materials Science and Engineering,

More information

Resolution of Ambiguities and the Discovery of

Resolution of Ambiguities and the Discovery of ISST Journal of Applied hysics, Vol. 6 No. 1, (January - June), p.p. 1-10 ISSN No. 0976-90X Intellectuals Society for Socio-Techno Welfare Resolution of Ambiguities and the Discovery of Two New Space Lattices

More information

Physics 211B : Problem Set #0

Physics 211B : Problem Set #0 Physics 211B : Problem Set #0 These problems provide a cross section of the sort of exercises I would have assigned had I taught 211A. Please take a look at all the problems, and turn in problems 1, 4,

More information

Helpful resources for all X ray lectures Crystallization http://www.hamptonresearch.com under tech support: crystal growth 101 literature Spacegroup tables http://img.chem.ucl.ac.uk/sgp/mainmenu.htm Crystallography

More information

Condensed Matter Physics Prof. G. Rangarajan Department of Physics Indian Institute of Technology, Madras

Condensed Matter Physics Prof. G. Rangarajan Department of Physics Indian Institute of Technology, Madras Condensed Matter Physics Prof. G. Rangarajan Department of Physics Indian Institute of Technology, Madras Lecture - 03 Symmetry in Perfect Solids Worked Examples Stated without prove to be in the lecture.

More information

Crystal Structures. Symmetry Relationships between. Applications of Crystallographic Group Theory in Crystal Chemistry OXFORD.

Crystal Structures. Symmetry Relationships between. Applications of Crystallographic Group Theory in Crystal Chemistry OXFORD. Symmetry Relationships between Crystal Structures Applications of Crystallographic Group Theory in Crystal Chemistry Ulrich Miiller Fachbereich Chemie, Philipps-Universitat Marburg, Germany with texts

More information

Scattering and Diffraction

Scattering and Diffraction Scattering and Diffraction Andreas Kreyssig, Alan Goldman, Rob McQueeney Ames Laboratory Iowa State University All rights reserved, 2018. Atomic scale structure - crystals Crystalline materials... atoms

More information

INTERNATIONAL TABLES FOR CRYSTALLOGRAPHY

INTERNATIONAL TABLES FOR CRYSTALLOGRAPHY INTERNATIONAL TABLES FOR CRYSTALLOGRAPHY International Tables for Crystallography Volume A: Space-Group Symmetry Editor Theo Hahn First Edition 1983, Fifth Edition 2002 Volume A1: Symmetry Relations between

More information

A web based crystallographic tool for the construction of nanoparticles

A web based crystallographic tool for the construction of nanoparticles A web based crystallographic tool for the construction of nanoparticles Alexios Chatzigoulas 16/5/2018 + = 1 Outline Introduction Motivation Crystallography theory Creation of a web based crystallographic

More information

Symmetry: Translation and Rotation

Symmetry: Translation and Rotation Symmetry: Translation and Rotation The sixth column of the C 2v character table indicates the symmetry species for translation along (T) and rotation about (R) the Cartesian axes. y y y C 2 F v (x) T x

More information

The Reciprocal Lattice

The Reciprocal Lattice 59-553 The Reciprocal Lattice 61 Because of the reciprocal nature of d spacings and θ from Bragg s Law, the pattern of the diffraction we observe can be related to the crystal lattice by a mathematical

More information

Space Group: translations and point Group

Space Group: translations and point Group Space Group: translations and point Group Fyodorov and Schönflies in 1891 listed the 230 space Groups in 3d Group elements: r ' r a with a traslation rotation matrix ( 1 No rotation). The ope ration denoted

More information

Solid State Physics 460- Lecture 5 Diffraction and the Reciprocal Lattice Continued (Kittel Ch. 2)

Solid State Physics 460- Lecture 5 Diffraction and the Reciprocal Lattice Continued (Kittel Ch. 2) Solid State Physics 460- Lecture 5 Diffraction and the Reciprocal Lattice Continued (Kittel Ch. 2) Ewald Construction 2θ k out k in G Physics 460 F 2006 Lect 5 1 Recall from previous lectures Definition

More information

properties Michele Catti Dipartimento di Scienza dei Materiali Università di Milano Bicocca, Italy

properties Michele Catti Dipartimento di Scienza dei Materiali Università di Milano Bicocca, Italy Elastic and piezoelectric tensorial properties Michele Catti Dipartimento di Scienza dei Materiali Università di Milano Bicocca, Italy (catti@mater.unimib.it) 1 Tensorial physical properties of crystals

More information

... 3, , = a (1) 3 3 a 2 = a (2) The reciprocal lattice vectors are defined by the condition a b = 2πδ ij, which gives

... 3, , = a (1) 3 3 a 2 = a (2) The reciprocal lattice vectors are defined by the condition a b = 2πδ ij, which gives PHZ646: Fall 013 Problem set # 4: Crystal Structure due Monday, 10/14 at the time of the class Instructor: D. L. Maslov maslov@phys.ufl.edu 39-0513 Rm. 114 Office hours: TR 3 pm-4 pm Please help your instructor

More information

Mode Crystallography of distorted structures J. M. Perez-Mato, D. Orobengoa and M. Aroyo Departamento de Fisica de la Materia Condensada, Facultad de

Mode Crystallography of distorted structures J. M. Perez-Mato, D. Orobengoa and M. Aroyo Departamento de Fisica de la Materia Condensada, Facultad de Mode Crystallography of distorted structures J. M. Perez-Mato, D. Orobengoa and M. Aroyo Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco (UPV-EHU),

More information

The structure of liquids and glasses. The lattice and unit cell in 1D. The structure of crystalline materials. Describing condensed phase structures

The structure of liquids and glasses. The lattice and unit cell in 1D. The structure of crystalline materials. Describing condensed phase structures Describing condensed phase structures Describing the structure of an isolated small molecule is easy to do Just specify the bond distances and angles How do we describe the structure of a condensed phase?

More information

Electrons in a weak periodic potential

Electrons in a weak periodic potential Electrons in a weak periodic potential Assumptions: 1. Static defect-free lattice perfectly periodic potential. 2. Weak potential perturbative effect on the free electron states. Perfect periodicity of

More information

Condensed Matter A Week 2: Crystal structure (II)

Condensed Matter A Week 2: Crystal structure (II) QUEEN MARY, UNIVERSITY OF LONDON SCHOOL OF PHYSICS AND ASTRONOMY Condensed Matter A Week : Crystal structure (II) References for crystal structure: Dove chapters 3; Sidebottom chapter. Last week we learnt

More information

Mechanisms for the reconstructive phase transition between the B1 and B2 structure types in NaCl and PbS

Mechanisms for the reconstructive phase transition between the B1 and B2 structure types in NaCl and PbS Mechanisms for the reconstructive phase transition between the B1 and B2 structure types in NaCl and PbS Harold T. Stokes, 1 Dorian M. Hatch, 1 Jianjun Dong, 2 and James P. Lewis 1 1 Department of Physics

More information

Model Building An Introduction to Atomistic Simulation

Model Building An Introduction to Atomistic Simulation Materials and Modelling MPhil 2006-07 COURSE MP3: MONTE CARLO AND MOLECULAR DYNAMICS COMPUTING CLASS 1 Model Building An Introduction to Atomistic Simulation Wednesday 22 nd November 2006 14.00 16.00 1

More information

Crystals Statics. Structural Properties. Geometry of lattices. Aug 23, 2018

Crystals Statics. Structural Properties. Geometry of lattices. Aug 23, 2018 Crystals Statics. Structural Properties. Geometry of lattices Aug 23, 2018 Crystals Why (among all condensed phases - liquids, gases) look at crystals? We can take advantage of the translational symmetry,

More information

1. Group Theory Permutations.

1. Group Theory Permutations. 1.1. Permutations. 1. Group Theory Problem 1.1. Let G be a subgroup of S n of index 2. Show that G = A n. Problem 1.2. Find two elements of S 7 that have the same order but are not conjugate. Let π S 7

More information

Supporting Information of Experimental and Theoretical Study of Bi 2 O 2 Se Under Compression

Supporting Information of Experimental and Theoretical Study of Bi 2 O 2 Se Under Compression Supporting Information of Experimental and Theoretical Study of Bi 2 O 2 Se Under Compression A.L.J. Pereira, 1,2* D. Santamaría-Pérez, 3 J. Ruiz-Fuertes, 3,4 F.J. Manjón, 1* V.P. Cuenca- Gotor, 1 R. Vilaplana,

More information

Preparation of Model

Preparation of Model Preparation of Model first-principles based simulation First principles 2 Atomistic Modelling first-principles simulation 3 Simply: we start from molecule Old fashion: write in hand or generate with code

More information

MSE 201A Thermodynamics and Phase Transformations Fall, 2008 Problem Set No. 7

MSE 201A Thermodynamics and Phase Transformations Fall, 2008 Problem Set No. 7 MSE 21A Thermodynamics and Phase Transformations Fall, 28 Problem Set No. 7 Problem 1: (a) Show that if the point group of a material contains 2 perpendicular 2-fold axes then a second-order tensor property

More information

Lecture 1 Symmetry in the solid state -

Lecture 1 Symmetry in the solid state - Lecture 1 Symmetry in the solid state - Part I: Simple patterns and groups 1 Symmetry operators: key concepts Operators: transform (move) the whole pattern (i.e., the attributes, or content, of all points

More information

INTERNATIONAL TABLES FOR CRYSTALLOGRAPHY

INTERNATIONAL TABLES FOR CRYSTALLOGRAPHY INTERNATIONAL TABLES FOR CRYSTALLOGRAPHY Volume A SYMMETRY RELATIONS BETWEEN SPACE GROUPS Edited by HANS WONDRATSCHEK AND ULRICH MÜLLER Dedicated to Paul Niggli and Carl Hermann In 99, Paul Niggli (888

More information

M.S. Dresselhaus G. Dresselhaus A. Jorio. Group Theory. Application to the Physics of Condensed Matter. With 131 Figures and 219 Tables.

M.S. Dresselhaus G. Dresselhaus A. Jorio. Group Theory. Application to the Physics of Condensed Matter. With 131 Figures and 219 Tables. M.S. Dresselhaus G. Dresselhaus A. Jorio Group Theory Application to the Physics of Condensed Matter With 131 Figures and 219 Tables 4) Springer Contents Part I Basic Mathematics 1 Basic Mathematical Background:

More information

X-ray analysis. 1. Basic crystallography 2. Basic diffraction physics 3. Experimental methods

X-ray analysis. 1. Basic crystallography 2. Basic diffraction physics 3. Experimental methods X-ray analysis 1. Basic crystallography 2. Basic diffraction physics 3. Experimental methods Introduction Noble prizes associated with X-ray diffraction 1901 W. C. Roentgen (Physics) for the discovery

More information

Lecture course on crystallography, 2015 Lecture 9: Space groups and International Tables for Crystallography

Lecture course on crystallography, 2015 Lecture 9: Space groups and International Tables for Crystallography Dr Semën Gorfman Department of Physics, University of SIegen Lecture course on crystallography, 2015 Lecture 9: Space groups and International Tables for Crystallography UNIT CELL and ATOMIC POSITIONS

More information

Twinning of aragonite the crystallographic orbit and sectional layer group approach

Twinning of aragonite the crystallographic orbit and sectional layer group approach Acta Crystallographica Section A Foundations and Advances ISSN 2053-2733 Twinning of aragonite the crystallographic orbit and sectional layer group approach Mohamed-Amine Marzouki, Bernd Souvignier and

More information

Fundamentals. Crystal patterns and crystal structures. Lattices, their symmetry and related basic concepts

Fundamentals. Crystal patterns and crystal structures. Lattices, their symmetry and related basic concepts Fundamentals. Crystal patterns and crystal structures. Lattices, their symmetry and related basic concepts Didactic material for the MaThCryst schools, France massimo.nespolo@univ-lorraine.fr Ideal vs.

More information

Landau-Ginzburg model for antiferroelectric phase transitions based on microscopic symmetry

Landau-Ginzburg model for antiferroelectric phase transitions based on microscopic symmetry PHYSICAL REVIEW B VOLUME 62, NUMBER 2 1 JULY 2000-II Landau-Ginzburg model for antiferroelectric phase transitions based on microscopic symmetry Richard A. Hatt Materials Research Laboratory, The Pennsylvania

More information

Symmetry Crystallography

Symmetry Crystallography Crystallography Motif: the fundamental part of a symmetric design that, when repeated, creates the whole pattern In 3-D, translation defines operations which move the motif into infinitely repeating patterns

More information

Similarity Transforms, Classes Classes, cont.

Similarity Transforms, Classes Classes, cont. Multiplication Tables, Rearrangement Theorem Each row and each column in the group multiplication table lists each of the group elements once and only once. (Why must this be true?) From this, it follows

More information

Symmetry mode analysis in the Bilbao Crystallographic Server: The program AMPLIMODES

Symmetry mode analysis in the Bilbao Crystallographic Server: The program AMPLIMODES Symmetry mode analysis in the Bilbao Crystallographic Server: The program AMPLIMODES http://www.cryst.ehu.es AMPLIMODES Symmetry Modes Analysis Modes in the statics of low-symmetry distorted phases: Distorted

More information

Homework 4 Due 25 October 2018 The numbers following each question give the approximate percentage of marks allocated to that question.

Homework 4 Due 25 October 2018 The numbers following each question give the approximate percentage of marks allocated to that question. Name: Homework 4 Due 25 October 218 The numbers following each question give the approximate percentage of marks allocated to that question. 1. Use the reciprocal metric tensor again to calculate the angle

More information

6. X-ray Crystallography and Fourier Series

6. X-ray Crystallography and Fourier Series 6. X-ray Crystallography and Fourier Series Most of the information that we have on protein structure comes from x-ray crystallography. The basic steps in finding a protein structure using this method

More information

NMR Shifts. I Introduction and tensor/crystal symmetry.

NMR Shifts. I Introduction and tensor/crystal symmetry. NMR Shifts. I Introduction and tensor/crystal symmetry. These notes were developed for my group as introduction to NMR shifts and notation. 1) Basic shift definitions and notation: For nonmagnetic materials,

More information

Vibrational Spectroscopy

Vibrational Spectroscopy Vibrational Spectroscopy Keith Refson STFC Rutherford Appleton Laboratory August 28, 2009 Density Functional Methods for Experimental Spectroscopy 2009: Oxford 1 / 22 Two similar structures Zincblende

More information

Geometry of Crystal Lattice

Geometry of Crystal Lattice 0 Geometry of Crystal Lattice 0.1 Translational Symmetry The crystalline state of substances is different from other states (gaseous, liquid, amorphous) in that the atoms are in an ordered and symmetrical

More information

2. Electronic Band Structures

2. Electronic Band Structures 2. Electronic Band Structures C ONTENTS 2.1 Quantum Mechanics... 18 2.2 Translational Symmetry and Brillouin Zones... 20 2.3 A Pedestrian s Guide to Group Theory... 25 2.4 Empty Lattice or Nearly Free

More information

Suggested Reading. Pages in Engler and Randle

Suggested Reading. Pages in Engler and Randle The Structure Factor Suggested Reading Pages 303-312312 in DeGraef & McHenry Pages 59-61 in Engler and Randle 1 Structure Factor (F ) N i1 1 2 i( hu kv lw ) F fe i i j i Describes how atomic arrangement

More information

Rigid body Rigid body approach

Rigid body Rigid body approach Rigid body Rigid body approach Model molecule is a fragment, which is placed arbitrarily and does not contribute to structure factors Model molecule is transformed to Actual positions by translation vector

More information

Lecture Note on Crystal structures Masatsugu Sei Suzuki and Itsuko S. Suzuki Department of Physics, SUNY at Binghamton (Date: February 03, 2012)

Lecture Note on Crystal structures Masatsugu Sei Suzuki and Itsuko S. Suzuki Department of Physics, SUNY at Binghamton (Date: February 03, 2012) Lecture Note on Crystal structures Masatsugu Sei Suzuki and Itsuko S. Suzuki Department of Physics, SUNY at Binghamton (Date: February 03, 2012) This is a part of lecture note on solid state physics (Phys.472/572)

More information

Experiment 7: Understanding Crystal Structures

Experiment 7: Understanding Crystal Structures Experiment 7: Understanding Crystal Structures To do well in this laboratory experiment you need to be familiar with the concepts of lattice, crystal structure, unit cell, coordination number, the different

More information

Translation Groups; Introduction to Bands and Reciprocal Space. Timothy Hughbanks, Texas A& M University

Translation Groups; Introduction to Bands and Reciprocal Space. Timothy Hughbanks, Texas A& M University Translation Groups; Introduction to Bands and Reciprocal Space Timothy Hughbanks, Texas A& M University The One-dimensional Translation Group If chemists wish to understand the symmetry properties of a

More information

1/2, 1/2,1/2, is the center of a cube. Induces of lattice directions and crystal planes (a) Directions in a crystal Directions in a crystal are

1/2, 1/2,1/2, is the center of a cube. Induces of lattice directions and crystal planes (a) Directions in a crystal Directions in a crystal are Crystallography Many materials in nature occur as crystals. Examples include the metallic elements gold, copper and silver, ionic compounds such as salt (e.s. NaCl); ceramics, rutile TiO2; and nonmetallic

More information

The Solid State. Phase diagrams Crystals and symmetry Unit cells and packing Types of solid

The Solid State. Phase diagrams Crystals and symmetry Unit cells and packing Types of solid The Solid State Phase diagrams Crystals and symmetry Unit cells and packing Types of solid Learning objectives Apply phase diagrams to prediction of phase behaviour Describe distinguishing features of

More information

We need to be able to describe planes and directions.

We need to be able to describe planes and directions. We need to be able to describe planes and directions. Miller Indices & XRD 1 2 Determining crystal structure and identifying materials (B) Plastic deformation Plastic deformation and mechanical properties

More information

Lecture contents. Stress and strain Deformation potential. NNSE 618 Lecture #23

Lecture contents. Stress and strain Deformation potential. NNSE 618 Lecture #23 1 Lecture contents Stress and strain Deformation potential Few concepts from linear elasticity theory : Stress and Strain 6 independent components 2 Stress = force/area ( 3x3 symmetric tensor! ) ij ji

More information

Nove fizickohemijske metode. Ivana Radosavljevic Evans Durham University, UK

Nove fizickohemijske metode. Ivana Radosavljevic Evans Durham University, UK Nove fizickohemijske metode Ivana Radosavljevic Evans Durham University, UK Nove fizickohemijske metode: Metode zasnovane na sinhrotronskom zracenju Plan predavanja: Difrakcione metode strukturne karakterizacije

More information