CSE140: Components and Design Techniques for Digital Systems. Introduction. Instructor: Mohsen Imani

Size: px
Start display at page:

Download "CSE140: Components and Design Techniques for Digital Systems. Introduction. Instructor: Mohsen Imani"

Transcription

1 CSE4: Components and Design Techniques for Digital Systems Introduction Instructor: Mohsen Imani Slides from: Prof.Tajana Simunic Rosing & Dr.Pietro Mercati

2 Welcome to CSE 4! Instructor: Mohsen Imani please put CSE4 in the subject line Class: Tue/Thr :am-:5pm at PCYNH 22 Office Hours: Tue 3-5pm CSE 227 Discussion sessions: Tue/Thr -am at PCYNH 22 Course website: Announcements and online discussion: SIGN UP SOON!!!! TAs and Tutors: Office hours listed on the class website/piazza

3 Grading: Grading Class participation using iclicker: 5% 4 Homeworks: 5% each Midterm: 3% Final: 45% Homeworks are out on Tuesdays and are due on the following Tuesday before am Tue discussion session will go over the HW solution Submission via gradescope: Only a subset of problems will be graded Late submissions will not be accepted! Homework will be out right after this class

4 Academic Honesty Some Class Policies Studying together in groups is encouraged Turned-in work must be completely your own Both giver and receiver are equally culpable Cheating on HW/ exams: F in the course. Any instance of cheating will be referred to Academic Integrity Office

5 Textbooks and Recommended Readings Recommended textbook: digital design by F. Vahid Other recommended textbooks: Digital Design by F. Vahid Digital Design & Computer Arch. by David & Sarah Harris Contemporary Logic Design by R. Katz & G. Borriello Lecture slides are derived from the slides designed for all three books

6 CSE4 & other CSE classes A pplication S oftw are Layers of abstraction program s O perating S ystem s device drivers CSE 3 CSE 4 CSE 4 focus of this course A rchitecture M icroarchitecture Logic D igital C ircuits instructions registers datapaths controllers adders m em ories A N D gates N O T gates Abstraction: A way to simplify by hiding details from other layers A nalog C ircuits D evices P h ys ic s am plifiers filte rs transistors diodes electrons

7 Why Study Digital Design? Look under the hood of your processors You become a better programmer when you understand hardware your code runs on Nvidia Tegra 2 die photo

8 The Scope of CSE4 We start with Boolean algebra Y = A and B End up with the design of a simple CPU What s next? CSE4 more complex CPU architectures Nvidia Tegra 2 die photo

9 Lets get started! Number representations Analog vs. Digital Digital representations: Binary, Hexadecimal, Octal Switches, MOS transistors, Logic gates What is a switch How a transistor operates Logic gates Building larger functions from logic gates Universal gates Boolean algebra Properties How Boolean algebra can be used to design logic circuits

10 What Does Digital Mean? Analog signal Infinite possible values Ex: voltage on a wire created by microphone Digital signal Finite possible values Ex: button pressed on a keypad Sound waves microphone value move the membrane, which moves the magnet, which creates current in the nearby wire analog signal Possible values:.,., 2.9,... infinite possibilities Which is analog? A) Wind speed B) Radio Signal C) Clicker response D) A) & B) E) All of the above value digital signal Possible values:,, 2, 3, or 4. That s it. time time

11 Encoding Numbers Base & 2 Each position represents a quantity; symbol in position means how many of that quantity Base ten (decimal) Ten symbols:,, 2,..., 8, and 9 More than 9 -- next position So each position power of Nothing special about base -- used because we have fingers Base two (binary) Two symbols: and More than -- next position So each position power of 2 Decimal to binary: - Divide by two - Report the reminder - Concatenate the reminders NUMBER REMINDER 523 =

12

13 Encoding Numbers Base & 2 Each position represents a quantity; symbol in position means how many of that quantity Base ten (decimal) Ten symbols:,, 2,..., 8, and 9 More than 9 -- next position So each position power of Nothing special about base -- used because we have fingers Base two (binary) Two symbols: and More than -- next position So each position power of 2 Binary to decimal: - Each position is a power of 2 - Sum up all the powers of 2 where you have a = 523

14 Bases Sixteen & Eight hex binary 8 A F A F hex 8 9 A B C D E F binary Base sixteen Used as compact way to write binary numbers Basic digits: -9, A-F Known as hexadecimal, or just hex Base eight Basic digits: -7 Known as octal octal binary

15 Bases Sixteen & Eight hex binary hex binary Hexadecimal to binary: Expand each hexadecimal digit into the corresponding binary string A B C D E F 8 A F = Binary to hexadecimal: - Pad the binary string with zeros on the left until you have a number of digits multiple of 4 - Group digits 4-by-4 starting from the right and convert into the corresponding hexadecimal symbol 2 D

16 Question AB is a hex value. What s the equivalent value in Octal? A. 534 B. 526 C. AB D. 342 E. None

17 Question 38 is a decimal value. What s the equivalent value in hex? A. 6 B. 2A C. 4 D. E. None

18 Combinational circuit building blocks: Switches & CMOS transistors

19 CMOS circuit CMOS Switches Consists of N and PMOS transistors Both N and PMOS are similar to basic switches A positive voltage here......attracts electrons here, turning the channel between source and drain into a conductor. nmos gate source gate oxide drain IC package conducts d o e s n o t conduct pmos gate (a) IC Silicon -- not quite a conductor or insulator: Semiconductor does not conduct conducts

20 Transistor Circuit Design nmos: Turns on when gate is connected to When turned on, nmos passes zeros well, but not ones, so connect source to GND nmos forms a pull-down network pmos: Turns on when gate is connected to When turned on, pmos passes ones well, but not zeros, so connect source to V DD pmos forms a pull-up network Note: Vahid s textbook shows some circuits with pmos connected to GND and nmos to Vdd: this is NOT normally done in practice! inputs V DD pmos pull-up network nmos pull-down network output

21 CMOS Switches The following is true for CMOS switches: A. nmos turns on when gate is connected to logic B. pmos is an open switch when gate is connect to logic C. All of the above D. None of the above A positive voltage here......attracts electrons here, turning the channel between source and drain into a conductor. nmos g a t e gate source oxide drain IC package pmos gate (a) IC

22 Logic gates: CMOS NOT Gate NOT V DD A Y = A Y A P Y N A Y GND A P N Y

23 CMOS Two Input NAND Gate A B NAND Y = AB Y A B Y V DD P2 P Y A B N N2 GND A B P P2 N N2 Y

24 Common Logic Gates a b AND a b a b OR a+b a NOT a a BUF a (a b) (a+b) ab + a b ab + a b A B Y N2 N P2 P V DD A Y GND N P a b NAND a b NOR a b XNOR a b XOR

25 B = {, } Variables represent or only Operators return or only Basic operators Boolean algebra Intersection: is logical AND: a AND b returns only when a= & b= Union: + is logical OR: a OR b returns if either a= or b= (or both) Complement: is logical NOT: NOT a returns the opposite of a AND OR NOT BUFFER a b a b AND Derived operators: a+b a b OR NAND NOR XOR XNOR a b NAND (a b) (a+b) a b NOR a a a b NOT XOR a a a b BUF XNOR

26 Boolean Algebra X and Y are Boolean variables with X=, Y= What is X+X+Y? A. B. C. 2 D. None of the above

27 BREAK!

28 Universal Gate: NAND Any logic function can be implemented using just NAND gates. Boolean algebra s basic operators are AND, OR and NOT

29 F= A + B C Gate level Implementation

30 F= (A+B).(C+D) Gate level Implementation What s the minimum number of NAND gates to implement this function? A. 4 B. 8 C. 6 D.

31 Universal Gate: NOR Any logic function can be implemented using just NOR gates. Boolean algebra needs AND, OR and NOT

32 Boolean Axioms & Theorems

33 Boolean theorems of multiple variables

34 Boolean Duality Derived by replacing by +, + by, by, and by & leaving variables unchanged Generalized duality: X + Y +... X Y... f (X,X 2,...,X n,,,+, ) f(x,x 2,...,X n,,,,+) Any theorem that can be proven is also proven for its dual! Note: this is NOT demorgan s Law

35 Covering Theorem Explained Covering Theorem: A*(A+B) = A+A*B = A Venn Diagrams

36 Combining Theorem Explained Combining Theorem: AB+AB = (A+B)*(A+B ) = A

37 Proving theorems with Boolean Algebra Using the axioms of Boolean algebra: e.g., prove the consensus theorem: X Y + X Y = X distributivity X Y + X Y = X (Y + Y ) complementarity X (Y + Y ) = X () identity X () = X e.g., prove the covering theorem: X + X Y = X identity X + X Y = X + X Y distributivity X + X Y = X ( + Y) identity X ( + Y) = X () identity X () = X

38 Consensus Theorem of 3 Variables Consensus Theorem: AB+B C+AC = AB+B C

39 Proof of Consensus Theorem with Boolean Algebra Consensus Theorem: (X Y) + (Y Z) + (X Z) = X Y + X Z (X Y) + (Y Z) + (X Z) identity (X Y) + () (Y Z) + (X Z) complementarity (X Y) + (X + X) (Y Z) + (X Z) distributivity (X Y) + (X Y Z) + (X Y Z) + (X Z) commutativity (X Y) + (X Y Z) + (X Y Z) + (X Z) factoring (X Y) ( + Z) + (X Z) ( + Y) null (X Y) () + (X Z) () identity (X Y) + (X Z)

40 Applying Boolean Algebra Theorems Which of the following is CB+BA+C A equal to? A. AB+AC B. BC+AC C. AB+BC D. None of the above

41 DeMorgan s Theorem (Bubble Pushing) Y = AB = A + B A B A B Y Y Y = A + B = A B A B A B Y Y

42 Example of Transforming Circuits with Bubble Pushing 42

43 F = X Y + Z Implement using only NORs

44 Proving Theorems with Perfect Induction Using perfect induction = complete the truth table: e.g., de Morgan s: (X + Y) = X Y NOR is equivalent to AND with inputs complemented X Y X Y (X + Y) X Y (X Y) = X + Y NAND is equivalent to OR with inputs complemented X Y X Y (X Y) X + Y

45 Specifying Logic Problems with Truth Tables Half Adder: Truth table -> Boolean Eq. -> Logic Circuit a Truth Table a b carry sum b Sum Carry 45

46 Going from a Truth Table to a Boolean Equation Truth Table a b carry sum Boolean Equation: Sum (a, b) = a b + ab = = a XOR b Carry (a, b) = ab 46

47 How do we get a Boolean Equation from the Truth Table? Truth Table a b carry sum How? Boolean Equation Sum (a, b) = a b + ab Carry (a, b) = ab 47

48 Need Some Definitions Complement: variable with a bar over it or a A, B, C Literal: variable or its complement A, A, B, B, C, C Implicant: product of literals ABC, AC, BC Implicate: sum of literals (A+B+C), (A+C), (B+C) Minterm: AND that includes all input variables ABC, A BC, AB C Maxterm: OR that includes all input variables (A+B+C), (A +B+C), (A +B +C) 48

49 Minterms of Two Input Functions A B Minterm Maxterm A B A B AB AB A+B A+B A +B A +B

50 CSE4: Components and Design Techniques for Digital Systems Canonical representation 5

51 Canonical Form -- Sum of Minterms Truth tables are too big for numerous inputs Use standard form of equation instead Known as canonical form Regular algebra: group terms of polynomial by power ax 2 + bx + c (3x 2 + 4x + 2x > 5x 2 + 4x + 4) Boolean algebra: create a sum of minterms (or a product of maxterms) 5

52 Canonical form? Is F(a,b)=ab+a in canonical form? A) True B) False 52

53 Sum-of-products Canonical Form Also known as disjunctive normal form Minterm expansion: F = F = A B C + A BC + AB C + ABC + ABC A B C F F F = A B C + A BC + AB C 53

54 Sum-of-products canonical form (cont d) Product minterm ANDed product of literals input combination for which output is each variable appears exactly once, true or inverted (but not both) You can write a canonical form in multiple ways A B C minterms A B C m A B C m A BC m2 A BC m3 AB C m4 AB C m5 ABC m6 ABC m7 short-hand notation for minterms of 3 variables F F in canonical form: F(A, B, C) = m(,3,5,6,7) = m + m3 + m5 + m6 + m7 = A B C + A BC + AB C + ABC + ABC canonical form minimal form F(A, B, C) = A B C + A BC + AB C + ABC + ABC = (A B + A B + AB + AB)C + ABC = ((A + A)(B + B))C + ABC = C + ABC = ABC + C = AB + C 54

55 Sum of Products Canonical Form Minterm A B Carry Sum A B A B AB AB I. sum(a,b) = II. carry(a,b)= 55

56 Sum of Products Canonical Form A B Y Does the following SOP canonical expression correctly express the above truth table: A.Yes B.No Y(A,B)= Σm(2,3) 56

57 Product-of-sums canonical form Also known as conjunctive normal form Also known as maxterm expansion Implements zeros of a function A B C F F F = F = (A + B + C) (A + B + C) (A + B + C) F = (A + B + C ) (A + B + C ) (A + B + C ) (A + B + C) (A + B + C ) 57

58 Product-of-sums canonical form (cont d) Sum term (or maxterm) ORed sum of literals input combination for which output is false each variable appears exactly once, true or inverted (but not both) A B C maxterms A+B+C M A+B+C M A+B +C M2 A+B +C M3 A +B+C M4 A +B+C M5 A +B +C M6 A +B +C M7 F F in canonical form: F(A, B, C) = M(,2,4) = M M2 M4 = (A + B + C) (A + B + C) (A + B + C) canonical form minimal form F(A, B, C) = (A + B + C) (A + B + C) (A + B + C) = (A + B + C) (A + B + C) (A + B + C) (A + B + C) = (A + C) (B + C) short-hand notation for maxterms of 3 variables 58

59 What we reviewed thus far: Summary Number representations Switches, logic gates Universal gates Boolean algebra Using Boolean algebra to simplify Boolean equations There is an easier way! What is next: Combinational logic: Minimization (the easier way) Designs of common combinational circuits Adders, comparators, subtractors, multipliers, etc.

60 Claude Shannon: Historical Note In 936, Shannon began his graduate studies in electrical engineering at MIT While studying the complicated ad hoc circuits of this analyzer, Shannon designed switching circuits based on Boole's concepts. In 937, he wrote his master's degree thesis, A Symbolic Analysis of Relay and Switching Circuits, [9] A paper from this thesis was published in 938. [] In this work, Shannon proved that his switching circuits could be used to simplify the arrangement of the electromechanical relays that were used then in telephone call routing switches. Next, he expanded this concept, proving that these circuits could solve all problems that Boolean algebra could solve. In the last chapter, he presents diagrams of several circuits, including a 4-bit full adder. [9] Using this property of electrical switches to implement logic is the fundamental concept that underlies all electronic digital computers

CSE140: Components and Design Techniques for Digital Systems. Introduction. Prof. Tajana Simunic Rosing

CSE140: Components and Design Techniques for Digital Systems. Introduction. Prof. Tajana Simunic Rosing CSE4: Components and Design Techniques for Digital Systems Introduction Prof. Tajana Simunic Rosing Welcome to CSE 4! Instructor: Tajana Simunic Rosing Email: tajana.teach.ucsd@gmail.com; please put CSE4

More information

Combinational Logic. Review of Combinational Logic 1

Combinational Logic. Review of Combinational Logic 1 Combinational Logic! Switches -> Boolean algebra! Representation of Boolean functions! Logic circuit elements - logic gates! Regular logic structures! Timing behavior of combinational logic! HDLs and combinational

More information

Switches: basic element of physical implementations

Switches: basic element of physical implementations Combinational logic Switches Basic logic and truth tables Logic functions Boolean algebra Proofs by re-writing and by perfect induction Winter 200 CSE370 - II - Boolean Algebra Switches: basic element

More information

CPE100: Digital Logic Design I

CPE100: Digital Logic Design I Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu CPE100: Digital Logic Design I Midterm01 Review http://www.ee.unlv.edu/~b1morris/cpe100/ 2 Logistics Thursday Oct. 5 th In normal lecture (13:00-14:15)

More information

Lecture A: Logic Design and Gates

Lecture A: Logic Design and Gates Lecture A: Logic Design and Gates Syllabus My office hours 9.15-10.35am T,Th or gchoi@ece.tamu.edu 333G WERC Text: Brown and Vranesic Fundamentals of Digital Logic,» Buy it.. Or borrow it» Other book:

More information

2009 Spring CS211 Digital Systems & Lab CHAPTER 2: INTRODUCTION TO LOGIC CIRCUITS

2009 Spring CS211 Digital Systems & Lab CHAPTER 2: INTRODUCTION TO LOGIC CIRCUITS CHAPTER 2: INTRODUCTION TO LOGIC CIRCUITS What will we learn? 2 Logic functions and circuits Boolean Algebra Logic gates and Synthesis CAD tools and VHDL Read Section 2.9 and 2.0 Terminology 3 Digital

More information

EECS Variable Logic Functions

EECS Variable Logic Functions EECS150 Section 1 Introduction to Combinational Logic Fall 2001 2-Variable Logic Functions There are 16 possible functions of 2 input variables: in general, there are 2**(2**n) functions of n inputs X

More information

EEE130 Digital Electronics I Lecture #4

EEE130 Digital Electronics I Lecture #4 EEE130 Digital Electronics I Lecture #4 - Boolean Algebra and Logic Simplification - By Dr. Shahrel A. Suandi Topics to be discussed 4-1 Boolean Operations and Expressions 4-2 Laws and Rules of Boolean

More information

Chapter 2: Switching Algebra and Logic Circuits

Chapter 2: Switching Algebra and Logic Circuits Chapter 2: Switching Algebra and Logic Circuits Formal Foundation of Digital Design In 1854 George Boole published An investigation into the Laws of Thoughts Algebraic system with two values 0 and 1 Used

More information

Administrative Notes. Chapter 2 <9>

Administrative Notes. Chapter 2 <9> Administrative Notes Note: New homework instructions starting with HW03 Homework is due at the beginning of class Homework must be organized, legible (messy is not), and stapled to be graded Chapter 2

More information

EECS150 - Digital Design Lecture 19 - Combinational Logic Circuits : A Deep Dive

EECS150 - Digital Design Lecture 19 - Combinational Logic Circuits : A Deep Dive EECS150 - Digital Design Lecture 19 - Combinational Logic Circuits : A Deep Dive March 30, 2010 John Wawrzynek Spring 2010 EECS150 - Lec19-cl1 Page 1 Boolean Algebra I (Representations of Combinational

More information

Intro To Digital Logic

Intro To Digital Logic Intro To Digital Logic 1 Announcements... Project 2.2 out But delayed till after the midterm Midterm in a week Covers up to last lecture + next week's homework & lab Nick goes "H-Bomb of Justice" About

More information

Floating Point Representation and Digital Logic. Lecture 11 CS301

Floating Point Representation and Digital Logic. Lecture 11 CS301 Floating Point Representation and Digital Logic Lecture 11 CS301 Administrative Daily Review of today s lecture w Due tomorrow (10/4) at 8am Lab #3 due Friday (9/7) 1:29pm HW #5 assigned w Due Monday 10/8

More information

Chapter 2 Combinational logic

Chapter 2 Combinational logic Chapter 2 Combinational logic Chapter 2 is very easy. I presume you already took discrete mathemtics. The major part of chapter 2 is boolean algebra. II - Combinational Logic Copyright 24, Gaetano Borriello

More information

Contents. Chapter 2 Digital Circuits Page 1 of 30

Contents. Chapter 2 Digital Circuits Page 1 of 30 Chapter 2 Digital Circuits Page 1 of 30 Contents Contents... 1 2 Digital Circuits... 2 2.1 Binary Numbers... 2 2.2 Binary Switch... 4 2.3 Basic Logic Operators and Logic Expressions... 5 2.4 Truth Tables...

More information

EECS150 - Digital Design Lecture 4 - Boolean Algebra I (Representations of Combinational Logic Circuits)

EECS150 - Digital Design Lecture 4 - Boolean Algebra I (Representations of Combinational Logic Circuits) EECS150 - Digital Design Lecture 4 - Boolean Algebra I (Representations of Combinational Logic Circuits) September 5, 2002 John Wawrzynek Fall 2002 EECS150 Lec4-bool1 Page 1, 9/5 9am Outline Review of

More information

CS 226: Digital Logic Design

CS 226: Digital Logic Design CS 226: Digital Logic Design 0 1 1 I S 0 1 0 S Department of Computer Science and Engineering, Indian Institute of Technology Bombay. 1 of 29 Objectives In this lecture we will introduce: 1. Logic functions

More information

Lecture 2 Review on Digital Logic (Part 1)

Lecture 2 Review on Digital Logic (Part 1) Lecture 2 Review on Digital Logic (Part 1) Xuan Silvia Zhang Washington University in St. Louis http://classes.engineering.wustl.edu/ese461/ Grading Engagement 5% Review Quiz 10% Homework 10% Labs 40%

More information

Outline. EECS150 - Digital Design Lecture 4 - Boolean Algebra I (Representations of Combinational Logic Circuits) Combinational Logic (CL) Defined

Outline. EECS150 - Digital Design Lecture 4 - Boolean Algebra I (Representations of Combinational Logic Circuits) Combinational Logic (CL) Defined EECS150 - Digital Design Lecture 4 - Boolean Algebra I (Representations of Combinational Logic Circuits) January 30, 2003 John Wawrzynek Outline Review of three representations for combinational logic:

More information

Combinational logic. Possible logic functions of two variables. Minimal set of functions. Cost of different logic functions.

Combinational logic. Possible logic functions of two variables. Minimal set of functions. Cost of different logic functions. Combinational logic Possible logic functions of two variables Logic functions, truth tables, and switches NOT, ND, OR, NND, NOR, OR,... Minimal set xioms and theorems of oolean algebra Proofs by re-writing

More information

Boolean Algebra. The Building Blocks of Digital Logic Design. Section. Section Overview. Binary Operations and Their Representation.

Boolean Algebra. The Building Blocks of Digital Logic Design. Section. Section Overview. Binary Operations and Their Representation. Section 3 Boolean Algebra The Building Blocks of Digital Logic Design Section Overview Binary Operations (AND, OR, NOT), Basic laws, Proof by Perfect Induction, De Morgan s Theorem, Canonical and Standard

More information

Number System conversions

Number System conversions Number System conversions Number Systems The system used to count discrete units is called number system. There are four systems of arithmetic which are often used in digital electronics. Decimal Number

More information

School of Computer Science and Electrical Engineering 28/05/01. Digital Circuits. Lecture 14. ENG1030 Electrical Physics and Electronics

School of Computer Science and Electrical Engineering 28/05/01. Digital Circuits. Lecture 14. ENG1030 Electrical Physics and Electronics Digital Circuits 1 Why are we studying digital So that one day you can design something which is better than the... circuits? 2 Why are we studying digital or something better than the... circuits? 3 Why

More information

ELEC Digital Logic Circuits Fall 2014 Switching Algebra (Chapter 2)

ELEC Digital Logic Circuits Fall 2014 Switching Algebra (Chapter 2) ELEC 2200-002 Digital Logic Circuits Fall 2014 Switching Algebra (Chapter 2) Vishwani D. Agrawal James J. Danaher Professor Department of Electrical and Computer Engineering Auburn University, Auburn,

More information

E&CE 223 Digital Circuits & Systems. Lecture Transparencies (Boolean Algebra & Logic Gates) M. Sachdev

E&CE 223 Digital Circuits & Systems. Lecture Transparencies (Boolean Algebra & Logic Gates) M. Sachdev E&CE 223 Digital Circuits & Systems Lecture Transparencies (Boolean Algebra & Logic Gates) M. Sachdev 4 of 92 Section 2: Boolean Algebra & Logic Gates Major topics Boolean algebra NAND & NOR gates Boolean

More information

Combinational Logic Design Principles

Combinational Logic Design Principles Combinational Logic Design Principles Switching algebra Doru Todinca Department of Computers Politehnica University of Timisoara Outline Introduction Switching algebra Axioms of switching algebra Theorems

More information

for Digital Systems Simplification of logic functions Tajana Simunic Rosing Sources: TSR, Katz, Boriello & Vahid

for Digital Systems Simplification of logic functions Tajana Simunic Rosing Sources: TSR, Katz, Boriello & Vahid SE140: omponents and Design Techniques for Digital Systems Simplification of logic functions Tajana Simunic Rosing 1 What we covered thus far: Number representations Where we are now inary, Octal, Hex,

More information

E&CE 223 Digital Circuits & Systems. Lecture Transparencies (Boolean Algebra & Logic Gates) M. Sachdev. Section 2: Boolean Algebra & Logic Gates

E&CE 223 Digital Circuits & Systems. Lecture Transparencies (Boolean Algebra & Logic Gates) M. Sachdev. Section 2: Boolean Algebra & Logic Gates Digital Circuits & Systems Lecture Transparencies (Boolean lgebra & Logic Gates) M. Sachdev 4 of 92 Section 2: Boolean lgebra & Logic Gates Major topics Boolean algebra NND & NOR gates Boolean algebra

More information

L2: Combinational Logic Design (Construction and Boolean Algebra)

L2: Combinational Logic Design (Construction and Boolean Algebra) L2: Combinational Logic Design (Construction and Boolean Algebra) Acknowledgements: Lecture material adapted from Chapter 2 of R. Katz, G. Borriello, Contemporary Logic Design (second edition), Pearson

More information

Ch 2. Combinational Logic. II - Combinational Logic Contemporary Logic Design 1

Ch 2. Combinational Logic. II - Combinational Logic Contemporary Logic Design 1 Ch 2. Combinational Logic II - Combinational Logic Contemporary Logic Design 1 Combinational logic Define The kind of digital system whose output behavior depends only on the current inputs memoryless:

More information

CS 121 Digital Logic Design. Chapter 2. Teacher Assistant. Hanin Abdulrahman

CS 121 Digital Logic Design. Chapter 2. Teacher Assistant. Hanin Abdulrahman CS 121 Digital Logic Design Chapter 2 Teacher Assistant Hanin Abdulrahman 1 2 Outline 2.2 Basic Definitions 2.3 Axiomatic Definition of Boolean Algebra. 2.4 Basic Theorems and Properties 2.5 Boolean Functions

More information

Lecture 22 Chapters 3 Logic Circuits Part 1

Lecture 22 Chapters 3 Logic Circuits Part 1 Lecture 22 Chapters 3 Logic Circuits Part 1 LC-3 Data Path Revisited How are the components Seen here implemented? 5-2 Computing Layers Problems Algorithms Language Instruction Set Architecture Microarchitecture

More information

Digital Circuit And Logic Design I. Lecture 3

Digital Circuit And Logic Design I. Lecture 3 Digital Circuit And Logic Design I Lecture 3 Outline Combinational Logic Design Principles (). Introduction 2. Switching algebra 3. Combinational-circuit analysis 4. Combinational-circuit synthesis Panupong

More information

Possible logic functions of two variables

Possible logic functions of two variables ombinational logic asic logic oolean algebra, proofs by re-writing, proofs by perfect induction logic functions, truth tables, and switches NOT, ND, OR, NND, NOR, OR,..., minimal set Logic realization

More information

Review. EECS Components and Design Techniques for Digital Systems. Lec 06 Minimizing Boolean Logic 9/ Review: Canonical Forms

Review. EECS Components and Design Techniques for Digital Systems. Lec 06 Minimizing Boolean Logic 9/ Review: Canonical Forms Review EECS 150 - Components and Design Techniques for Digital Systems Lec 06 Minimizing Boolean Logic 9/16-04 David Culler Electrical Engineering and Computer Sciences University of California, Berkeley

More information

SAMPLE ANSWERS MARKER COPY

SAMPLE ANSWERS MARKER COPY Page 1 of 12 School of Computer Science 60-265-01 Computer Architecture and Digital Design Fall 2012 Midterm Examination # 1 Tuesday, October 23, 2012 SAMPLE ANSWERS MARKER COPY Duration of examination:

More information

CSE140: Components and Design Techniques for Digital Systems. Logic minimization algorithm summary. Instructor: Mohsen Imani UC San Diego

CSE140: Components and Design Techniques for Digital Systems. Logic minimization algorithm summary. Instructor: Mohsen Imani UC San Diego CSE4: Components and Design Techniques for Digital Systems Logic minimization algorithm summary Instructor: Mohsen Imani UC San Diego Slides from: Prof.Tajana Simunic Rosing & Dr.Pietro Mercati Definition

More information

Introduction to Computer Engineering ECE 203

Introduction to Computer Engineering ECE 203 Introduction to Computer Engineering ECE 203 Northwestern University Department of Electrical Engineering and Computer Science Teacher: Robert Dick Office: L477 Tech Email: dickrp@ece.northwestern.edu

More information

BOOLEAN ALGEBRA. Introduction. 1854: Logical algebra was published by George Boole known today as Boolean Algebra

BOOLEAN ALGEBRA. Introduction. 1854: Logical algebra was published by George Boole known today as Boolean Algebra BOOLEAN ALGEBRA Introduction 1854: Logical algebra was published by George Boole known today as Boolean Algebra It s a convenient way and systematic way of expressing and analyzing the operation of logic

More information

Combinational Logic Fundamentals

Combinational Logic Fundamentals Topic 3: Combinational Logic Fundamentals In this note we will study combinational logic, which is the part of digital logic that uses Boolean algebra. All the concepts presented in combinational logic

More information

Slides for Lecture 10

Slides for Lecture 10 Slides for Lecture 10 ENEL 353: Digital Circuits Fall 2013 Term Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary 30 September, 2013 ENEL 353

More information

Chapter 2 Boolean Algebra and Logic Gates

Chapter 2 Boolean Algebra and Logic Gates Chapter 2 Boolean Algebra and Logic Gates The most common postulates used to formulate various algebraic structures are: 1. Closure. N={1,2,3,4 }, for any a,b N we obtain a unique c N by the operation

More information

Chapter 2: Boolean Algebra and Logic Gates

Chapter 2: Boolean Algebra and Logic Gates Chapter 2: Boolean Algebra and Logic Gates Mathematical methods that simplify binary logics or circuits rely primarily on Boolean algebra. Boolean algebra: a set of elements, a set of operators, and a

More information

CHAPTER1: Digital Logic Circuits Combination Circuits

CHAPTER1: Digital Logic Circuits Combination Circuits CS224: Computer Organization S.KHABET CHAPTER1: Digital Logic Circuits Combination Circuits 1 PRIMITIVE LOGIC GATES Each of our basic operations can be implemented in hardware using a primitive logic gate.

More information

Cs302 Quiz for MID TERM Exam Solved

Cs302 Quiz for MID TERM Exam Solved Question # 1 of 10 ( Start time: 01:30:33 PM ) Total Marks: 1 Caveman used a number system that has distinct shapes: 4 5 6 7 Question # 2 of 10 ( Start time: 01:31:25 PM ) Total Marks: 1 TTL based devices

More information

ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN. Week 2 Dr. Srinivas Shakkottai Dept. of Electrical and Computer Engineering

ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN. Week 2 Dr. Srinivas Shakkottai Dept. of Electrical and Computer Engineering ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN Week 2 Dr. Srinivas Shakkottai Dept. of Electrical and Computer Engineering Boolean Algebra Boolean Algebra A Boolean algebra is defined with: A set of

More information

UNIVERSITI TENAGA NASIONAL. College of Information Technology

UNIVERSITI TENAGA NASIONAL. College of Information Technology UNIVERSITI TENAGA NASIONAL College of Information Technology BACHELOR OF COMPUTER SCIENCE (HONS.) FINAL EXAMINATION SEMESTER 2 2012/2013 DIGITAL SYSTEMS DESIGN (CSNB163) January 2013 Time allowed: 3 hours

More information

Chapter 1 :: From Zero to One

Chapter 1 :: From Zero to One Chapter 1 :: From Zero to One Digital Design and Computer Architecture David Money Harris and Sarah L. Harris Copyright 2007 Elsevier 1- Chapter 1 :: Topics Background The Game Plan The Art of Managing

More information

Chapter 2: Princess Sumaya Univ. Computer Engineering Dept.

Chapter 2: Princess Sumaya Univ. Computer Engineering Dept. hapter 2: Princess Sumaya Univ. omputer Engineering Dept. Basic Definitions Binary Operators AND z = x y = x y z=1 if x=1 AND y=1 OR z = x + y z=1 if x=1 OR y=1 NOT z = x = x z=1 if x=0 Boolean Algebra

More information

Chap 2. Combinational Logic Circuits

Chap 2. Combinational Logic Circuits Overview 2 Chap 2. Combinational Logic Circuits Spring 24 Part Gate Circuits and Boolean Equations Binary Logic and Gates Boolean Algebra Standard Forms Part 2 Circuit Optimization Two-Level Optimization

More information

Combinational Logic (mostly review!)

Combinational Logic (mostly review!) ombinational Logic (mostly review!)! Logic functions, truth tables, and switches " NOT, N, OR, NN, NOR, OR,... " Minimal set! xioms and theorems of oolean algebra " Proofs by re-writing " Proofs by perfect

More information

4 Switching Algebra 4.1 Axioms; Signals and Switching Algebra

4 Switching Algebra 4.1 Axioms; Signals and Switching Algebra 4 Switching Algebra 4.1 Axioms; Signals and Switching Algebra To design a digital circuit that will perform a required function, it is necessary to manipulate and combine the various input signals in certain

More information

ELCT201: DIGITAL LOGIC DESIGN

ELCT201: DIGITAL LOGIC DESIGN ELCT2: DIGITAL LOGIC DESIGN Dr. Eng. Haitham Omran, haitham.omran@guc.edu.eg Dr. Eng. Wassim Alexan, wassim.joseph@guc.edu.eg Lecture 2 Following the slides of Dr. Ahmed H. Madian ذو الحجة 438 ه Winter

More information

MC9211 Computer Organization

MC9211 Computer Organization MC92 Computer Organization Unit : Digital Fundamentals Lesson2 : Boolean Algebra and Simplification (KSB) (MCA) (29-2/ODD) (29 - / A&B) Coverage Lesson2 Introduces the basic postulates of Boolean Algebra

More information

Why digital? Overview. Number Systems. Binary to Decimal conversion

Why digital? Overview. Number Systems. Binary to Decimal conversion Why digital? Overview It has the following advantages over analog. It can be processed and transmitted efficiently and reliably. It can be stored and retrieved with greater accuracy. Noise level does not

More information

EC-121 Digital Logic Design

EC-121 Digital Logic Design EC-121 Digital Logic Design Lecture 2 [Updated on 02-04-18] Boolean Algebra and Logic Gates Dr Hashim Ali Spring 2018 Department of Computer Science and Engineering HITEC University Taxila!1 Overview What

More information

CprE 281: Digital Logic

CprE 281: Digital Logic CprE 281: Digital Logic Instructor: Alexander Stoytchev http://www.ece.iastate.edu/~alexs/classes/ Design Examples CprE 281: Digital Logic Iowa State University, Ames, IA Copyright Alexander Stoytchev

More information

Chapter 2 (Lect 2) Canonical and Standard Forms. Standard Form. Other Logic Operators Logic Gates. Sum of Minterms Product of Maxterms

Chapter 2 (Lect 2) Canonical and Standard Forms. Standard Form. Other Logic Operators Logic Gates. Sum of Minterms Product of Maxterms Chapter 2 (Lect 2) Canonical and Standard Forms Sum of Minterms Product of Maxterms Standard Form Sum of products Product of sums Other Logic Operators Logic Gates Basic and Multiple Inputs Positive and

More information

E40M. Binary Numbers. M. Horowitz, J. Plummer, R. Howe 1

E40M. Binary Numbers. M. Horowitz, J. Plummer, R. Howe 1 E40M Binary Numbers M. Horowitz, J. Plummer, R. Howe 1 Reading Chapter 5 in the reader A&L 5.6 M. Horowitz, J. Plummer, R. Howe 2 Useless Box Lab Project #2 Adding a computer to the Useless Box alows us

More information

Ex: Boolean expression for majority function F = A'BC + AB'C + ABC ' + ABC.

Ex: Boolean expression for majority function F = A'BC + AB'C + ABC ' + ABC. Boolean Expression Forms: Sum-of-products (SOP) Write an AND term for each input combination that produces a 1 output. Write the input variable if its value is 1; write its complement otherwise. OR the

More information

control in out in out Figure 1. Binary switch: (a) opened or off; (b) closed or on.

control in out in out Figure 1. Binary switch: (a) opened or off; (b) closed or on. Chapter 2 Digital Circuits Page 1 of 18 2. Digital Circuits Our world is an analog world. Measurements that we make of the physical objects around us are never in discrete units but rather in a continuous

More information

Slide Set 3. for ENEL 353 Fall Steve Norman, PhD, PEng. Electrical & Computer Engineering Schulich School of Engineering University of Calgary

Slide Set 3. for ENEL 353 Fall Steve Norman, PhD, PEng. Electrical & Computer Engineering Schulich School of Engineering University of Calgary Slide Set 3 for ENEL 353 Fall 2016 Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary Fall Term, 2016 SN s ENEL 353 Fall 2016 Slide Set 3 slide

More information

Gates and Logic: From Transistors to Logic Gates and Logic Circuits

Gates and Logic: From Transistors to Logic Gates and Logic Circuits Gates and Logic: From Transistors to Logic Gates and Logic Circuits Prof. Hakim Weatherspoon CS 3410 Computer Science Cornell University The slides are the product of many rounds of teaching CS 3410 by

More information

Gates and Logic: From switches to Transistors, Logic Gates and Logic Circuits

Gates and Logic: From switches to Transistors, Logic Gates and Logic Circuits Gates and Logic: From switches to Transistors, Logic Gates and Logic Circuits Hakim Weatherspoon CS 3410, Spring 2013 Computer Science Cornell University See: P&H ppendix C.2 and C.3 (lso, see C.0 and

More information

CPE100: Digital Logic Design I

CPE100: Digital Logic Design I Chapter 2 Professor Brendan Morris, SEB 326, brendan.morris@unlv.edu http://www.ee.unlv.edu/~bmorris/cpe/ CPE: Digital Logic Design I Section 4: Dr. Morris Combinational Logic Design Chapter 2 Chapter

More information

Week-I. Combinational Logic & Circuits

Week-I. Combinational Logic & Circuits Week-I Combinational Logic & Circuits Overview Binary logic operations and gates Switching algebra Algebraic Minimization Standard forms Karnaugh Map Minimization Other logic operators IC families and

More information

CprE 281: Digital Logic

CprE 281: Digital Logic CprE 28: Digital Logic Instructor: Alexander Stoytchev http://www.ece.iastate.edu/~alexs/classes/ Examples of Solved Problems CprE 28: Digital Logic Iowa State University, Ames, IA Copyright Alexander

More information

Digital Techniques. Figure 1: Block diagram of digital computer. Processor or Arithmetic logic unit ALU. Control Unit. Storage or memory unit

Digital Techniques. Figure 1: Block diagram of digital computer. Processor or Arithmetic logic unit ALU. Control Unit. Storage or memory unit Digital Techniques 1. Binary System The digital computer is the best example of a digital system. A main characteristic of digital system is its ability to manipulate discrete elements of information.

More information

UC Berkeley College of Engineering, EECS Department CS61C: Representations of Combinational Logic Circuits

UC Berkeley College of Engineering, EECS Department CS61C: Representations of Combinational Logic Circuits 2 Wawrzynek, Garcia 2004 c UCB UC Berkeley College of Engineering, EECS Department CS61C: Representations of Combinational Logic Circuits 1 Introduction Original document by J. Wawrzynek (2003-11-15) Revised

More information

211: Computer Architecture Summer 2016

211: Computer Architecture Summer 2016 211: Computer Architecture Summer 2016 Liu Liu Topic: Storage Project3 Digital Logic - Storage: Recap - Review: cache hit rate - Project3 - Digital Logic: - truth table => SOP - simplification: Boolean

More information

CMPE12 - Notes chapter 1. Digital Logic. (Textbook Chapter 3)

CMPE12 - Notes chapter 1. Digital Logic. (Textbook Chapter 3) CMPE12 - Notes chapter 1 Digital Logic (Textbook Chapter 3) Transistor: Building Block of Computers Microprocessors contain TONS of transistors Intel Montecito (2005): 1.72 billion Intel Pentium 4 (2000):

More information

Computer Organization: Boolean Logic

Computer Organization: Boolean Logic Computer Organization: Boolean Logic Representing and Manipulating Data Last Unit How to represent data as a sequence of bits How to interpret bit representations Use of levels of abstraction in representing

More information

ECE 20B, Winter 2003 Introduction to Electrical Engineering, II LECTURE NOTES #2

ECE 20B, Winter 2003 Introduction to Electrical Engineering, II LECTURE NOTES #2 ECE 20B, Winter 2003 Introduction to Electrical Engineering, II LECTURE NOTES #2 Instructor: Andrew B. Kahng (lecture) Email: abk@ucsd.edu Telephone: 858-822-4884 office, 858-353-0550 cell Office: 3802

More information

KP/Worksheets: Propositional Logic, Boolean Algebra and Computer Hardware Page 1 of 8

KP/Worksheets: Propositional Logic, Boolean Algebra and Computer Hardware Page 1 of 8 KP/Worksheets: Propositional Logic, Boolean Algebra and Computer Hardware Page 1 of 8 Q1. What is a Proposition? Q2. What are Simple and Compound Propositions? Q3. What is a Connective? Q4. What are Sentential

More information

CSE20: Discrete Mathematics for Computer Science. Lecture Unit 2: Boolan Functions, Logic Circuits, and Implication

CSE20: Discrete Mathematics for Computer Science. Lecture Unit 2: Boolan Functions, Logic Circuits, and Implication CSE20: Discrete Mathematics for Computer Science Lecture Unit 2: Boolan Functions, Logic Circuits, and Implication Disjunctive normal form Example: Let f (x, y, z) =xy z. Write this function in DNF. Minterm

More information

Boolean algebra. Examples of these individual laws of Boolean, rules and theorems for Boolean algebra are given in the following table.

Boolean algebra. Examples of these individual laws of Boolean, rules and theorems for Boolean algebra are given in the following table. The Laws of Boolean Boolean algebra As well as the logic symbols 0 and 1 being used to represent a digital input or output, we can also use them as constants for a permanently Open or Closed circuit or

More information

Total Time = 90 Minutes, Total Marks = 50. Total /50 /10 /18

Total Time = 90 Minutes, Total Marks = 50. Total /50 /10 /18 University of Waterloo Department of Electrical & Computer Engineering E&CE 223 Digital Circuits and Systems Midterm Examination Instructor: M. Sachdev October 23rd, 2007 Total Time = 90 Minutes, Total

More information

Chapter-2 BOOLEAN ALGEBRA

Chapter-2 BOOLEAN ALGEBRA Chapter-2 BOOLEAN ALGEBRA Introduction: An algebra that deals with binary number system is called Boolean Algebra. It is very power in designing logic circuits used by the processor of computer system.

More information

Learning Objectives 10/7/2010. CE 411 Digital System Design. Fundamental of Logic Design. Review the basic concepts of logic circuits. Dr.

Learning Objectives 10/7/2010. CE 411 Digital System Design. Fundamental of Logic Design. Review the basic concepts of logic circuits. Dr. /7/ CE 4 Digital ystem Design Dr. Arshad Aziz Fundamental of ogic Design earning Objectives Review the basic concepts of logic circuits Variables and functions Boolean algebra Minterms and materms ogic

More information

Lab 1 starts this week: go to your session

Lab 1 starts this week: go to your session Lecture 3: Boolean Algebra Logistics Class email sign up Homework 1 due on Wednesday Lab 1 starts this week: go to your session Last lecture --- Numbers Binary numbers Base conversion Number systems for

More information

Chapter 2 Combinational Logic Circuits

Chapter 2 Combinational Logic Circuits Logic and Computer Design Fundamentals Chapter 2 Combinational Logic Circuits Part 1 Gate Circuits and Boolean Equations Chapter 2 - Part 1 2 Chapter 2 - Part 1 3 Chapter 2 - Part 1 4 Chapter 2 - Part

More information

Fundamentals of Computer Systems

Fundamentals of Computer Systems Fundamentals of Computer Systems Boolean Logic Stephen A. Edwards Columbia University Summer 2015 Boolean Logic George Boole 1815 1864 Boole s Intuition Behind Boolean Logic Variables X,,... represent

More information

CPE100: Digital Logic Design I

CPE100: Digital Logic Design I Chapter 2 Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu http://www.ee.unlv.edu/~b1morris/cpe100/ CPE100: Digital Logic Design I Section 1004: Dr. Morris Combinational Logic Design Chapter

More information

Logic Design. Chapter 2: Introduction to Logic Circuits

Logic Design. Chapter 2: Introduction to Logic Circuits Logic Design Chapter 2: Introduction to Logic Circuits Introduction Logic circuits perform operation on digital signal Digital signal: signal values are restricted to a few discrete values Binary logic

More information

Gates and Logic: From Transistors to Logic Gates and Logic Circuits

Gates and Logic: From Transistors to Logic Gates and Logic Circuits Gates and Logic: From Transistors to Logic Gates and Logic Circuits Prof. Hakim Weatherspoon CS 3410 Computer Science Cornell University The slides are the product of many rounds of teaching CS 3410 by

More information

Unit 8A Computer Organization. Boolean Logic and Gates

Unit 8A Computer Organization. Boolean Logic and Gates Unit 8A Computer Organization Boolean Logic and Gates Announcements Bring ear buds or headphones to lab! 15110 Principles of Computing, Carnegie Mellon University - CORTINA 2 Representing and Manipulating

More information

Fundamentals of Computer Systems

Fundamentals of Computer Systems Fundamentals of Computer Systems Boolean Logic Stephen A. Edwards Columbia University Fall 2011 Boolean Logic George Boole 1815 1864 Boole s Intuition Behind Boolean Logic Variables x, y,... represent

More information

Boolean Algebra and Logic Gates

Boolean Algebra and Logic Gates Boolean Algebra and Logic Gates ( 范倫達 ), Ph. D. Department of Computer Science National Chiao Tung University Taiwan, R.O.C. Fall, 2017 ldvan@cs.nctu.edu.tw http://www.cs.nctu.edu.tw/~ldvan/ Outlines Basic

More information

CS61c: Representations of Combinational Logic Circuits

CS61c: Representations of Combinational Logic Circuits CS61c: Representations of Combinational Logic Circuits J. Wawrzynek March 5, 2003 1 Introduction Recall that synchronous systems are composed of two basic types of circuits, combination logic circuits,

More information

Midterm Examination # 1 Wednesday, February 25, Duration of examination: 75 minutes

Midterm Examination # 1 Wednesday, February 25, Duration of examination: 75 minutes Page 1 of 10 School of Computer Science 60-265-01 Computer Architecture and Digital Design Winter 2009 Semester Midterm Examination # 1 Wednesday, February 25, 2009 Student Name: First Name Family Name

More information

CSE140: Components and Design Techniques for Digital Systems. Decoders, adders, comparators, multipliers and other ALU elements. Tajana Simunic Rosing

CSE140: Components and Design Techniques for Digital Systems. Decoders, adders, comparators, multipliers and other ALU elements. Tajana Simunic Rosing CSE4: Components and Design Techniques for Digital Systems Decoders, adders, comparators, multipliers and other ALU elements Tajana Simunic Rosing Mux, Demux Encoder, Decoder 2 Transmission Gate: Mux/Tristate

More information

CMSC 313 Lecture 17. Focus Groups. Announcement: in-class lab Thu 10/30 Homework 3 Questions Circuits for Addition Midterm Exam returned

CMSC 313 Lecture 17. Focus Groups. Announcement: in-class lab Thu 10/30 Homework 3 Questions Circuits for Addition Midterm Exam returned Focus Groups CMSC 33 Lecture 7 Need good sample of all types of CS students Mon /7 & Thu /2, 2:3p-2:p & 6:p-7:3p Announcement: in-class lab Thu /3 Homework 3 Questions Circuits for Addition Midterm Exam

More information

Introduction to Computer Engineering. CS/ECE 252, Spring 2017 Rahul Nayar Computer Sciences Department University of Wisconsin Madison

Introduction to Computer Engineering. CS/ECE 252, Spring 2017 Rahul Nayar Computer Sciences Department University of Wisconsin Madison Introduction to Computer Engineering CS/ECE 252, Spring 2017 Rahul Nayar Computer Sciences Department University of Wisconsin Madison Chapter 3 Digital Logic Structures Slides based on set prepared by

More information

Every time has a value associated with it, not just some times. A variable can take on any value within a range

Every time has a value associated with it, not just some times. A variable can take on any value within a range Digital Logic Circuits Binary Logic and Gates Logic Simulation Boolean Algebra NAND/NOR and XOR gates Decoder fundamentals Half Adder, Full Adder, Ripple Carry Adder Analog vs Digital Analog Continuous»

More information

CHAPTER III BOOLEAN ALGEBRA

CHAPTER III BOOLEAN ALGEBRA CHAPTER III- CHAPTER III CHAPTER III R.M. Dansereau; v.. CHAPTER III-2 BOOLEAN VALUES INTRODUCTION BOOLEAN VALUES Boolean algebra is a form of algebra that deals with single digit binary values and variables.

More information

Number System. Decimal to binary Binary to Decimal Binary to octal Binary to hexadecimal Hexadecimal to binary Octal to binary

Number System. Decimal to binary Binary to Decimal Binary to octal Binary to hexadecimal Hexadecimal to binary Octal to binary Number System Decimal to binary Binary to Decimal Binary to octal Binary to hexadecimal Hexadecimal to binary Octal to binary BOOLEAN ALGEBRA BOOLEAN LOGIC OPERATIONS Logical AND Logical OR Logical COMPLEMENTATION

More information

Chapter 2. Boolean Algebra and Logic Gates

Chapter 2. Boolean Algebra and Logic Gates Chapter 2 Boolean Algebra and Logic Gates Basic Definitions A binary operator defined on a set S of elements is a rule that assigns, to each pair of elements from S, a unique element from S. The most common

More information

CSE 140, Lecture 2 Combinational Logic CK Cheng CSE Dept. UC San Diego

CSE 140, Lecture 2 Combinational Logic CK Cheng CSE Dept. UC San Diego CSE 140, Lecture 2 Combinational Logic CK Cheng CSE Dept. UC San Diego 1 Combinational Logic Outlines 1. Introduction 1. Scope 2. Review of Boolean lgebra 3. Review: Laws/Theorems and Digital Logic 2.

More information

Standard Expression Forms

Standard Expression Forms ThisLecture will cover the following points: Canonical and Standard Forms MinTerms and MaxTerms Digital Logic Families 24 March 2010 Standard Expression Forms Two standard (canonical) expression forms

More information