Question Sheet for Laboratory 3: E-1: Electrostatics

Size: px
Start display at page:

Download "Question Sheet for Laboratory 3: E-1: Electrostatics"

Transcription

1 Name Section Question Sheet for Laboratory 3: E-1: Electrostatics PART I. CHARGE OBJECTIVE: To build a qualitative model for charge by observing forces between charged objects. APPARATUS: 1. Tape, hard rubber (ebonite) rod, fur, acrylic rod, silk cloth. INTRODUCTION: In this part of the lab you will explore and build a model for charge that explains the interactions of charged objects. These objects are all insulators as opposed to the conductors you will use in PART II. You will mechanically charge these insulators as instructed below, and that charge will not be free to move around on the insulator whereas charge is free to move around on a conductor. WARNING: Static charges can be influenced by factors beyond your control. Charge transfer through the triboelectric effect can depend on details such as the cleanliness of the insulating materials, and the mechanical motion used to transfer the charge. Water vapor in the air can drain charge from, or change the type of charge, on an insulator (particularly on humid days). If you are getting confusing or contradictory results in this lab, get help from your TA. EXPERIMENTS: 1. Press a piece of scotch tape, about 10 cm in length, firmly onto a smooth unpainted surface such as a notebook or lab bench. (For ease of handling, make a handle by folding a short section of the tape over on itself.) Then very quickly and authoritatively peel the tape off the surface and hang it from the edge of the lab table (if it is attracted to and sticks to the metal frame of the table, try hanging it instead from the back of a lab chair). Make sure it doesn t touch anything, such as your hand, or you might effect the charge. Describe the behavior of the tape as you bring nominally uncharged objects toward it (e.g., your hand, a pen ).

2 2. Make another 10 cm piece of tape with handles. Take off your first piece from the edge of the lab table and stick both down to the top of the lab table. Peel both off very quickly, one with each hand. Bring them towards each other in the air and describe the behavior. Now stick one to the edge of the lab table (or lab chair), and bring the second tape close to it. Describe the behavior. It is important to keep your hands and other objects away from the tapes during this experiment. Explain why this is necessary. How does the distance between the tapes affect the interaction between them? 3. Discard the tape from parts 1) & 2). Each member of your group should now press new tape onto the surface (but don t peel it off yet) and write B (for bottom) on it. Then press another new tape on top of each B tape and label it T (for top). (Handles are particularly useful here.) Pull one of the pairs off as a unit, then pull apart the top and bottom tapes. Hang one Bottom tape and one Top tape from your lab bench. Then Pull off one of the other pairs, and separate them as above. Bring one of these Bottom or Top tapes near each of the hanging tapes and record the interaction (as repelled or attracted) between tapes in the table below. Peel off the last pair from the bench and double check your results. Do all this quickly so the charge doesn t drain off into the air. Free Tape Free Tape Top Bottom Top Bottom Top Hanging Tape Bottom 2

3 Do bottom tapes or top tapes have more net charge on them? Or are the about the same? How can you tell? 4. Charge the rubber (ebonite) rod with fur and bring it near each tape (Top and Bottom) in turn and record the interactions (as repelled or attracted) in the table above T Hanging Tape B Rubber Rod Compare the interactions of the rod and tapes to the interactions between the tapes in part 3. Describe any similarities or differences. 3

4 5. Base your answers to the following questions on your observations so far. a. Is it possible that there is only one type of charge? If so, explain. If not what is the minimum number of different types of charge needed to account for your observations so far? Explain your reasoning. b.. Which tape, Top or Bottom, has the same type charge as the rubber rod? Explain your reasoning. Call this charge the rubber charge. c. Which tape, Top or Bottom, has a different type of charge as the rubber rod? Explain. Call this the anti-rubber charge. d. What is the general rule for the interaction between charges? Your general rule should work for all combinations of rubber and anti-rubber charge. e. In class we said that electrons are transferred from one object to another when rubbing. What type of experiment would you need do to tell which of your charges, rubber or anti-rubber, corresponds to extra electrons? 4

5 PART II. THE ELECTROSCOPE OBJECTIVE: To use the electroscope as a measuring device to explore charge motion in conductors. APPARATUS: 1. Electroscope, three conducting spheres on insulated stands, black rubber (ebonite) rod, fur, acrylic rod, silk cloth. INTRODUCTION: Here you will extend your model of charge from Part I to conductors. We said that charge is free to move around on conductors but it is only the electrons that can move. You will use what you observed about forces in Part I and the fact that only electrons move to explain why the electroscope behaves as it does as well as how charge behaves on conductors. The electroscope, pictured at left, consists of a conducting case and two aluminum leaves hanging from a conducting rod with a ball on top. The rod does not make electrical contact with the case where is passes through so electrons (or charge) cannot flow between the rod and the case. The leaves are like the tape in Part I except that they are conductors, not insulators. WARNING: The electroscope is fairly sensitive, so unknown charges anywhere in the vicinity can influence your results. Make sure charged rods are far away when you don t want them to influence your system. Inadvertently touching a wire or conducting object can discharge them. Having your hand or other conducting object near any part of the system can influence the results. Water vapor in the air can drain charge from materials (particularly on humid days). The insulating stands of the conducting spheres can drain charge from the sphere when they get dirty. Your TA can clean them with alcohol for you. EXPERIMENTS: 1. Touch your hand to the connection at the top of the electroscope to neutralize (remove any charge from) the leaves. Rub the rubber rod with fur and bring it near the ball (not touching) of the electroscope then move it away, observing the leaves during the process. a. Record your observations and your thoughts on why the leaves behave as they do. Share your thoughts with your lab partners and try to come to a consensus. 5

6 Rub the rubber rod with fur and bring it near the ball again and this time do touch the rod to the ball, then move it away, observing the leaves during the process. b. Record your observations and your thoughts on why the leaves behave as they do. Share your thoughts with your lab partners and try to come to a consensus. 6

7 4. In this section you use an electroscope to make measurements of a test object. Take the longest banana-plug cable from the wall. Tape one end to the top of the electroscope so that it makes electrical contact, and plug the other end into one of the conducting spheres on insulating supports. Make sure the cable is suspended so it does not touch the lab table (charge will drain to the lab table if it touches), and keep your hands and charged objects away from the cable. A conducting cable now connects the electroscope and conducting sphere.. Charge the ebonite rod with the fur, and touch it to the conducting sphere, and remove the rod far away from the sphere and electroscope. Explain what the electroscope leaves do, and describe the charge distribution. On the last page of this packet there are drawings where you can sketch out charge distributions if you find it helpful. b. Charge the ebonite rod again, and transfer some more charge to the sphere. Remove the rod far away from the sphere and electroscope. What happened to the leaves? c. Use the information from parts a and b to describe what physical quantity the deflection of the electroscope leaves measures here. You will see in the next section that your conclusion is valid only when the sphere is isolated, and not interacting with other charged objects. 7

8 5. Now you use the same setup as in Part 4 above to figure out why touching your hand to charged conductors neutralizes them. a. Continue to charge up the conducting sphere with the ebonite rod until the electroscope leaves each deflect about 45. Take the ebonite rod far away. If you re not sure if it is far enough away, move it around and see if the electroscope reading changes. If you re not able to charge to system to ~ a 45 angle, or if the leaves slowly come back together, ask your TA some of the insulators may be dirty and charge is leaking off. Bring your hand close to the conducting sphere without touching it. Describe the deflection of the leaves, and explain how the charge distribution in various parts of the system has changed. b. Touch the 2 nd conducting sphere with your had to make sure it is discharged. You want to see what happens when this neutral object is brought close to the conducting sphere. Slide it along the table slowly right up next to the 1 st sphere, without touching them. What has happened to the electroscope leaves? If you can t tell, quickly move the 2 nd sphere away from the first while watching the electroscope leaves. Compare the behavior with that of your hand in part a. c. Again bring the 2 nd (neutral) conducting sphere up to the 1 st sphere but this time touch them together. What happens to the electroscope leaves? Remove the 2 nd sphere and describe any changes. Explain how the charge distribution differs before and after touching the spheres. d. Now take the 3 rd sphere and connect it to the 2 nd with the shortest banana-plug cable you can find. Make sure the cable connecting them is far from the table and far from your body. Touch your finger to one of the connected spheres to neutralize them. Slide one of the connected spheres toward the 1 st sphere, making sure your hand stays away from the banana-plug cable. Watch the electroscope as you touch the 1 st sphere with the connected spheres. Explain what happened to the charge distribution. 8

9 e. If there are extra spheres not being used, and if you are interested, you can connect more and more spheres together and repeat d above (making sure to charge the 1 st sphere to 45 on the electroscope). But you probably see the trend. Describe the trend below. f. Again charge the 1 st conducting sphere to 45. Now touch the 1 st conducting sphere with your hand. What happens to the electroscope leaves? Remove your hand and describe any changes. Explain how the charge distribution differs before and after you touched the sphere. g. Explain why touching a charged object with your hand neutralizes it. h. What is the moral to the story told in part 5? 9

10 6. In this section you figure out how a nearby charge can distort the charge density on a conducting object. You do this using a technique called charging by induction. Set up as below. Touching a. Charge the ebonite rod with the fur. Bring the rod close to sphere 1 on the side opposite its contact point with sphere 2, but do not touch. If you hear a spark jump (small crack) you have transferred some charge, and you need to neutralize the spheres and start over. Without moving the ebonite rod, pull sphere 2 away from sphere 1. Put the ebonite rod far enough away that it doesn t influence sphere 1. Move spheres 2 and 3 far enough away that they don t influence sphere 1 (be careful not to touch the cable connecting spheres 2 and 3. Describe what happened, and describe the final charge distribution on your system. b. Move spheres 2 and 3 back towards sphere 1, and touch spheres 1 and 2. Careful again not to touch anything inappropriate. Move spheres 2 and 3 away from 1. What happened? Describe the charge distribution now. 10

11 c. Neutralize all spheres. Repeat the procedure of part a. After you finish, charge the ebonite rod again and bring it toward sphere 1. Describe what happens to the electroscope leaves, starting from when the rod is very far away. Explain how this is consistent or inconsistent with the charge distribution you determined in part a. If inconsistent, revise your charge distribution. d. Repeat the procedure of part a, but use your hand instead of spheres 2 and 3. Is the effect bigger or smaller? Explain why. e. What is the moral to the story told in part 6? 11

12 7. If there is time, you can complete this section. Ask your TA if they want you to do this. Estimate (very roughly) the number of electrons on both leaves when they are separated. Your answer should just be a power of 10 (order of magnitude estimation). Make any reasonable simplifying assumptions you feel necessary, for instance how many Newtons of force are required to hold a leaf to the side. Ask your TA if your group can t decide if a particular assumption is reasonable. Show your reasoning and state all your assumptions. 12

13 Use these pictures to sketch out charge distributions if you find it helpful

Physics 208 Spring 2008 Lab 3 (E-1): Electrostatics

Physics 208 Spring 2008 Lab 3 (E-1): Electrostatics Name Section Physics 208 Spring 2008 Lab 3 (E-1): Electrostatics OBJECTIVE: To understand the electroscope as an example of forces between charges, and to use it as a measuring device to explore charge

More information

TA guide Physics 208 Spring 2008 Lab 3 (E-1): Electrostatics

TA guide Physics 208 Spring 2008 Lab 3 (E-1): Electrostatics Name TA guide Physics 208 Spring 2008 Lab 3 (E-1): Electrostatics Section OBJECTIVE: To understand the electroscope as an example of forces between charges, and to use it as a measuring device to explore

More information

Phys1112: Electric Charge and Force

Phys1112: Electric Charge and Force Phys1112: Electric Charge and Force Name: Group Members: Date: TA s Name: Objectives: To become familiar with basic electric phenomena. To learn the charge model and apply it to conductors and insulators.

More information

Lab 1 Electrostatics 1

Lab 1 Electrostatics 1 Lab 1 Electrostatics 1 Apparatus: Scotch tape, fake fur, plastic rod, wood dowel, ring stand and clamp, foil rods on string, copper sphere or brass mass on insulating stand, brass mass You have all heard

More information

UNIT 1 EXPLORING THE NATURE OF ELECTROSTATIC FORCES

UNIT 1 EXPLORING THE NATURE OF ELECTROSTATIC FORCES UNIT 1 EXPLORING THE NATURE OF ELECTROSTATIC FORCES Objectives to learn that scientific models are based on observations and to learn how scientific models are developed from observational evidence to

More information

Lab 3: Electric Charge and Force

Lab 3: Electric Charge and Force Lab 3: Electric Charge and Force Name: Group Members: Date: TA s Name: Objectives: To become familiar with basic electric phenomena. To learn the charge model and apply it to conductors and insulators.

More information

Pre-LAB 1 Preparation: Electric Charge & Electric Interactions

Pre-LAB 1 Preparation: Electric Charge & Electric Interactions Name: Lab Partners: Date: Pre-LAB 1 Preparation: Electric Charge & Electric Interactions Directions: Read over the lab handout and then answer the following questions. Question 1 What are the two hypotheses

More information

Electrostatics. Experiment NC. Objective. Introduction. Procedure

Electrostatics. Experiment NC. Objective. Introduction. Procedure Electrostatics Experiment NC Objective In this experiment you will explore various aspects of electrostatic charging and electrostatic forces. Introduction You are probably aware of various phenomena associated

More information

Lab 6 Electrostatic Charge and Faraday s Ice Pail

Lab 6 Electrostatic Charge and Faraday s Ice Pail Lab 6 Electrostatic Charge and Faraday s Ice Pail Learning Goals to investigate the nature of charging an object by contact as compared to charging an object by induction to determine the polarity of two

More information

Electric Charge & Force Problems - 1 v Goodman & Zavorotniy

Electric Charge & Force Problems - 1 v Goodman & Zavorotniy The Atom Chapter Questions 1. Which part on an atom carries a positive charge? Which carries the negative charge? 2. How many types of electric charge are there? 3. When a neutral atom captures a free

More information

Name: SNC1 Date: Investigation Electrostatic Series

Name: SNC1 Date: Investigation Electrostatic Series ACTIVITY #1 Purpose: To determine how charged objects respond to one another and what kind of charge is transferred when a charged object contacts an uncharged one. Pre Lab Questions 1. When acetate and

More information

Static Electricity. (A Qualitative Study of Electrostatics using Sticky Tape)

Static Electricity. (A Qualitative Study of Electrostatics using Sticky Tape) Goals: (A Qualitative Study of Electrostatics using Sticky Tape) To become familiar with basic electrostatic phenomena To learn the charge model and learn to apply it to conductors and insulators To understand

More information

Lab 1 ELECTROSTATICS

Lab 1 ELECTROSTATICS 5 Name Date Partners Lab 1 ELECTROSTATICS OBJECTIVES To understand the difference between conducting and insulating materials. To observe the effects of charge polarization in conductors and insulators

More information

LAB 1 - ELECTROSTATICS

LAB 1 - ELECTROSTATICS Lab 1 - Electrostatics 7 Name Date Partners LAB 1 - ELECTROSTATICS OBJECTIVES OVERVIEW To understand the difference between conducting and insulating materials. To observe the effects of charge polarization

More information

Electrostatics 1 July 6. Name Date Partners ELECTROSTATICS

Electrostatics 1 July 6. Name Date Partners ELECTROSTATICS Electrostatics 1 Name Date Partners ELECTROSTATICS OBJECTIVES OVERVIEW To understand the difference between conducting and insulating materials. To observe the effects of charge polarization in conductors

More information

Electrostatics II. Introduction

Electrostatics II. Introduction Electrostatics II Objective: To learn how excess charge is created and transferred. To measure the electrostatic force between two objects as a function of their electrical charges and their separation

More information

Fun with Tape! Discuss with your group: what you know about electrical charges? Summarize the keys ideas below.

Fun with Tape! Discuss with your group: what you know about electrical charges? Summarize the keys ideas below. Fun with Tape! Name: Group: NOTE: All the activities involving Scotch tape requires properly charged tape. After you peel the tape off, handle it carefully. Try not to touch them with other objects, especially

More information

Young Physicists Program: January 2011 Lab 4: Shocking facts about electrostatics

Young Physicists Program: January 2011 Lab 4: Shocking facts about electrostatics Young Physicists Program: January 2011 Lab 4: Shocking facts about electrostatics Laboratory: Static electricity- Charge, con/induction, Coulomb's Law Introduction The purpose of this lab is to study the

More information

Electrostatics: Coulomb's Law

Electrostatics: Coulomb's Law Electrostatics: Coulomb's Law Objective: To learn how excess charge is created and transferred. To measure the electrostatic force between two objects as a function of their electrical charges and their

More information

PHY222 Lab 1 Electric Charge Positive and negative electric charge, electroscope, phenomenon of electrical induction

PHY222 Lab 1 Electric Charge Positive and negative electric charge, electroscope, phenomenon of electrical induction PHY222 Lab 1 Electric Charge Positive and negative electric charge, electroscope, phenomenon of electrical induction Print Your Name Print Your Partners' Names Instructions September 4, 2015 Before the

More information

Review of Static Electricity

Review of Static Electricity Name: Block: Date: IP 614 Review of Static Electricity Central Concept: Stationary and moving charged particles result in the phenomena known as electricity and magnetism. 5.1 Recognize that an electric

More information

NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT. Physics 211 E&M and Quantum Physics Spring Lab #2: Electrostatics. qq k r

NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT. Physics 211 E&M and Quantum Physics Spring Lab #2: Electrostatics. qq k r NORTHRN ILLINOIS UNIVRSITY PHYSICS DPARTMNT Physics 11 &M and Quantum Physics Spring 018 Lab #: lectrostatics Lab Writeup Due: Mon/Wed/Thu/Fri, Jan. 9/31/Jan. 1/, 018 Background You ve learned a lot about

More information

AP Physics-B ElectroStatics Electric Charges: Subatomic Particles and Electricity: atoms subatomic particles protons neutrons electrons nucleus

AP Physics-B ElectroStatics Electric Charges: Subatomic Particles and Electricity: atoms subatomic particles protons neutrons electrons nucleus AP Physics-B ElectroStatics Electric Charges: It made my hair stand on end! Perhaps you are familiar with this expression, which is often used to describe a frightening or startling experience. According

More information

Charge. Electrostatics Notes (614) Review: Atomic Structure 3/10/14! Charge!! 3 Basic Particles make up Atoms:

Charge. Electrostatics Notes (614) Review: Atomic Structure 3/10/14! Charge!! 3 Basic Particles make up Atoms: Electrostatics Notes (614) Charge!! Review: Atomic Structure Sketch of Atomic Structure:! 3 Basic Particles make up Atoms: 1. 2. 3. Charge! Protons & Electrons have a property called Protons: electric

More information

Lab 4 - Detection of Charge

Lab 4 - Detection of Charge 49 Lab 4 - Detection of Charge Relevant SOLs: PS.11 a, 3.1a, 3.1j, 4.1a, 4.1b, 4.3a, 4.3c Overview An electroscope is an instrument that detects the presence of charge on an object, either through actual

More information

A negatively charged object has more electrons than protons. A negatively charged object has more electrons than protons

A negatively charged object has more electrons than protons. A negatively charged object has more electrons than protons Electricity Electricity Describes all phenomena caused by positive and negative charges Electrical charge is caused by protons and electrons Electrons and protons are subatomic particles found in the atom

More information

Physics Department Week #1 EXPERIMENT I BUILD, AND USE AN ELECTROSCOPE TO EXPLORE PHENOMENA OF ELECTROSTATICS

Physics Department Week #1 EXPERIMENT I BUILD, AND USE AN ELECTROSCOPE TO EXPLORE PHENOMENA OF ELECTROSTATICS 1 PRINCETON UNIVERSITY PHYSICS 104 LAB Physics Department Week #1 EXPERIMENT I BUILD, AND USE AN ELECTROSCOPE TO EXPLORE PHENOMENA OF ELECTROSTATICS This week you will build an electroscope (instructions

More information

Static Electricity Class Practice

Static Electricity Class Practice Static Electricity Class Practice 1. You are given 4 spheres that are electrically. If sphere 3 is positively, what are the charges of the other objects? 1 2 2 3 3 4 2. You have five spheres which are

More information

What are some properties of interactions involving electrified objects?

What are some properties of interactions involving electrified objects? UNIT SE Developing Ideas ACTIVITY 1: Exploring Static Electric Effects Purpose In the previous unit you explored some magnetic effects and then went on to develop a model that explains these effects in

More information

Science 265 Fun with Tape!

Science 265 Fun with Tape! Science 265 Fun with Tape! Challenge At the end of this lab you are to answer the question that follows. Please keep it in mind as you explore static electricity today. The question: Is a thin stream of

More information

Chapter 23. Electric Force. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University

Chapter 23. Electric Force. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University Chapter 23. Electric Force A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University 2007 Objectives: After finishing this unit, you should be able to: Explain

More information

Science 265 Fun with Tape!

Science 265 Fun with Tape! Science 265 Fun with Tape! Challenge At the end of this lab you are to answer the question that follows. Please keep it in mind as you explore static electricity today. The question: Is a thin stream of

More information

Electric Force and Field Chapter Questions

Electric Force and Field Chapter Questions Electric Force and Field Chapter Questions 1. What happens to a plastic rod when it is rubbed with a piece of animal fur? What happens to the piece of fur? 2. How many types of electric charge are there?

More information

Electrostatic Interactions (This lab is adapted from Chapter 1of Electric and Magnetic Interactions, Chabay and Sherwood, 1995.)

Electrostatic Interactions (This lab is adapted from Chapter 1of Electric and Magnetic Interactions, Chabay and Sherwood, 1995.) Name: Partner(s): 1118 section: Desk # Date: Electrostatic Interactions (This lab is adapted from Chapter 1of Electric and Magnetic Interactions, Chabay and Sherwood, 1995.) Purpose To investigate the

More information

1. Electrostatic Lab [1]

1. Electrostatic Lab [1] 1. Electrostatic Lab [1] Purpose: To determine the charge and charge distribution on insulators charged by the triboelectric effects and conductors charged by an Electrostatic Voltage Source. Equipment:

More information

LESSON 1: Exploring Static Electric Effects

LESSON 1: Exploring Static Electric Effects UNIT SE LESSON 1: Exploring Static Electric Effects Purpose and Materials Needed In the previous unit you explored some magnetic effects and then went on to develop a model that explains these effects

More information

Chapter 20. Static Electricity

Chapter 20. Static Electricity Chapter 20 Static Electricity Chapter 20 Static Electricity In this chapter you will: Observe the behavior of electric charges and analyze how these charges interact with matter. Examine the forces that

More information

Department of Physics & Astronomy Undergraduate Labs. Measuring the Electric Force with the Milligram Balance

Department of Physics & Astronomy Undergraduate Labs. Measuring the Electric Force with the Milligram Balance Measuring the Electric Force with the Milligram Balance Goals 1. Understand how excess charge distributes over a conductor 2. Qualitatively measure the electric polarization of various materials 3. Understand

More information

Conceptual Physics Electrostatics and Static Electricity Notes and Worksheets

Conceptual Physics Electrostatics and Static Electricity Notes and Worksheets Conceptual Physics Electrostatics and Static Electricity Notes and Worksheets Electrostatics is the study of electrical charges at rest. Charge is the fundamental aspect of all electrical phenomena. Electrical

More information

Electric charge. Book page Syllabus Lightening 16/3/2016

Electric charge. Book page Syllabus Lightening 16/3/2016 Electric charge Book page 66 69 Syllabus 2.19 2.23 16/3/2016 Lightening cgrahamphysics.com 2016 Test your knowledge Where is the lightning capital of the world? What should you do when you hear thunder?

More information

7.2. Electric Force 7-2A. What Is the Attraction to Water? Words to Know. Find Out ACTIVITY. Materials. What Did You Find Out?

7.2. Electric Force 7-2A. What Is the Attraction to Water? Words to Know. Find Out ACTIVITY. Materials. What Did You Find Out? 7.2 Electric Force Electric force acts on objects even if they are not touching. Objects with the same charge repel each other. Objects with opposite charges attract each other. Neutral objects are attracted

More information

Lab 1: Electrostatics Edited 9/19/14 by Joe Skitka, Stephen Albright, DGH & NET

Lab 1: Electrostatics Edited 9/19/14 by Joe Skitka, Stephen Albright, DGH & NET Lab 1: Electrostatics Edited 9/19/14 by Joe Skitka, Stephen Albright, DGH & NET Figure 1: Lightning Exhibit, Boston Museum of Science http://www.mos.org/sln/toe/ Objective Students will explore the manifestation

More information

Quest Chapter 32. Think Is this any different than the electrons flying around a nucleus?

Quest Chapter 32. Think Is this any different than the electrons flying around a nucleus? 1 How does the mass of an object change when it acquires a positive charge? 1. Increases 2. More information is needed. 3. Decreases 4. Doesn t change 2 Why do clothes often cling together after tumbling

More information

Review of Static Electricity

Review of Static Electricity Name: KEY lock: Date: IP 670 Match each of the following terms with the appropriate description. Write the letter of the best answer to the left. Terms Description C 1. atom a. a small, negatively charged

More information

Electrostatics Notes (614) Charge!

Electrostatics Notes (614) Charge! Electrostatics Notes (614) Charge! n Have you ever walked across the carpet and gotten shocked when you touched the doorknob? n What about static cling? Have you ever gotten to school only to be embarrassed

More information

PS 12b Lab 1a Basic Electrostatics

PS 12b Lab 1a Basic Electrostatics Names: 1.) 2.) 3.) PS 12b Lab 1a Basic Electrostatics Learning Goal: Familiarize students with the concepts of charge, charge interaction, charge transfer, and polarization. We will also illustrate a way

More information

Electric Force and Electric Field Practice Problems PSI AP Physics 1

Electric Force and Electric Field Practice Problems PSI AP Physics 1 Electric Force and Electric Field Practice Problems PSI AP Physics 1 Name Multiple Choice 1. A plastic rod is rubbed with a piece of wool. During the process the plastic rod acquires a negative charge

More information

Electrostatics Notes (614) (teacher)

Electrostatics Notes (614) (teacher) Electrostatics Notes (614) (teacher) Charge!!! Have you ever walked across the carpet and gotten shocked when you touched the doorknob? ! What about static cling? Have you ever gotten to school only to

More information

You ll get a charge out of this

You ll get a charge out of this HPP Activity 63v1 You ll get a charge out of this A pacemaker is installed in a human being to enable their heart to maintain a regular beat. Electrodes are placed on patients everyday that allow measurements

More information

Electrostatics. Thomas Jefferson National Accelerator Facility - Office of Science Education

Electrostatics. Thomas Jefferson National Accelerator Facility - Office of Science Education Electrostatics Electrostatics What happens to Different objects when they are electrically charged? 1. In this experiment, a device called a Van de Graaff generator will be used to place extra electrons

More information

SOWETO/DIEPKLOOF P.O.BOX BOOYSENS 2016!!! " /7 #

SOWETO/DIEPKLOOF P.O.BOX BOOYSENS 2016!!!  /7 # ! SOWETO/DIEPKLOOF P.O.BOX 39067 BOOYSENS 2016!!! " 011 9381666/7 # 011 9383603 email: sec@global.co.za Content Page Electrostatics: Summary of Relevant Theory 1 4 Worksheet 1: Multiple Choice Questions

More information

Learning Outcomes from Last Time. Class 3. Learning Outcomes. What Causes Forces -Two Experiments. What Causes Forces -Two Experiments

Learning Outcomes from Last Time. Class 3. Learning Outcomes. What Causes Forces -Two Experiments. What Causes Forces -Two Experiments Learning Outcomes from Last Time Class 3 Electrostatic Forces Physics 106 Winter 2018 Press CTRL-L to view as a slide show. You should be able to answer these questions: What is science? What is physics?

More information

Physics 1520, Fall 2011 Quiz 3, Form: A

Physics 1520, Fall 2011 Quiz 3, Form: A Physics 1520, Fall 2011 Quiz 3, Form: A Name: Date: Numeric answers must include units. Sketches must be labeled. All short-answer questions must include your reasoning, for full credit. A correct answer

More information

Electric Charge and the Electrostatic Force

Electric Charge and the Electrostatic Force Electric Charge and the Electrostatic Force Goals and Introduction When two electrically-charged objects are brought near each other, they can either attract or repel, depending on the sign of each of

More information

Electrostatics is the study of non-moving electric charges, sometimes called static electricity.

Electrostatics is the study of non-moving electric charges, sometimes called static electricity. Electrostatic Phenomena Electrostatics is the study of non-moving electric charges, sometimes called static electricity. A simple experiment will demonstrate the phenomena. 1. Take a polythene rod and

More information

Electric Charge and Static Electricity

Electric Charge and Static Electricity Electric Charge and Static Electricity Electric Charge All matter is made up of atoms Atoms contain 1. Protons (+) 2. Neutrons (0) 3. Electrons (-) Law of Electric Charges The law of electric charges states

More information

Faraday Cage P BACKGROUND: KIT CONTENTS: CAUTION: BACKGROUND ON STATIC ELECTRICITY:

Faraday Cage P BACKGROUND: KIT CONTENTS: CAUTION: BACKGROUND ON STATIC ELECTRICITY: WWW.ARBORSCI.COM Faraday Cage P6-3370 BACKGROUND: Named after the English chemist and physicist Michael Faraday, this apparatus is designed to demonstrate the principles of static electricity, and to allow

More information

ELECTRIC FORCES AND ELECTRIC FIELDS

ELECTRIC FORCES AND ELECTRIC FIELDS chapter ELECTRIC FORCES AND ELECTRIC FIELDS www.tutor-homework.com (for tutoring, homework help, or help with online classes) Section 18.1 The Origin of Electricity Section 18.2 Charged Objects and the

More information

Sticky Tape Lab Name: Block: Date:

Sticky Tape Lab Name: Block: Date: Name: Block: Date: Part I Preparing the Setup 1. Cut two ~15 cm pieces of paper and foil. Tape one piece of paper and foil to the ruler so it can swing freely. Set the other two pieces to the side. 2.

More information

Conceptual Questions. Fig.8.51 EXERCISES. 8. Why can t electric field lines cross? 9. In which direction do charges always move in an electric field?

Conceptual Questions. Fig.8.51 EXERCISES. 8. Why can t electric field lines cross? 9. In which direction do charges always move in an electric field? EXERCISES Conceptual Questions 1. Explain why a neutral object can be attracted to a charged object. Why can this neutral object not be repelled by a charged object? 2. What is the function of an electroscope?

More information

Name Pd Date E&M1-Sticky Tape Activity

Name Pd Date E&M1-Sticky Tape Activity Set-Up Instructions Name Pd Date E&M1-Sticky Tape Activity 1. Cut two pieces of paper and two pieces of aluminum foil to the following dimensions: 2 cm by 15 cm. 2. Suspend one piece of aluminum foil about

More information

6 Three rods, X, Y. and Z are charged by friction. Rod X attracts rod Y, but repels rod Z. What are the signs of the charges on each of these rods?

6 Three rods, X, Y. and Z are charged by friction. Rod X attracts rod Y, but repels rod Z. What are the signs of the charges on each of these rods? Physics 3204 ssignment 1: Electrostatics Name: 1 What causes an object to obtain a positive charge? gain of electrons gain of protons loss of electrons loss of protons 2 When a glass rod is rubbed with

More information

2. Attach a second similarly prepared strip of tape onto the base tape. Label this tape T for top.

2. Attach a second similarly prepared strip of tape onto the base tape. Label this tape T for top. Part I Top tapes Name Period Date E&M1-Sticky Tape Activity 1. Take a 15 cm to 20 cm piece of transparent tape and make a handle on the end by folding under the first cm of tape, sticky side to sticky

More information

Electric Charge & Force Problems - 1 v Goodman & Zavorotniy

Electric Charge & Force Problems - 1 v Goodman & Zavorotniy Electric Charge Chapter Questions 1. What happens to a plastic rod when it is rubbed with a piece of animal fur? What happens to the piece of fur? 2. How many types of electric charge are there? What are

More information

History. The word electricity comes from the Greek elektron which means amber. The amber effect is what we call static electricity.

History. The word electricity comes from the Greek elektron which means amber. The amber effect is what we call static electricity. Electrostatics 1 History The word electricity comes from the Greek elektron which means amber. The amber effect is what we call static electricity. 2 ELECTROSTATICS the study of electric charges, forces

More information

PE q. F E = q. = kq 1q 2 d 2. Q = ne F e

PE q. F E = q. = kq 1q 2 d 2. Q = ne F e Chapters 32 & 33: Electrostatics NAME: Text: Chapter 32 Chapter 33 Think and Explain: 1-6, 8 Think and Explain: 1, 4, 5, 8, 10 Think and Solve: Think and Solve: 1-2 Vocabulary: electric forces, charge,

More information

Electric Charge & Force - 1 v Goodman & Zavorotniy

Electric Charge & Force - 1 v Goodman & Zavorotniy Electric Charge and Force Introduction From ancient times it was known that when certain materials are rubbed together, they can form an attraction to one another. This is the same discovery that is made

More information

EXTENSION 6. Chapter 3 Encounters with Electricity: Electrical Energy in the Home Unit 3.2 Electric Circuits and Electric Charge

EXTENSION 6. Chapter 3 Encounters with Electricity: Electrical Energy in the Home Unit 3.2 Electric Circuits and Electric Charge EXTENSION 6 Chapter 3 Encounters with Electricity: Electrical Energy in the Home Unit 3.2 Electric Circuits and Electric Charge A view of the Atom and Electric Charge Figure 1 The size of the nucleus is

More information

Lab 3 Electrostatics: Charging Objects by Friction

Lab 3 Electrostatics: Charging Objects by Friction 1 Overview Lab 3 Electrostatics: Charging Objects by Friction Static electricity is the result of an imbalance of charge in materials. All material is made up of atoms. Atoms are extremely small and are

More information

C Electric Force & Field Practice Problems PSI Physics

C Electric Force & Field Practice Problems PSI Physics C Electric Force & Field Practice Problems PSI Physics Name Multiple Choice 1. A plastic rod is rubbed with a piece of wool. During the process the plastic rod acquires a positive charge and the wool:

More information

Electric Force and Charges. Conceptual Physics 11 th Edition. Electric Force and Charges

Electric Force and Charges. Conceptual Physics 11 th Edition. Electric Force and Charges Conceptual Physics 11 th Edition Central rule of electricity Opposite charges attract one another; like charges repel. Chapter 22: ELECTROSTATICS This lecture will help you understand: Electrical Forces

More information

10th week Lectures March Chapter 12

10th week Lectures March Chapter 12 Electric charge. 10th week Lectures March 20. 2017. Chapter 12 Conductors and Insulators Coulomb law Electric field Electric Potential 3/20/2017 Physics 214 Spring 2017 1 Electric charge an atom has a

More information

AP Physics - Static Electricity

AP Physics - Static Electricity AP Physics - Static Electricity History: Electricity was first described (that we know of) by an ancient Greek, the philosopher Thales (640? - 546 B.C.E.) in the 580 s B.C. What Thales noted was that when

More information

7.9.4 Static Electricity

7.9.4 Static Electricity 7.9.4 Static Electricity 71 minutes 79 marks Page 1 of 19 Q1. The diagram shows a student after rubbing a balloon on his hair. The balloon and hair have become charged. (a) Draw a ring around the correct

More information

Chapter 18 Electric Force and Electric Fields. Sections

Chapter 18 Electric Force and Electric Fields. Sections Chapter 18 Electric Force and Electric Fields Sections 18.1 18.6 Objectives: After finishing this unit, you should be able to: Explain and demonstrate the First law of electrostatics and discuss charging

More information

Electricity and Magnetism Module 1 Student Guide

Electricity and Magnetism Module 1 Student Guide Electricity and Magnetism Module 1 Student Guide Concepts of this Module Electric Charge Coulomb s Law Addition of Electrostatic Forces The Activities Background for Activities 1-3 Here are four hypotheses

More information

Physics 2B Electricity and Magnetism. Instructor: Prof Benjamin Grinstein UCSD

Physics 2B Electricity and Magnetism. Instructor: Prof Benjamin Grinstein UCSD Physics 2B Electricity and Magnetism Instructor: Prof Benjamin Grinstein UCSD week 1 Rank in order, from most positive to most negative, the charges q a to q e of these five systems. 1. q a = q b >

More information

Magnetism and Electricity

Magnetism and Electricity Magnetism and Electricity UNIT 7 Student Reader E3 Student Reader v. 9 Unit 7 Page 1 2016 KnowAtom TM Front Cover: The front cover shows a photograph of a girl with her hair standing straight up. This

More information

Student Instruction Sheet: Unit 3 Lesson 1. Static and Current Electricity

Student Instruction Sheet: Unit 3 Lesson 1. Static and Current Electricity Student Instruction Sheet: Unit 3 Lesson 1 Suggested Time: 1.2 Hours What s important in this lesson: Static and Current Electricity explain common electrostatic phenomena (e.g., clothes that stick together,

More information

Static Electricity 2

Static Electricity 2 1 2 Introductory Question A woman rubs her feet on the carpet and gives a shock to her identical twin. If the twin also rubs her feet on the carpet before being touched, the shock will be A. larger B.

More information

TOTAL / 8

TOTAL / 8 QUESTIONSHEET 1 (a) One mark for each of the following belt brushes against bottom comb belt becomes charged charge travels up belt charge transferred via top comb to outside of dome 5 (b) A spark jumps

More information

PHYSICS 30 ELECTRIC FIELDS ASSIGNMENT 1 55 MARKS

PHYSICS 30 ELECTRIC FIELDS ASSIGNMENT 1 55 MARKS For each of the following questions complete communication must be shown. Communication consists of an introduction to the physics of the situation, diagrams, word explanations and calculations in a well

More information

Unit 3 Lesson 1 Electric Charge and Static Electricity. Copyright Houghton Mifflin Harcourt Publishing Company

Unit 3 Lesson 1 Electric Charge and Static Electricity. Copyright Houghton Mifflin Harcourt Publishing Company Opposites Attract What is electric charge? Electric charge is a property that leads to electromagnetic interactions between the particles that make up matter. An object can have a positive (+) charge,

More information

An Introduction to Electrostatic Charge and Its Related Forces (approx. 1 h 45 min.)(6/2/13)

An Introduction to Electrostatic Charge and Its Related Forces (approx. 1 h 45 min.)(6/2/13) An Introduction to Electrostatic Charge and Its Related Forces (approx. 1 h 45 min.)(6/2/13) Introduction: All solid materials are composed of atoms or molecules which are bound together by electrostatic

More information

Note on Posted Slides

Note on Posted Slides Note on Posted Slides These are the slides that I intended to show in class on Wed. Mar. 13, 2013. They contain important ideas and questions from your reading. Due to time constraints, I was probably

More information

Electrostatics: Charging Objects by Friction

Electrostatics: Charging Objects by Friction Physical Science 8 Electrostatics: Charging Objects by Friction Relevant SOL(s): PS 1 a) chemicals and equipment are used safely; f) independent and dependent variables, constants, controls, and repeated

More information

AP Physics 1 Electrostatics Practice Problems. Multiple Choice

AP Physics 1 Electrostatics Practice Problems. Multiple Choice AP Physics 1 Electrostatics Practice Problems Multiple Choice 1. A plastic rod is rubbed with a piece of wool. During the process the plastic rod acquires a negative charge and the wool: (A) acquires an

More information

Static Electricity. Lyzinski Physics. These notes will be on Mr. L s website for your studying enjoyment!!! Not moving or stationary

Static Electricity. Lyzinski Physics. These notes will be on Mr. L s website for your studying enjoyment!!! Not moving or stationary Not moving or stationary Static Electricity These notes will be on Mr. L s website for your studying enjoyment!!! Lyzinski Physics Some very simple rules There are only two types of charge: POSITIVE AND

More information

International Journal of Mathematics and Computer Sciences (IJMCS) Vol.10 October 2012 International Scientific Researchers (ISR) ISSN:

International Journal of Mathematics and Computer Sciences (IJMCS) Vol.10 October 2012 International Scientific Researchers (ISR) ISSN: California Physics Standard 5e Send comments to: layton@physics.ucla.edu Electric and magnetic phenomena are related and have many practical applications As a basis for understanding this concept: e. Students

More information

Unit 2: Electrostatics

Unit 2: Electrostatics Unit 2: Electrostatics You probably associate electrostatics with physics class, but you probably also have lots of experience with static electricity at home. Of course, it s the same stuff! 1 I. What

More information

Name Date Block Review for Test on Universal Gravitation and Electrostatics Test is on:

Name Date Block Review for Test on Universal Gravitation and Electrostatics Test is on: Name Date Block Review for Test on Universal Gravitation and Electrostatics Test is on: Please bring a completed (in your own handwriting) and corrected packet to the test. You will be able to use it on

More information

What Is Static Electricity? A stationary electrical charge that is built up on the surface of a material

What Is Static Electricity? A stationary electrical charge that is built up on the surface of a material Static Electricity What Is Static Electricity? A stationary electrical charge that is built up on the surface of a material Two kinds of charges After being rubbed, a plastic ruler can attract paper scraps.

More information

Holding a charged rod close to the electroscope plate

Holding a charged rod close to the electroscope plate Lab 1. Electrostatics Goals To understand and verify behavior of two kinds of charge, denoted positive and negative, respectively. To understand response of electroscope when a charged rod is brought near,

More information

7.1 Properties of Electric Charge

7.1 Properties of Electric Charge 7.1 Properties of Electric Charge A visit to a science museum can be, literally, a hair-raising experience. In Figure 1, the device that the child is touching is a Van de Graaff generator, which produces

More information

Electrostatics Review A. A B. B C. C D. D

Electrostatics Review A. A B. B C. C D. D Name: ate: 1. Which sketch best represents the charge distribution around a neutral electroscope when a positively charged strip is brought near, but does not touch, the electroscope? 4. In the diagram

More information

Electric Charge. Demo Lab. Return to Table of Contents. abp_electric charge force presentation_ notebook. March 21, 2017

Electric Charge. Demo Lab. Return to Table of Contents. abp_electric charge force presentation_ notebook. March 21, 2017 abp_electricchargeforcepresentation_20170207.notebook Electric Charge Demo Lab https://www.njctl.org/video/?v=xbmbaekusb4 Return to Table of Contents 1 abp_electricchargeforcepresentation_20170207.notebook

More information

UNIT 2 COULOMB S LAW. Objectives. to understand Coulomb s Law qualitatively and quantitatively

UNIT 2 COULOMB S LAW. Objectives. to understand Coulomb s Law qualitatively and quantitatively UNIT 2 COULOMB S LAW Objectives to understand Coulomb s Law qualitatively and quantitatively to understand the principle of superposition 1 Electric Field Hockey program 1.1 Open the program Electric Field

More information

Chapter 4: The electromagnetic Interaction. Quizlet. Early observations. Lightning

Chapter 4: The electromagnetic Interaction. Quizlet. Early observations. Lightning Chapter 4: The electromagnetic Interaction Quizlet P2: When you run a hard rubber comb through your hair on a dry day, the hair stands up. It is also attracted to the comb. What interaction is at work?

More information

Ch 16 practice. Multiple Choice Identify the choice that best completes the statement or answers the question.

Ch 16 practice. Multiple Choice Identify the choice that best completes the statement or answers the question. Ch 16 practice Multiple Choice Identify the choice that best completes the statement or answers the question. 1. What happens when a rubber rod is rubbed with a piece of fur, giving it a negative charge?

More information

UNIT 3 ELECTRIC FIELD. Objectives. to understand the concept of an electric field qualitatively and quantitatively

UNIT 3 ELECTRIC FIELD. Objectives. to understand the concept of an electric field qualitatively and quantitatively UNIT 3 ELECTRIC FIELD Objectives to understand the concept of an electric field qualitatively and quantitatively to be able to represent the electric field at a point in space by a vector to understand

More information