Non Standard Neutrino Interactions

Size: px
Start display at page:

Download "Non Standard Neutrino Interactions"

Transcription

1 Oscillation Phenomenology NSI and Neutrino Oscillations Our recent Work Non Standard Neutrino Interactions from Physics beyond the Standard Model J.Baumann Arnold Sommerfeld Center, Department für Physik Ludwig-Maximilians-Universität München 10th IMPRS Workshop, MPI München, 03/11/2008 Summary

2 Outline 1 Oscillation Phenomenology Neutrino Oscillation Experiments Physics beyond the Standard Model 2 NSI and Neutrino Oscillations Definition of NSI Effects of NSI on Experiments 3 Our recent Work Central Question Setup of our Study Results of our Study

3 Outline 1 Oscillation Phenomenology Neutrino Oscillation Experiments Physics beyond the Standard Model 2 NSI and Neutrino Oscillations Definition of NSI Effects of NSI on Experiments 3 Our recent Work Central Question Setup of our Study Results of our Study

4 Neutrino Oscillation Experiments Have shown that neutrinos are massive, mixed particles Have measured m 2 ij and elements of the leptonic mixing matrix U PMNS Still unknown : θ 13 and the Dirac CP-violating phase δ Future experiments : high precision measurements

5 Neutrino Oscillation Experiments Have shown that neutrinos are massive, mixed particles Have measured m 2 ij and elements of the leptonic mixing matrix U PMNS Still unknown : θ 13 and the Dirac CP-violating phase δ Future experiments : high precision measurements

6 Neutrino Oscillation Experiments Have shown that neutrinos are massive, mixed particles Have measured m 2 ij and elements of the leptonic mixing matrix U PMNS Still unknown : θ 13 and the Dirac CP-violating phase δ Future experiments : high precision measurements

7 Neutrino Oscillation Experiments Have shown that neutrinos are massive, mixed particles Have measured m 2 ij and elements of the leptonic mixing matrix U PMNS Still unknown : θ 13 and the Dirac CP-violating phase δ Future experiments : high precision measurements

8 Physics beyond the Standard Model Since neutrinos are massless in the Standard Model Physics beyond the Standard Model (PbSM) PbSM, among other things, typically leads to non standard interactions (NSI) at the source/detector and in neutrino propagation in matter Chance : Discovery of new physics! Drawback : Might lead to confusion in measurements of leptonic parameters! What are the bounds on these new interactions?

9 Physics beyond the Standard Model Since neutrinos are massless in the Standard Model Physics beyond the Standard Model (PbSM) PbSM, among other things, typically leads to non standard interactions (NSI) at the source/detector and in neutrino propagation in matter Chance : Discovery of new physics! Drawback : Might lead to confusion in measurements of leptonic parameters! What are the bounds on these new interactions?

10 Physics beyond the Standard Model Since neutrinos are massless in the Standard Model Physics beyond the Standard Model (PbSM) PbSM, among other things, typically leads to non standard interactions (NSI) at the source/detector and in neutrino propagation in matter Chance : Discovery of new physics! Drawback : Might lead to confusion in measurements of leptonic parameters! What are the bounds on these new interactions?

11 Physics beyond the Standard Model Since neutrinos are massless in the Standard Model Physics beyond the Standard Model (PbSM) PbSM, among other things, typically leads to non standard interactions (NSI) at the source/detector and in neutrino propagation in matter Chance : Discovery of new physics! Drawback : Might lead to confusion in measurements of leptonic parameters! What are the bounds on these new interactions?

12 Outline 1 Oscillation Phenomenology Neutrino Oscillation Experiments Physics beyond the Standard Model 2 NSI and Neutrino Oscillations Definition of NSI Effects of NSI on Experiments 3 Our recent Work Central Question Setup of our Study Results of our Study

13 NSI in the Literature Phenomenological studies on the effect of NSI on oscillation experiments often assume NSI in matter of O(1) are possible NSI at the source/detector are well constrained and therefore negligible We are mainly interested in NSI with matter

14 NSI in the Literature Phenomenological studies on the effect of NSI on oscillation experiments often assume NSI in matter of O(1) are possible NSI at the source/detector are well constrained and therefore negligible We are mainly interested in NSI with matter

15 NSI in the Literature Phenomenological studies on the effect of NSI on oscillation experiments often assume NSI in matter of O(1) are possible NSI at the source/detector are well constrained and therefore negligible We are mainly interested in NSI with matter

16 Definition of the NSI parameter In the Standard Model the neutrino propagation in matter is effected by CC and NC reactions «Ù Ï «Ù We look for modifications contained in the following Lagrangian after EW symmetry breaking L NSI = 2 2G F ɛ f αβ (ν αl γ δ ν βl )(f L,R γ δ f L,R )

17 Definition of the NSI parameter In the Standard Model the neutrino propagation in matter is effected by CC and NC reactions «Ù Ï «Ù We look for modifications contained in the following Lagrangian after EW symmetry breaking L NSI = 2 2G F ɛ f αβ (ν αl γ δ ν βl )(f L,R γ δ f L,R ) «Ù Ù

18 Effects of NSI Direct bounds very weak, e.g. ɛ d R αβ Bounds taken from the following review: [Maltoni; arxiv: ] Large matter NSI (of O(1)) would have dramatic effects

19 Effects of NSI Direct bounds very weak, e.g. ɛ d R αβ Bounds taken from the following review: [Maltoni; arxiv: ] Large matter NSI (of O(1)) would have dramatic effects Blue line : Transition prob. for sin 2 2θ 13 = 0.16 without NSI Red lines : Transition prob. for sin 2 2θ 13 = 0 with NSI Plot taken from : [Kitazawa, Sugiyama, Yasuda; arxiv:hep-ph/ ]

20 Remarks NSI not formulated in an SU(3) C SU(2) L U(1) Y invariant fashion SU(3) C SU(2) L U(1) Y invariant formulation? Effective operator formulation By what extensions of the SM are the NSI actually generated (at tree level)?

21 Remarks NSI not formulated in an SU(3) C SU(2) L U(1) Y invariant fashion SU(3) C SU(2) L U(1) Y invariant formulation? Effective operator formulation By what extensions of the SM are the NSI actually generated (at tree level)?

22 Outline 1 Oscillation Phenomenology Neutrino Oscillation Experiments Physics beyond the Standard Model 2 NSI and Neutrino Oscillations Definition of NSI Effects of NSI on Experiments 3 Our recent Work Central Question Setup of our Study Results of our Study

23 Central question Can we find extensions of the SM that lead to O(1) off-diagonal NSI in matter? We want a description in terms of a full theory, not an effective theory that respects the SU(3) C SU(2) L U(1) Y invariance

24 Central question Can we find extensions of the SM that lead to O(1) off-diagonal NSI in matter? We want a description in terms of a full theory, not an effective theory that respects the SU(3) C SU(2) L U(1) Y invariance

25 Simplest Possibility Promote the neutrino fields to SU(2) L doublets Leads to the operators LLLL or LLf f (after integrating out the newly introduced heavy particles) Generates not only NSI but also new interactions between four charged fermions (4cFI) Related by SU(2) L constraints on the 4cFI put bounds on the NSI, e.g. ɛ e eτ , ɛ q eτ 10 2 Bounds taken from : [Bergmann et al. ; arxiv:hep-ph/ ]

26 Simplest Possibility Promote the neutrino fields to SU(2) L doublets Leads to the operators LLLL or LLf f (after integrating out the newly introduced heavy particles) Generates not only NSI but also new interactions between four charged fermions (4cFI) Related by SU(2) L constraints on the 4cFI put bounds on the NSI, e.g. ɛ e eτ , ɛ q eτ 10 2 Bounds taken from : [Bergmann et al. ; arxiv:hep-ph/ ]

27 Simplest Possibility Promote the neutrino fields to SU(2) L doublets Leads to the operators LLLL or LLf f (after integrating out the newly introduced heavy particles) Generates not only NSI but also new interactions between four charged fermions (4cFI) Related by SU(2) L constraints on the 4cFI put bounds on the NSI, e.g. ɛ e eτ , ɛ q eτ 10 2 Bounds taken from : [Bergmann et al. ; arxiv:hep-ph/ ]

28 Strategy to generate large NSI We impose the following restrictions on our search for SM extensions leading to large off-diagonal NSI in matter No new interactions of 4 charged fermions! No cancellations between diagrams with different messenger particles (needs fine-tuning) Tree-level generation of the NSI through d = 6 and d = 8 operators

29 Strategy to generate large NSI We impose the following restrictions on our search for SM extensions leading to large off-diagonal NSI in matter No new interactions of 4 charged fermions! No cancellations between diagrams with different messenger particles (needs fine-tuning) Tree-level generation of the NSI through d = 6 and d = 8 operators

30 Strategy to generate large NSI We impose the following restrictions on our search for SM extensions leading to large off-diagonal NSI in matter No new interactions of 4 charged fermions! No cancellations between diagrams with different messenger particles (needs fine-tuning) Tree-level generation of the NSI through d = 6 and d = 8 operators

31 Results of our Study at d = 6 At d = 6 we found two SM extensions satisfying our criteria: Charged scalar singlets S i L d=6,as NSI = c d=6,as αβγδ (L c α L β )( L γ L c δ ) Ä Ä Æ Ë Ä «Ä

32 Results of our Study at d = 6 Right handed fermionic singlets N i R L d=6 kin = c d=6,kin αβ ( L α H ) i (H L β ) Ä Ä «Æ Ê À À Ý

33 Results of our Study at d = 6 Rare radiative lepton decays + unitarity of the CKM matrix lead to constraints For both operators we find ɛ d= αβ Both operators lead to NSI at the source and detector (at the same strenght) as well

34 Results of our Study at d = 6 Rare radiative lepton decays + unitarity of the CKM matrix lead to constraints For both operators we find ɛ d= αβ Both operators lead to NSI at the source and detector (at the same strenght) as well

35 Results of our Study at d = 6 Rare radiative lepton decays + unitarity of the CKM matrix lead to constraints For both operators we find ɛ d= αβ Both operators lead to NSI at the source and detector (at the same strenght) as well

36 Results of our Study at d = 8 Since d = 6 did not lead to large NSI and motivated by the literature we extended our study to d = 8 d = 8 is promising because we have two Higgs doublets to select neutrinos (and to avoid 4cFI) We found 3 classes of SM extensions satisfying our criteria

37 Results of our Study at d = 8 Since d = 6 did not lead to large NSI and motivated by the literature we extended our study to d = 8 d = 8 is promising because we have two Higgs doublets to select neutrinos (and to avoid 4cFI) We found 3 classes of SM extensions satisfying our criteria

38 Example of Class 1 L d=8,i d=8,f,i NSI = cαβ (L c α L β )(L γ L c δ )(H H) À Ý Ä «Ä Æ Ë Ë Ä Ä À

39 Example of Class 2 L d=8,ii NSI d=8,f,ii = cαβγδ (L α H )f c f c (H L β ) Ä «Ê Ê Ä Æ Ê Ë Æ Ê À À Ý This class of operators is also possible for right and lefthanded quarks

40 Example of Class 3 L d=8,iii NSI,III = cd=8,f αβγδ (H L c α)(l β H)(L γ L c δ ) Ä Ä «À Ý Ä Æ Ê À ¼ Ë À Ä Æ

41 Results of our Study at d = 8 Constraints on the coefficients of the d = 8 operators can be derived from the constraints on those of the d = 6 operators This leads to ɛ d= αβ All d = 8 operators we considered lead to NSI at the source and detector as well (again at the same strenght)

42 Results of our Study at d = 8 Constraints on the coefficients of the d = 8 operators can be derived from the constraints on those of the d = 6 operators This leads to ɛ d= αβ All d = 8 operators we considered lead to NSI at the source and detector as well (again at the same strenght)

43 Results of our Study at d = 8 Constraints on the coefficients of the d = 8 operators can be derived from the constraints on those of the d = 6 operators This leads to ɛ d= αβ All d = 8 operators we considered lead to NSI at the source and detector as well (again at the same strenght)

44 Summary We have investigated how the NSI get explicitly generated at tree level by extensions of the SM We have derived bounds for the NSI, taking into account their actual production by PbSM

45 Summary We have investigated how the NSI get explicitly generated at tree level by extensions of the SM We have derived bounds for the NSI, taking into account their actual production by PbSM

46 Summary Under the assumptions we made, NSI in matter are much more tightly constrained than assumed in many phenomenological studies In the cases we studied NSI at the source and detector are always produced in association with NSI in matter and should therefore also be taken into account Detailed discussion and results can be found in [S.Antusch, JB, E.Fernández-Martínez; Non-Standard Neutrino Interactions with Matter from Physics Beyond the Standard Model; arxiv: ]

47 Summary Under the assumptions we made, NSI in matter are much more tightly constrained than assumed in many phenomenological studies In the cases we studied NSI at the source and detector are always produced in association with NSI in matter and should therefore also be taken into account Detailed discussion and results can be found in [S.Antusch, JB, E.Fernández-Martínez; Non-Standard Neutrino Interactions with Matter from Physics Beyond the Standard Model; arxiv: ]

48 Summary Under the assumptions we made, NSI in matter are much more tightly constrained than assumed in many phenomenological studies In the cases we studied NSI at the source and detector are always produced in association with NSI in matter and should therefore also be taken into account Detailed discussion and results can be found in [S.Antusch, JB, E.Fernández-Martínez; Non-Standard Neutrino Interactions with Matter from Physics Beyond the Standard Model; arxiv: ]

49 Ä «Ä «Ä Ä Ë Ó Ë Ä Æ Ä Æ Operators at d = 8 d=8,f,i c (L αβ c α L β )(L γ L c δ )(H d=8,f,ii H) c αβγδ (Lα H )f c f c d=8,f,iii (H L β ) c αβγδ (H L c α)(l β H)(L γ L c δ ) Ä «À Ý Ä Æ Ê Ê Ä Ä «À Ý Ä «Ä Ä Ë Ë Æ Ê Ë Æ Ê Æ Ê À ¼ Ë Ä À Ä À À Ý À Ä Æ À Ý Ä ½ Ä ½ Ä «Ä Ë À ¼ Ë Æ Ê À ¼ Æ Ê Ä Ä À À À Ý Ë À À Ý

Symmetry Origin of Observable Nonunitary Neutrino Mixng Matrix in TeV Scale Seesaw Models

Symmetry Origin of Observable Nonunitary Neutrino Mixng Matrix in TeV Scale Seesaw Models Symmetry Origin of Observable Nonunitary Neutrino Mixng Matrix in TeV Scale Seesaw Models Ernest Ma Physics and Astronomy Department University of California Riverside, CA 92521, USA Symmetry Origin of

More information

Non-Standard Neutrino Interactions & Non-Unitarity

Non-Standard Neutrino Interactions & Non-Unitarity Non-Standard Neutrino Interactions & Non-Unitarity talk by Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) MPIK Heidelberg, 9. - 12. November 2009 The Standard Model Symmetries of the SM: SU(3)C

More information

Models of Neutrino Masses

Models of Neutrino Masses Models of Neutrino Masses Fernando Romero López 13.05.2016 1 Introduction and Motivation 3 2 Dirac and Majorana Spinors 4 3 SU(2) L U(1) Y Extensions 11 4 Neutrino masses in R-Parity Violating Supersymmetry

More information

S 3 Symmetry as the Origin of CKM Matrix

S 3 Symmetry as the Origin of CKM Matrix S 3 Symmetry as the Origin of CKM Matrix Ujjal Kumar Dey Physical Research Laboratory October 25, 2015 Based on: PRD 89, 095025 and arxiv:1507.06509 Collaborators: D. Das and P. B. Pal 1 / 25 Outline 1

More information

Yang-Hwan, Ahn (KIAS)

Yang-Hwan, Ahn (KIAS) Yang-Hwan, Ahn (KIAS) Collaboration with Paolo Gondolo (Univ. of Utah) Appear to 1311.xxxxx The 3 rd KIAS workshop on Particle physics and Cosmology 1 The SM as an effective theory Several theoretical

More information

Electroweak-scale Right-handed Neutrino Model And 126 GeV Higgs-like Particle

Electroweak-scale Right-handed Neutrino Model And 126 GeV Higgs-like Particle Electroweak-scale Right-handed Neutrino Model And 126 GeV Higgs-like Particle Ajinkya S. Kamat ask4db@virginia.edu http://people.virginia.edu/ ask4db With Prof. P. Q. Hung and Vinh Van Hoang (paper in

More information

Pati-Salam GUT-Flavour Models with Three Higgs Generations

Pati-Salam GUT-Flavour Models with Three Higgs Generations Pati-Salam GUT-Flavour Models with Three Higgs Generations Florian Hartmann in collaboration with Wolfgang Kilian and Karsten Schnitter based on: JHEP 1405 (2014) 064 and arxiv:1405.1901 Universität Siegen

More information

F. Börkeroth, F. J. de Anda, I. de Medeiros Varzielas, S. F. King. arxiv:

F. Börkeroth, F. J. de Anda, I. de Medeiros Varzielas, S. F. King. arxiv: F. Börkeroth, F. J. de Anda, I. de Medeiros Varzielas, S. F. King S FLASY 2015 arxiv:1503.03306 Standard Model Gauge theory SU(3)C X SU(2)L X U(1)Y Standard Model Gauge theory SU(3)C X SU(2)L X U(1)Y SM:

More information

Neutrino Mass Models

Neutrino Mass Models Neutrino Mass Models S Uma Sankar Department of Physics Indian Institute of Technology Bombay Mumbai, India S. Uma Sankar (IITB) IWAAP-17, BARC (Mumbai) 01 December 2017 1 / 15 Neutrino Masses LEP experiments

More information

Beta and double beta decay

Beta and double beta decay Fakultät Mathematik und Naturwissenschaften, Institut für Kern- und Teilchenphysik Beta and double beta decay Kai Zuber Institut für Kern- und Teilchenphysik 10-12. 6. 2014, SNOLAB Contents Lecture 1 History,

More information

Non-Abelian SU(2) H and Two-Higgs Doublets

Non-Abelian SU(2) H and Two-Higgs Doublets Non-Abelian SU(2) H and Two-Higgs Doublets Technische Universität Dortmund Wei- Chih Huang 25 Sept 2015 Kavli IPMU arxiv:1510.xxxx(?) with Yue-Lin Sming Tsai, Tzu-Chiang Yuan Plea Please do not take any

More information

Two models with extra Higgs doublets and Axions

Two models with extra Higgs doublets and Axions Two models with extra Higgs doublets and Axions H Serôdio (KAIST) 4 th KIAS Workshop Particle Physics and Cosmology, 30 October 2014 In collaboration with: Alejandro Celis, Javier Fuentes-Martin Works:

More information

Yang-Hwan, Ahn (KIAS)

Yang-Hwan, Ahn (KIAS) Yang-Hwan, Ahn (KIAS) Collaboration with Paolo Gondolo (Univ. of Utah) Appear to 1312.xxxxx 2013 Particle Theory Group @ Yonsei Univ. 1 The SM as an effective theory Several theoretical arguments (inclusion

More information

TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC

TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC Wei Chao (IHEP) Outline Brief overview of neutrino mass models. Introduction to a TeV-scale type-i+ii seesaw model. EW precision

More information

Physics after the discovery of the Higgs boson

Physics after the discovery of the Higgs boson Physics after the discovery of the Higgs boson J. J. van der Bij Institut für Physik Albert-Ludwigs Universität Freiburg DESY Zeuthen, 3 März, 2016 Triangle meeting Utrecht-Paris-Rome (Utrecht 1979) Already

More information

SUSY models of neutrino masses and mixings: the left-right connection

SUSY models of neutrino masses and mixings: the left-right connection SUSY models of neutrino masses and mixings: the left-right connection GK Workshop Bad Liebenzell Wolfgang Gregor Hollik October 10, 2012 INSTITUT FÜR THEORETISCHE TEILCHENPHYSIK KIT CAMPUS SÜD KIT University

More information

Neutrino Masses & Flavor Mixing 邢志忠. Zhi-zhong Xing. (IHEP, Winter School 2010, Styria, Austria. Lecture B

Neutrino Masses & Flavor Mixing 邢志忠. Zhi-zhong Xing. (IHEP, Winter School 2010, Styria, Austria. Lecture B Neutrino Masses & Flavor Mixing Zhi-zhong Xing 邢志忠 (IHEP, Beijing) @Schladming Winter School 2010, Styria, Austria Lecture B Lepton Flavors & Nobel Prize 2 1975 1936 = 1936 1897 = 39 Positron: Predicted

More information

A Novel and Simple Discrete Symmetry for Non-zero θ 13

A Novel and Simple Discrete Symmetry for Non-zero θ 13 A Novel and Simple Discrete Symmetry for Non-zero θ 13 Yang-Hwan, Ahn (KIAS) Collaboration with Seungwon Baek and Paolo Gondolo NRF workshop Yonsei Univ., Jun 7-8, 2012 Contents Introduction We propose

More information

Gauge-Higgs Unification on Flat Space Revised

Gauge-Higgs Unification on Flat Space Revised Outline Gauge-Higgs Unification on Flat Space Revised Giuliano Panico ISAS-SISSA Trieste, Italy The 14th International Conference on Supersymmetry and the Unification of Fundamental Interactions Irvine,

More information

Maria Dimou In collaboration with: C. Hagedorn, S.F. King, C. Luhn. Tuesday group seminar 17/03/15 University of Liverpool

Maria Dimou In collaboration with: C. Hagedorn, S.F. King, C. Luhn. Tuesday group seminar 17/03/15 University of Liverpool Maria Dimou In collaboration with: C. Hagedorn, S.F. King, C. Luhn Tuesday group seminar 17/03/15 University of Liverpool 1 Introduction Outline The SM & SUSY Flavour Problem. Solving it by imposing a

More information

Hidden two-higgs doublet model

Hidden two-higgs doublet model Hidden two-higgs doublet model C, Uppsala and Lund University SUSY10, Bonn, 2010-08-26 1 Two Higgs doublet models () 2 3 4 Phenomenological consequences 5 Two Higgs doublet models () Work together with

More information

A model of the basic interactions between elementary particles is defined by the following three ingredients:

A model of the basic interactions between elementary particles is defined by the following three ingredients: I. THE STANDARD MODEL A model of the basic interactions between elementary particles is defined by the following three ingredients:. The symmetries of the Lagrangian; 2. The representations of fermions

More information

U(1) Gauge Extensions of the Standard Model

U(1) Gauge Extensions of the Standard Model U(1) Gauge Extensions of the Standard Model Ernest Ma Physics and Astronomy Department University of California Riverside, CA 92521, USA U(1) Gauge Extensions of the Standard Model (int08) back to start

More information

RG evolution of neutrino parameters

RG evolution of neutrino parameters RG evolution of neutrino parameters ( In TeV scale seesaw models ) Sasmita Mishra Physical Research Laboratory, Ahmedabad, India Based on arxiv:1310.1468 November 12, 2013 Institute of Physics, Bhubaneswar.

More information

Theoretical Particle Physics Yonsei Univ.

Theoretical Particle Physics Yonsei Univ. Yang-Hwan Ahn (KIAS) Appear to arxiv : 1409.xxxxx sooooon Theoretical Particle Physics group @ Yonsei Univ. Introduction Now that the Higgs boson has been discovered at 126 GeV, assuming that it is indeed

More information

Flavour and Higgs in Pati-Salam Models

Flavour and Higgs in Pati-Salam Models Flavour and Higgs in Pati-Salam Models Florian Hartmann Universität Siegen Theoretische Physik I Siegen, 16.11.2011 Florian Hartmann (Uni Siegen) Flavour and Higgs in Pati-Salam Models Siegen 16.11.2011

More information

Fermion Mixing Angles and the Connection to Non-Trivially Broken Flavor Symmetries

Fermion Mixing Angles and the Connection to Non-Trivially Broken Flavor Symmetries Fermion Mixing ngles and the Connection to Non-Trivially Broken Flavor Symmetries C. Hagedorn hagedorn@mpi-hd.mpg.de Max-Planck-Institut für Kernphysik, Heidelberg, Germany. Blum, CH, M. Lindner numerics:.

More information

SU(3)-Flavons and Pati-Salam-GUTs

SU(3)-Flavons and Pati-Salam-GUTs SU(3)-Flavons and Pati-Salam-GUTs Florian Hartmann in collaboration with Wolfgang Kilian and Karsten Schnitter Universität Siegen Theoretische Physik I Dortmund, 03.07.2012 Outline 1 Running couplings

More information

Leaving Plato s Cave: Beyond The Simplest Models of Dark Matter

Leaving Plato s Cave: Beyond The Simplest Models of Dark Matter Leaving Plato s Cave: Beyond The Simplest Models of Dark Matter Alexander Natale Korea Institute for Advanced Study Nucl. Phys. B914 201-219 (2017), arxiv:1608.06999. High1 2017 February 9th, 2017 1/30

More information

Updated S 3 Model of Quarks

Updated S 3 Model of Quarks UCRHEP-T56 March 013 Updated S 3 Model of Quarks arxiv:1303.698v1 [hep-ph] 7 Mar 013 Ernest Ma 1 and Blaženka Melić 1, 1 Department of Physics and Astronomy, University of California, Riverside, California

More information

Problems for SM/Higgs (I)

Problems for SM/Higgs (I) Problems for SM/Higgs (I) 1 Draw all possible Feynman diagrams (at the lowest level in perturbation theory) for the processes e + e µ + µ, ν e ν e, γγ, ZZ, W + W. Likewise, draw all possible Feynman diagrams

More information

Status and prospects of neutrino oscillations

Status and prospects of neutrino oscillations Status and prospects of neutrino oscillations S. Bilenky JINR(Dubna)TRIUMF June 10, 2017 The award of the 2015 Nobel Prize to T. Kajita and A. McDonald for the discovery of neutrino oscillations, which

More information

Electroweak and Higgs Physics

Electroweak and Higgs Physics Electroweak and Higgs Physics Lecture 2 : Higgs Mechanism in the Standard and Supersymmetric Models Alexei Raspereza DESY Summer Student Program Hamburg August 2017 Standard Model (Summary) Building blocks

More information

Successful Leptogenesis in the Left-Right Symmetric Seesaw Mechanism

Successful Leptogenesis in the Left-Right Symmetric Seesaw Mechanism Successful Leptogenesis in the Left-Right Symmetric Seesaw Mechanism Pierre Hosteins Patras University 13th November 2007 Brussels P.H., S. Lavignac and C. Savoy, Nucl. Phys. B755, arxiv:hep-ph/0606078

More information

Flavor Physics in the multi-higgs doublet models induced by the left-right symmetry

Flavor Physics in the multi-higgs doublet models induced by the left-right symmetry Flavor Physics in the multi-higgs doublet models induced by the left-right symmetry Yoshihiro Shigekami KEK HUST ( 華中科技大学 ), Wuhan ( 武漢 ) Syuhei Iguro (Nagoya U.), Yu Muramatsu (CCNU), Yuji Omura (Nagoya

More information

Introduction to the SM (5)

Introduction to the SM (5) Y. Grossman The SM (5) TES-HEP, July 12, 2015 p. 1 Introduction to the SM (5) Yuval Grossman Cornell Y. Grossman The SM (5) TES-HEP, July 12, 2015 p. 2 Yesterday... Yesterday: Symmetries Today SSB the

More information

Neutrino Masses SU(3) C U(1) EM, (1.2) φ(1, 2) +1/2. (1.3)

Neutrino Masses SU(3) C U(1) EM, (1.2) φ(1, 2) +1/2. (1.3) Neutrino Masses Contents I. The renormalizable Standard Model 1 II. The non-renormalizable Standard Model III. The See-Saw Mechanism 4 IV. Vacuum Oscillations 5 V. The MSW effect 7 VI. Experimental results

More information

The Daya Bay and T2K results on sin 2 2θ 13 and Non-Standard Neutrino Interactions (NSI)

The Daya Bay and T2K results on sin 2 2θ 13 and Non-Standard Neutrino Interactions (NSI) The Daya Bay and TK results on sin θ 13 and Non-Standard Neutrino Interactions (NSI) Ivan Girardi SISSA / INFN, Trieste, Italy Based on: I. G., D. Meloni and S.T. Petcov Nucl. Phys. B 886, 31 (014) 8th

More information

Mirror fermions, electroweak scale right-handed neutrinos and experimental implications

Mirror fermions, electroweak scale right-handed neutrinos and experimental implications Mirror fermions, electroweak scale right-handed neutrinos and experimental implications P. Q. Hung University of Virginia Ljubljana 2008 Plan of Talk The question of parity restoration at high energies:

More information

The Standard Model and beyond

The Standard Model and beyond The Standard Model and beyond In this chapter we overview the structure of the Standard Model (SM) of particle physics, its shortcomings, and different ideas for physics beyond the Standard Model (BSM)

More information

For Review Only. General Structure of Democratic Mass Matrix of Lepton Sector in E 6 Model. Canadian Journal of Physics

For Review Only. General Structure of Democratic Mass Matrix of Lepton Sector in E 6 Model. Canadian Journal of Physics General Structure of Democratic Mass Matrix of Lepton Sector in E 6 Model Journal: Canadian Journal of Physics Manuscript ID cjp-2017-0783.r1 Manuscript Type: Article Date Submitted by the Author: 08-Jan-2018

More information

Patrick Kirchgaeßer 07. Januar 2016

Patrick Kirchgaeßer 07. Januar 2016 Patrick Kirchgaeßer 07. Januar 2016 INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) PHYSICS FACULTY KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

More information

Higgs Bosons Phenomenology in the Higgs Triplet Model

Higgs Bosons Phenomenology in the Higgs Triplet Model Higgs Bosons Phenomenology in the Higgs Triplet Model Andrew Akeroyd National Cheng Kung University, Tainan, Taiwan TeV scale mechanisms ( testable ) for neutrino mass generation Higgs Triplet Model Production

More information

Neutrino masses respecting string constraints

Neutrino masses respecting string constraints Neutrino masses respecting string constraints Introduction Neutrino preliminaries The GUT seesaw Neutrinos in string constructions The triplet model (Work in progress, in collaboration with J. Giedt, G.

More information

2 Induced LFV in the SUSY see-saw framework

2 Induced LFV in the SUSY see-saw framework LFV Constraints on the Majorana Mass Scale in msugra Frank Deppisch, Heinrich Päs, Andreas Redelbach, Reinhold Rückl Institut für Theoretische Physik und Astrophysik Universität Würzburg D-97074 Würzburg,

More information

12.2 Problem Set 2 Solutions

12.2 Problem Set 2 Solutions 78 CHAPTER. PROBLEM SET SOLUTIONS. Problem Set Solutions. I will use a basis m, which ψ C = iγ ψ = Cγ ψ (.47) We can define left (light) handed Majorana fields as, so that ω = ψ L + (ψ L ) C (.48) χ =

More information

The Physics of Heavy Z-prime Gauge Bosons

The Physics of Heavy Z-prime Gauge Bosons The Physics of Heavy Z-prime Gauge Bosons Tevatron LHC LHC LC LC 15fb -1 100fb -1 14TeV 1ab -1 14TeV 0.5TeV 1ab -1 P - =0.8 P + =0.6 0.8TeV 1ab -1 P - =0.8 P + =0.6 χ ψ η LR SSM 0 2 4 6 8 10 12 2σ m Z'

More information

+ µ 2 ) H (m 2 H 2

+ µ 2 ) H (m 2 H 2 I. THE HIGGS POTENTIAL AND THE LIGHT HIGGS BOSON In the previous chapter, it was demonstrated that a negative mass squared in the Higgs potential is generated radiatively for a large range of boundary

More information

The Higgs Mechanism and the Higgs Particle

The Higgs Mechanism and the Higgs Particle The Higgs Mechanism and the Higgs Particle Heavy-Ion Seminar... or the Anderson-Higgs-Brout-Englert-Guralnik-Hagen-Kibble Mechanism Philip W. Anderson Peter W. Higgs Tom W. B. Gerald Carl R. François Robert

More information

Perspectives Flavor Physics beyond the Standard Model

Perspectives Flavor Physics beyond the Standard Model Perspectives Flavor Physics beyond the Standard Model Invited Talk at FLASY13 (Jul 2013) OTTO C. W. KONG Nat l Central U, Taiwan Personal :- PhD. dissertation on horizontal/family symmetry Frampton & O.K.

More information

Discovery potential of toppartners in a realistic composite Higgs model with early LHC data

Discovery potential of toppartners in a realistic composite Higgs model with early LHC data Discovery potential of toppartners in a realistic composite Higgs model with early LHC data Günther Dissertori, Elisabetta Furlan, Filip Moortgat, JHEP09(20)019 Kick-off Meeting Of The LHCPhenoNet Initial

More information

Theory of anomalous couplings. in Effective Field Theory (EFT)

Theory of anomalous couplings. in Effective Field Theory (EFT) Theory of Anomalous Couplings in Effective Field Theory (EFT) Nicolas Greiner Max Planck Institut für Physik, München aqgc Dresden, 30.9. 2.10. 2103 Motivation July 4, 2012: New particle found! (Compatible

More information

The Anomalous Magnetic Moment of the Muon in the Minimal Supersymmetric Standard Model for tan β =

The Anomalous Magnetic Moment of the Muon in the Minimal Supersymmetric Standard Model for tan β = The Anomalous Magnetic Moment of the Muon in the Minimal Supersymmetric Standard Model for tan β = Markus Bach Institut für Kern- und Teilchenphysik Technische Universität Dresden IKTP Institute Seminar

More information

J. C. Vasquez CCTVal & USM

J. C. Vasquez CCTVal & USM Maorana Higgses at Colliders arxiv:1612.06840 J. C. Vasquez CCTVal & USM ( Work in collaboration with F. esti and M. emevsek) University of Massachusetts, October 2017 Outline The minimal LR model Decay

More information

arxiv: v1 [hep-ph] 16 Mar 2017

arxiv: v1 [hep-ph] 16 Mar 2017 Flavon-induced lepton flavour violation arxiv:1703.05579v1 hep-ph] 16 Mar 017 Venus Keus Department of Physics and Helsinki Institute of Physics, Gustaf Hällströmin katu, FIN-00014 University of Helsinki,

More information

Neutrino Oscillations And Sterile Neutrinos

Neutrino Oscillations And Sterile Neutrinos Neutrino Oscillations And Sterile Neutrinos Keshava Prasad Gubbi University of Bonn s6nagubb@uni-bonn.de May 27, 2016 Keshava Prasad Gubbi (Uni Bonn) Neutrino Oscillations,Sterile Neutrinos May 27, 2016

More information

Baryon and Lepton Number Violation at the TeV Scale

Baryon and Lepton Number Violation at the TeV Scale Baryon and Lepton Number Violation at the TeV Scale S. Nandi Oklahoma State University and Oklahoma Center for High Energy Physics : S. Chakdar, T. Li, S. Nandi and S. K. Rai, arxiv:1206.0409[hep-ph] (Phys.

More information

Two-Higgs-Doublet Model

Two-Higgs-Doublet Model Two-Higgs-Doublet Model Logan A. Morrison University of California, Santa Cruz loanmorr@ucsc.edu March 18, 016 Logan A. Morrison (UCSC) HDM March 18, 016 1 / 7 Overview 1 Review of SM HDM Formalism HDM

More information

Beyond Standard Model Effects in Flavour Physics: p.1

Beyond Standard Model Effects in Flavour Physics: p.1 Beyond Standard Model Effects in Flavour Physics: Alakabha Datta University of Mississippi Feb 13, 2006 Beyond Standard Model Effects in Flavour Physics: p.1 OUTLINE Standard Model (SM) and its Problems.

More information

Double Higgs production via gluon fusion (gg hh) in composite models

Double Higgs production via gluon fusion (gg hh) in composite models Double Higgs production via gluon fusion (gg hh) in composite models Ennio Salvioni CERN and University of Padova based on work in collaboration with C.Grojean (CERN), M.Gillioz (Zürich), R.Gröber and

More information

SOME COMMENTS ON CP-VIOLATION AND LEPTOGENESIS

SOME COMMENTS ON CP-VIOLATION AND LEPTOGENESIS Marco Drewes TU München 23. 8. 2016, NuFact, Quy Nhon, Vietnam 1 / 7 The Standard Model and General Relativity together explain almost all phenomena observed in nature, but... gravity is not quantised

More information

Gauge coupling unification without leptoquarks Mikhail Shaposhnikov

Gauge coupling unification without leptoquarks Mikhail Shaposhnikov Gauge coupling unification without leptoquarks Mikhail Shaposhnikov March 9, 2017 Work with Georgios Karananas, 1703.02964 Heidelberg, March 9, 2017 p. 1 Outline Motivation Gauge coupling unification without

More information

March 30, 01 Lecture 5 of 6 @ ORICL Philosophical Society Yuri Kamyshkov/ University of Tennessee email: kamyshkov@utk.edu 1. Concept/misconception of mass in Special Relativity (March,9). and n Oscillations:

More information

B-meson anomalies & Higgs physics in flavored U(1) model

B-meson anomalies & Higgs physics in flavored U(1) model B-meson anomalies & Higgs physics in flavored U(1) model Hyun Min Lee Chung-Ang University, Korea L. Bian, S.-M. Choi, Y.-J. Kang, HML, Phys. Rev. D96 (2017) 075038; L. Bian, HML, C.B. Park, arxiv:1711.08930

More information

Grand Unification. Strong, weak, electromagnetic unified at Q M X M Z Simple group SU(3) SU(2) U(1) Gravity not included

Grand Unification. Strong, weak, electromagnetic unified at Q M X M Z Simple group SU(3) SU(2) U(1) Gravity not included Pati-Salam, 73; Georgi-Glashow, 74 Grand Unification Strong, weak, electromagnetic unified at Q M X M Z Simple group G M X SU(3) SU() U(1) Gravity not included (perhaps not ambitious enough) α(q ) α 3

More information

Mono Vector-Quark Production at the LHC

Mono Vector-Quark Production at the LHC Mono Vector-Quark Production at the LHC Haiying Cai Department of Physics, Peking University arxiv: 1210.5200 Particle Physics and Cosmology KIAS, November 5-9, 2012 Introduction Vector-like quark exists

More information

Left-Right Symmetric Models with Peccei-Quinn Symmetry

Left-Right Symmetric Models with Peccei-Quinn Symmetry Left-Right Symmetric Models with Peccei-Quinn Symmetry Pei-Hong Gu Max-Planck-Institut für Kernphysik, Heidelberg PHG, 0.2380; PHG, Manfred Lindner, 0.4905. Institute of Theoretical Physics, Chinese Academy

More information

Neutrino Masses and Dark Matter in Gauge Theories for Baryon and Lepton Numbers

Neutrino Masses and Dark Matter in Gauge Theories for Baryon and Lepton Numbers Neutrino Masses and Dark Matter in Gauge Theories for Baryon and Lepton Numbers DPG Frühjahrstagung 014 in Mainz Based on Phys. Rev. Lett. 110, 31801 (013), Phys. Rev. D 88, 051701(R) (013), arxiv:1309.3970

More information

Minimal Extension of the Standard Model of Particle Physics. Dmitry Gorbunov

Minimal Extension of the Standard Model of Particle Physics. Dmitry Gorbunov Minimal Extension of the Standard Model of Particle Physics Dmitry Gorbunov Institute for Nuclear Research, Moscow, Russia 14th Lomonosov Conference on Elementary Paticle Physics, Moscow, MSU, 21.08.2009

More information

The Standard Model of particle physics and beyond

The Standard Model of particle physics and beyond The Standard Model of particle physics and beyond - Lecture 3: Beyond the Standard Model Avelino Vicente IFIC CSIC / U. Valencia Physics and astrophysics of cosmic rays in space Milano September 2016 1

More information

Leptogenesis in Higgs triplet model

Leptogenesis in Higgs triplet model Leptogenesis in Higgs triplet model S. Scopel Korea Institute of Advanced Study (KIAS) Seoul (Korea) Dark Side of the Universe, Madrid,, 20-24 24 June 2006 Introduction Non-zero neutrino masses and mixing

More information

Search for new physics in rare D meson decays

Search for new physics in rare D meson decays Search for new physics in rare D meson decays Svjetlana Fajfer and Sasa Prelovsek Department of Physics, University of Ljubljana and J. Stefan Institute, Ljubljana, Slovenia XXXIII INTERNATIONAL CONFERENCE

More information

Physics 662. Particle Physics Phenomenology. February 21, Physics 662, lecture 13 1

Physics 662. Particle Physics Phenomenology. February 21, Physics 662, lecture 13 1 Physics 662 Particle Physics Phenomenology February 21, 2002 Physics 662, lecture 13 1 Physics Beyond the Standard Model Supersymmetry Grand Unified Theories: the SU(5) GUT Unification energy and weak

More information

Flavor, Minimality and Naturalness in Composite Higgs Models

Flavor, Minimality and Naturalness in Composite Higgs Models eth zurich Flavor, Minimality and Naturalness in Composite Higgs Models Adrián Carmona Bermúdez Institute for Theoretical Physics, ETH Zurich In collaboration with F. Goertz A naturally light Higgs without

More information

Lepton-flavor violation in tau-lepton decay and the related topics

Lepton-flavor violation in tau-lepton decay and the related topics Lepton-flavor violation in tau-lepton decay and the related topics Junji Hisano Institute for Cosmic Ray Research Univ. of Tokyo International Workshop On Discoveries In Flavour Physics At E+ E- Colliders

More information

Type I Seesaw Mechanism, Lepton Flavour Violation and Higgs Decays

Type I Seesaw Mechanism, Lepton Flavour Violation and Higgs Decays Journal of Physics: Conference Series OPEN ACCESS Type I Seesaw Mechanism, Lepton Flavour Violation and Higgs Decays To cite this article: Emiliano Molinaro 013 J. Phys.: Conf. Ser. 447 0105 View the article

More information

A novel and economical explanation for SM fermion masses and mixings

A novel and economical explanation for SM fermion masses and mixings Eur. Phys. J. C 06) 76:50 DOI 0.40/epjc/s005-06-45-y etter A novel and economical explanation for SM fermion masses and mixings A. E. Cárcamo Hernández a Universidad Técnica Federico Santa María and Centro

More information

EFFECTS OF NEW LEPTONS IN ELECTROWEAK PRECISION DATA

EFFECTS OF NEW LEPTONS IN ELECTROWEAK PRECISION DATA EFFECTS OF NEW LEPTONS IN ELECTROWEAK PRECISION DATA In collaboration with F. del Águila and M. Pérez-Victoria Phys. Rev. D78: 013010, 2008 Depto. de Física Teórica y del Cosmos Universidad de Granada

More information

Lepton Flavor Violation in the Standard Model with general Dimension-6 Operators.

Lepton Flavor Violation in the Standard Model with general Dimension-6 Operators. Lepton Flavor Violation in the Standard Model with general Dimension-6 Operators. Janusz Rosiek based on JHEP 1404 (2014) 167, A. Crivellin, S. Najjari, JR Qui Nhon, 1 Aug 2014 Lepton Flavor Violation

More information

Lecture 16 V2. October 24, 2017

Lecture 16 V2. October 24, 2017 Lecture 16 V2 October 24, 2017 Recap: gamma matrices Recap: pion decay properties Unifying the weak and electromagnetic interactions Ø Recap: QED Lagrangian for U Q (1) gauge symmetry Ø Introduction of

More information

Abdelhak DJOUADI ( LPT Orsay)

Abdelhak DJOUADI ( LPT Orsay) Physics at the LHC bdelhak DJOUDI ( LPT Orsay) Standard Physics at the LHC 1 The Standard Model QCD at the LHC 3 Tests of the SM at the LHC The SM Higgs at the LHC SUSY and SUSY Higgs at the LHC Physics

More information

generation Outline Outline Motivation Electroweak constraints Selected flavor constraints in B and D sector Conclusion Nejc Košnik

generation Outline Outline Motivation Electroweak constraints Selected flavor constraints in B and D sector Conclusion Nejc Košnik th Discovery Discovery of of the the 4 4th generation generation Outline Outline Motivation Electroweak constraints Selected flavor constraints in B and D sector Conclusion 1 Introduction Introduction

More information

h - h - h - e - (ν e ) (ν e )

h - h - h - e - (ν e ) (ν e ) Chapter 8 Higgs triplet eects in purely leptonic processes We consider the eect of complex Higgs triplets on purely leptonic processes and survey the experimental constraints on the mass and couplings

More information

DARK MATTER CANDIDATES IN COMPOSITE HIGGS MODELS

DARK MATTER CANDIDATES IN COMPOSITE HIGGS MODELS DARK MATTER CANDIDATES IN COMPOSITE HIGGS MODELS Daniel Murnane University of Adelaide, University of Southern Denmark Supervisors: Anthony G. Williams, Martin White, Francesco Sannino A NATURAL DM PARTICLE

More information

Scaling in the Neutrino Mass Matrix and the See-Saw Mechanism. Werner Rodejohann (MPIK, Heidelberg) Erice, 20/09/09

Scaling in the Neutrino Mass Matrix and the See-Saw Mechanism. Werner Rodejohann (MPIK, Heidelberg) Erice, 20/09/09 Scaling in the Neutrino Mass Matrix and the See-Saw Mechanism Werner Rodejohann (MPIK, Heidelberg) Erice, 20/09/09 1 A. S. Joshipura, W.R., Phys. Lett. B 678, 276 (2009) [arxiv:0905.2126 [hep-ph]] A. Blum,

More information

COLLIDER STUDIES OF HIGGS TRIPLET MODEL

COLLIDER STUDIES OF HIGGS TRIPLET MODEL LHC Symposium @ 2011 PSROC Annual Meeting January 26, 2011 COLLIDER STUDIES OF HIGGS TRIPLET MODEL Cheng-Wei Chiang ( ) National Central Univ. and Academia Sinica A. G. Akeroyd and CC: PRD 80, 113010 (2009)

More information

TPP entrance examination (2012)

TPP entrance examination (2012) Entrance Examination Theoretical Particle Physics Trieste, 18 July 2012 Ì hree problems and a set of questions are given. You are required to solve either two problems or one problem and the set of questions.

More information

Current knowledge tells us that matter is made of fundamental particle called fermions,

Current knowledge tells us that matter is made of fundamental particle called fermions, Chapter 1 Particle Physics 1.1 Fundamental Particles Current knowledge tells us that matter is made of fundamental particle called fermions, which are spin 1 particles. Our world is composed of two kinds

More information

Introduction to Supersymmetry

Introduction to Supersymmetry Introduction to Supersymmetry I. Antoniadis Albert Einstein Center - ITP Lecture 5 Grand Unification I. Antoniadis (Supersymmetry) 1 / 22 Grand Unification Standard Model: remnant of a larger gauge symmetry

More information

Conformal Standard Model

Conformal Standard Model K.A. Meissner, Conformal Standard Model p. 1/13 Conformal Standard Model Krzysztof A. Meissner University of Warsaw AEI Potsdam HermannFest, AEI, 6.09.2012 K.A. Meissner, Conformal Standard Model p. 2/13

More information

arxiv: v1 [hep-ph] 5 Jan 2012

arxiv: v1 [hep-ph] 5 Jan 2012 NEUTRINO MASSES FROM R-PARITY NON-CONSERVING LOOPS arxiv:1201.1231v1 [hep-ph] 5 Jan 2012 Marek Góźdź, Wies law A. Kamiński Department of Informatics, Maria Curie-Sk lodowska University, pl. Marii Curie

More information

TeV Scale Seesaw with Loop Induced

TeV Scale Seesaw with Loop Induced TeV Scale Seesaw with Loop Induced Dirac Mass Term and Dark kmtt Matter from U(1) B L Gauge Symmetry Breaking Takehiro Nabeshima University of Toyama S. Kanemura, T.N., H. Sugiyama, Phys. Lett. B703:66-70

More information

Probing the charged Higgs boson at the LHC in the CP-violating type-ii 2HDM

Probing the charged Higgs boson at the LHC in the CP-violating type-ii 2HDM Probing the charged Higgs boson at the LHC in the CP-violating type-ii 2HDM Giovanni Marco Pruna IKTP TU Dresden charged 2012, Uppsala University, 10th of October Outline Motivation Standard Model: a solid

More information

SM predicts massless neutrinos

SM predicts massless neutrinos MASSIVE NEUTRINOS SM predicts massless neutrinos What is the motivation for considering neutrino masses? Is the question of the existence of neutrino masses an isolated one, or is connected to other outstanding

More information

Standard Model & Beyond

Standard Model & Beyond XI SERC School on Experimental High-Energy Physics National Institute of Science Education and Research 13 th November 2017 Standard Model & Beyond Lecture III Sreerup Raychaudhuri TIFR, Mumbai 2 Fermions

More information

The Higgs Boson and Electroweak Symmetry Breaking

The Higgs Boson and Electroweak Symmetry Breaking The Higgs Boson and Electroweak Symmetry Breaking 1. Minimal Standard Model M. E. Peskin Chiemsee School September 2014 The Higgs boson has an odd position in the Standard Model of particle physics. On

More information

COLLIDER STUDIES OF HIGGS TRIPLET MODEL

COLLIDER STUDIES OF HIGGS TRIPLET MODEL Miami 2010 December 16, 2010 COLLIDER STUDIES OF HIGGS TRIPLET MODEL Cheng-Wei Chiang National Central Univ. and Academia Sinica (on leave at Univ. of Wisconsin - Madison) A. G. Akeroyd and CC: PRD 80,

More information

Supersymmetry Breaking

Supersymmetry Breaking Supersymmetry Breaking LHC Search of SUSY: Part II Kai Wang Phenomenology Institute Department of Physics University of Wisconsin Madison Collider Phemonology Gauge Hierarchy and Low Energy SUSY Gauge

More information

Quark flavour physics

Quark flavour physics Quark flavour physics Michal Kreps Physics Department Plan Kaon physics and SM construction (bit of history) Establishing SM experimentally Looking for breakdown of SM Hard to cover everything in details

More information

Non-zero Ue3 and TeV-leptogenesis through A4 symmetry breaking

Non-zero Ue3 and TeV-leptogenesis through A4 symmetry breaking Non-zero Ue3 and TeV-leptogenesis through A4 symmetry breaking National Tsing-Hua Unv. Chian-Shu Chen (NCKU/AS) with Y.H. Ahn & S.K. Kang 11/1/009 ouline Introduction A 4 symmetry The model Neutrino mass

More information