NUMERICAL INVESTIGATION OF THE BLADES EFFECT ON FLUID VELOCITY AND TEMPERATURE FIELDS IN SCRAPED SURFACE HEAT EXCHANGER

Size: px
Start display at page:

Download "NUMERICAL INVESTIGATION OF THE BLADES EFFECT ON FLUID VELOCITY AND TEMPERATURE FIELDS IN SCRAPED SURFACE HEAT EXCHANGER"

Transcription

1 ISSN : (Print) ISSN : (Online) NUMERICAL INVESTIGATION OF THE BLADES EFFECT ON FLUID VELOCITY AND TEMPERATURE FIELDS IN SCRAPED SURFACE HEAT EXCHANGER HOSSEIN OKHOVATI a1, AMIN NAMJOO b AND MORTEZA ABDOLZADEH c a Department of mechanical Eng., Sirjan science and research branch, Islamic azad university, Sirjan, b Department of mechanical Eng., Sirjan science and research branch, Islamic azad university, Sirjan, c Department of mechanical Eng., Sirjan science and research branch, Islamic azad university, Sirjan, ABSTRACT The scraped surface heat exchangers are consisting of two concentric cylinders, that inner one is rotating and outer one is stationary. The fluid flows in the annular region between two concentric cylinders. The inner cylinder is also equipped with blades. Since the quality of product under process at the devices is strongly influenced by the velocity field and the fluid temperature, the aim of present work is to investigate the effect of blade on the velocity and the temperature fields numerically. The results show comparable agreement with previous works. Among the important results of the research, can cited to reduce the difference between the maximum and minimum fluid pressure with increasing the number of blades. In the upper blade region of SSHE from rotor to blade, the fluid velocity increases with increasing number of blades,but the intensity of velocity gradients will be reduced. From blade to stator, little change in the fluid velocity profiles can be seen. Also in the blade region by increasing the number of blades, the fluid temperature increases and the heat transfer characteristics of flow will be improved. Keywords: Heat Exchanger, Scraped surface, Taylor Couette flow,simulation The viscous flow in the annular region between two concentric cylinders, when the inner one is rotating and the outer one is stationary, is known as Taylor Couetteflow. Beyond a certain critical speed of the rotating cylinder, the flow will become unstable which results appearance of vortices in the flow.these vortices strongly affect the velocity and temperature fields. Different flow regimes can be seen depend on the speed rate of the rotating cylinder. One of the usage of the above flow is in scraped surface heat exchangers (SSHE), which inner rotor was equipped with blades along the length. Scraped surface heat exchangers are commonly used in the food and chemical industries. Existence of rotational blades is used to reduce the fouling and improve the heat transfer which will finally results a uniform product.figure 1, shows a schematic of a SSHE. Figure1.SSHE schematic This flow regimes and behavior characterized by adimensionless numbercalled the Taylor number (Ta) or the rotational Reynolds number, which defined as: = (1),,h, represent the fluid density, tangential speed of inner cylinder and the gap distance between two cylinders, respectively. Tangential speed of inner cylinder is obtained as follow. = (2) Where is the radius of the inner cylinder and is the angular velocity of the rotor. Compare to the Couette-Taylor flow, research on SSHE are not too much. This is due to the complexity of existence of Taylor instability together with rotating scraper blades. Dumont and coworkers extensively studied the effect of blade on shear rate incouette-taylor vortex regimes. The shear rates were measured electro chemically in simple annular flow and in SSHE with twoblades. The measured wall shear rates using electro chemical method for the annular flow 1Corresponding author

2 revealed that at Taylornumber 45 the transition could occur from laminar to vortex flow. It was found that the presence of blades could increase the shear rate times higher than the present in the same geometry without blades. Also, the transition from laminar to turbulent regime occurred at relatively higher Taylor number 90 for the two blades SSHE. High shear rate in the tip of the blades can cause mechanical damage to food particles(dumont et al., 2001). Dumont and co- workers (2000) studiedthe influence of the blades and rotational speed on the thermal characteristics of the products treated.they have shown somethermal modification of products can be achieved at low Taylor number (particularlyin the birth of vortices near the outlet)(dumont et al., 2000).Mabit et al. (2003) studied the effect of floating bladesin SSHE and also they carried out the experiments in absence of blades andstudied the flow patterns, including laminarcouette flow laminartaylor flow, turbulent Taylor flow and vortextaylor flow. The effect ofblades on the starch suspension in SSHE was studied experimentally by Mabit et al. (2003). Mechanical swelling of starch was used to quantify the volume fraction of processed product undergoing high shear rate. Soos et al (2007) studied the Taylor-Couette flow geometry with lobed inner cylinder instead of circular one. The specific design was made to reduce or deform the Taylorvortices and therefore to improve the mixing in the core of thevortices. The particle motion and their adherence on heated surface in SSHE was studied by Rodriguez et al. (2009). Their aim was a design for scraper geometry in order to preventing deposit on the heat exchanger surface. Yataghene et al. (2011) studied the flow patterns inside scraped surface heat exchangers under isothermal and continuous flow Continuity equation:. =0(3) Momentum equation: Numerical Simulation In figure 2 the geometry of the problem is shown. The Rotor and stator radiuses are considered 4 and 5 cm, respectively. The blade conditions experimentally. Axial, radial and tangential velocity components have been measured for Newtonian and non-newtonian shear thinning fluids. The analysis of the axial velocity inside SSHE showed the presence of very large axial heterogeneities and tangential velocity dominates around blades, and the maximum is reached near the tip of the blade. The results showed that under certain experimental flow conditions of rotating velocity and axial flow rate, a more effective flow can be obtained. They have also shown the mass flow rate does not affect the tangential velocity components. The axial heterogeneities were reduced by increasing mass flow rate (Yataghene et al., 2011). It can be seen that most of the investigation on SSHEs are based on experiments and a few numerical works can be found in the literatures. Due to this fact, the present work focus on the blade effect of the temperature and velocity field in the SSHEs numerically.numerical modeling has been based on the assumption that the mass flow rate and flow velocity along the axis of exchanger is low than the inner cylinder rotation speed,so the flow can be considered two dimensional. Also rotational speed range is intended which instabilities that are causing three dimensional flows, are not present. Governing Equations Flow and heat transfer are described with continuity, momentum and energy equations (Izadi et al., 2009). The flow assumed to be laminar, steady, two dimensional and incompressible. Also the viscous dissipation term in the energy equation can be neglected. By these assumption the governing equation simplify as follows.. = + V(4) Energy equation:. = (5) angle which is shown in figure 3 is considered to have the fixed valueof 147 degree and a distance of 0.25 cm from the rotor. Figure 4 shows the grid around the blade with triangular elements.

3 Figure2.The SSHE geometry Figure 4.The created grid around blade Figure 3.Blade angle Rotor and connected blades to it are rotating clock wise with constant angular velocity. The reason for triangular elements for the grid is sharp corners blades, that the created grid with these elements has better uniformity than tetrahedral elements. Finite volume method is used to solve the governing equations. Fluid properties are given in table 1. Fluid Density Table1.The physical properties of fluid Specific heat capacity. Thermal conductivity. Viscosity. Engine-oil In order to prevent using sliding mesh due to rotating blade, the problem has been solved by using the rotating reference frame (FLUENT 6.3 User's Guide, 2006). Through this, the rotor and blades areassumeto be stationary and fluid rotates between rotor and stator with angular velocity in the opposite direction. RESULTS AND DISCUSSIONS Mesh study In order to investigate the independency of the results from the grid size, the desired grid was refined in four steps. The selected geometry for this purpose is a SSHE with two blades, 150 degree blade angle.the rotational Reynolds number is equal to 10. Figure5 showsvelocity profiles in blade region with various number of meshess where the largest gradients occur.

4 Figure 5.Results of the independent review of the created grid Increasing the number of grid nodes from 6000 nodes to nodes, creates 4.62% change in velocity profile around the blade and with increasing the number of grid nodesfrom nodesto nodes, the percentage difference is reduced to 1.96% and with increasing the number of gridnodes from to 36000, this percentage difference is about1%. So the grid consists of nodes is selected because of accuracy and computational cost. The accuracy of numerical method In order to verify the results accuracy, the velocity profile in the blade section for the rotational Reynolds number 10 and angle of blade 147 degree obtained and the results are compared withnumerical and experimental results of Stranzinger s work(stranzinger et al., 2001). Figure6 shows this comparison and very good agreement can be seen. The error is less than 1%. Figure 6.Comparison of present work with reference work

5 The effects of the blades number Figures 7A to 7E show the stream function for various numbers of blades. In all case, the rotational Reynolds number is considered to be 10 and the blade angle is 150 degree.in addition to the considered conditions, is consider the temperature of rotor 75 C and the temperature of stator 50 C. Figure 7A.Stream function with two bladefigure 7B.Stream function with three blades. Figure 7C. Stream function with four blades. blades. Figure 7C. Stream function with five Figure 7E.Stream function with six blades. As can be seen in figures7a to 7E, increasing the number of blades will increases the number of created vortices and the number of vortices is equal to number of SSHE's blades. Figures8A to 8E showspressure contours for the various numbers of blades.the results show apart from other parts of blade, pressure distribution is almost uniform.

6 Figure 8A. Pressure contour with two blades. Figure 8B.Pressure contourwith three blades. Figure 8C. Pressure contour with four blades. Figure 8D. Pressure contour with five blades. Figure 8E.Pressure contour with six blades. The effect of blades on pressure distribution in blade region can be seen in figure 9. As can be seen, heat exchanger with three blades has largest absolute pressure and the one with two blades has the lowest absolute pressure.

7 Figure 9.investigation of the effect of the number of blades on the pressure profiles in blade region Table 2 shows the effect of the number of blades on maximum and minimum pressure and difference between the maximum and minimum pressure in SSHE.The results show the difference between the maximum and minimum fluid pressure decreases, with increasing the number of blades. Table 2.Investigation of the effect of number of blades on maximum and minimum pressure and the pressure difference Number of blades Maximum pressure(kpa) Minimum pressure(kpa) Pressure difference(kpa) The effect of blades number on velocity contours is shown in figures 10A to 10E. According to figures 10A to 10E, it can be seen that increasing number of blades only affects the number of created vortices and does not change the shape of vortex. So the created vortex between the two blades in SSHE with two blades is quite similar to the vortex between the two blades in SSHE with six blades.

8 Figure 10A.Velocity contour with ttwo blades.figure 10B.Velocity contourwiththree blades. Figure 10C.Velocity contour with four blades. Figure 10D.Velocity contour with five blades. Figure 10E.Velocity contour with six blades. The fluid velocity field in blade region with different number of blades is shown in the figure 11. As shown, in the left part of diagram, which is from the rotor toward blade, increasing the number of blades increases the velocity but the intensity of velocity gradients is reduced. While in the right part of diagram that is from blade toward stator. We are not observed significant change in the fluid velocity.

9 Figure 11.Investigation of the effect of number of blades on the fluid velocity field in blade region Table 3 shows maximum velocity for various numbers of blades. It can be seen that number of blade does not have significant effect on the maximum velocity in SSHE. Table 3.Maximum velocity respect to different number of blades The figures 12A to 12E show temperature contours for various numbers of blades. As the Number of blades 2 3 number 4 of 5 blades 6 increases the heat transfer improve specially at blade region. Maximum velocity (m/s) Figure 12A.Temperature contour with two blades.figure 12B.Temperature contour with three blades.

10 Figure 12C.Temperature contour with four blades blades. Figure 12D.Temperature contour with five Figure 12E.Temperature contour with six blades Fluid temperature profiles in blade region with the different number of blades are shown in figure 13.As can be seen in figure 13, with increasing the number of blades in blade region will increase temperature and the heat transfer also will be improved.

11 Figure 13.investigation of the effect of the number of blades on the fluid temperature field in blade region CONCLUSION In recent study, the effect of the number of blades on the flow and heat transfer of fluid in SSHE by using finite volume method is investigated. Comparing the results with pervious research shows good agreements. In the upper blade region of SSHE from rotor to blade, the fluid velocity increases with increasing number of blades. But the intensity of velocity gradients is reduced. From blade to stator, significant change is not found in the fluid velocity. Increasing the number of blades REFERENCES Dumont, E, Fayolle, F., Legrand, J.; Flow regimes and wall shear rates determination within a scraped surface heatexchanger. J. Food Eng,vol. 45, pp Dumont,E., Della Valle, D., Fayolle, F.; Influence of flowregimes on temperature heterogeneities within a scrapedsurface heat exchanger. J. Food Process Eng,Vol.23, pp Mabit,J., Fayolle, F., Legrand, J.; Shear rate investigation in a scraped surface heat exchanger. Chem. Eng. Sci,Vol.58,pp , Mabit, M., Loisel, C., Fayolle, F., Legrand, J.; Determinationof the volume fraction submitted to high shear in a Izadi, M., Behzadmehr, A., Jalali-Vahid, D.; Numerical study of developing laminar forced convection of a nanofluid in an annulus.international Journal of Thermal Sciences,vol. 48,pp FLUENT 6.3 User's Guide, Fluent Inc, September Stranzinger, K. Feigl, E. Windhab.; Non- Newtonian flow behaviour in narrow annular gap reactors.chemical Engineering Science,vol. 56,pp reducethe difference between the maximum and minimum fluid pressure.however, apart from the blades, pressure distribution is almost uniform. Heat exchanger with three blades have the largest absolute pressure while, the lowest absolute pressure is found in the heat exchanger with two blades. Increasing the number of blades will cause temperature increases in the blade region and so will improve the heat transfer process. scrape surface heat exchanger. J. FoodEng,Vol.57, pp Soos, M., Wu, H., Morbidelli, M.; Taylor Couette unit with a lobed inner cylinder cross section. AIChEJ. Vol.53, pp Rodriguez Pascual, M., Ravelet, F., Delfos, R., Witkamp, G.J.; Large eddy simulations and stereoscopic particle image velocimetry measurements in a scraped heat exchanger crystallizer geometry. Chemical Engineering Science,vol.64, pp Yataghene, M., Fayolle, F., Legrand, J.; Flow patterns analysis using experimental PIV technique inside scraped surface heat exchanger in continuous flow condition. Chemical Engineering and Processing: Process Intensification,vol.47, pp

A Mathematical Model of Three-Dimensional Flow in a Scraped-Surface Heat Exchanger

A Mathematical Model of Three-Dimensional Flow in a Scraped-Surface Heat Exchanger A Mathematical Model of Three-Dimensional Flow in a Scraped-Surface Heat Exchanger Stephen K. Wilson 1, Brian R. Duffy 1 and Michael E. M. Lee 2 1 Department of Mathematics, University of Strathclyde,

More information

3D CFD ANALYSIS OF HEAT TRANSFER IN A SCRAPED SURFACE HEAT EXCHANGER FOR BINGHAM FLUIDS

3D CFD ANALYSIS OF HEAT TRANSFER IN A SCRAPED SURFACE HEAT EXCHANGER FOR BINGHAM FLUIDS 3D CFD ANALYSIS OF HEAT TRANSFER IN A SCRAPED SURFACE HEAT EXCHANGER FOR BINGHAM FLUIDS Ali S.* and Baccar M. *Author for correspondence Department of Mechanical Engineering, National Engineering School

More information

Strathprints Institutional Repository

Strathprints Institutional Repository Strathprints Institutional Repository Wilson, S.K. and Duffy, B.R. and Lee, M.E.M. (25) A mathematical model of three-dimensional flow in a scraped-surface heat exchanger. In: Proceedings of the 13th European

More information

Numerical study of 2D heat transfer in a scraped surface heat exchanger

Numerical study of 2D heat transfer in a scraped surface heat exchanger Computers & Fluids 33 (2004) 869 880 www.elsevier.com/locate/compfluid Numerical study of 2D heat transfer in a scraped surface heat exchanger K.-H. Sun a, *, D.L. Pyle a, A.D. Fitt b, C.P. Please b, M.J.

More information

Effective Scraping in a Scraped Surface Heat Exchanger: Some Fluid Flow Analysis

Effective Scraping in a Scraped Surface Heat Exchanger: Some Fluid Flow Analysis ICEF 9 003 Effective Scraping in a Scraped Surface Heat Exchanger: Some Fluid Flow Analysis D. L. Pyle (1), K.-H. Sun (1), M. E. M. Lee (), C. P. Please (), A. D. Fitt (), S. K. Wilson (3), B. R. Duffy

More information

A model of fluid flow in a scraped-surface heat exchanger

A model of fluid flow in a scraped-surface heat exchanger A model of fluid flow in a scraped-surface heat exchanger by B. R. Duffy, S. K. Wilson, Department of Mathematics, University of Strathclyde, Livingstone Tower, 26 Richmond Street, Glasgow G XH M. E. M.

More information

Table of Contents. Foreword... xiii. Preface... xv

Table of Contents. Foreword... xiii. Preface... xv Table of Contents Foreword.... xiii Preface... xv Chapter 1. Fundamental Equations, Dimensionless Numbers... 1 1.1. Fundamental equations... 1 1.1.1. Local equations... 1 1.1.2. Integral conservation equations...

More information

ANALYSIS OF FLOW IN A CONCENTRIC ANNULUS USING FINITE ELEMENT METHOD

ANALYSIS OF FLOW IN A CONCENTRIC ANNULUS USING FINITE ELEMENT METHOD Nigerian Journal of Technology (NIJOTECH) Vol 35, No 2, April 2016, pp 344 348 Copyright Faculty of Engineering, University of Nigeria, Nsukka, Print ISSN: 0331-8443, Electronic ISSN: 2467-8821 wwwnijotechcom

More information

REE Internal Fluid Flow Sheet 2 - Solution Fundamentals of Fluid Mechanics

REE Internal Fluid Flow Sheet 2 - Solution Fundamentals of Fluid Mechanics REE 307 - Internal Fluid Flow Sheet 2 - Solution Fundamentals of Fluid Mechanics 1. Is the following flows physically possible, that is, satisfy the continuity equation? Substitute the expressions for

More information

Numerical analysis of fluid flow and heat transfer in 2D sinusoidal wavy channel

Numerical analysis of fluid flow and heat transfer in 2D sinusoidal wavy channel Numerical analysis of fluid flow and heat transfer in 2D sinusoidal wavy channel Arunanshu Chakravarty 1* 1 CTU in Prague, Faculty of Mechanical Engineering, Department of Process Engineering,Technická

More information

Turbulence Laboratory

Turbulence Laboratory Objective: CE 319F Elementary Mechanics of Fluids Department of Civil, Architectural and Environmental Engineering The University of Texas at Austin Turbulence Laboratory The objective of this laboratory

More information

Numerical Simulation of the Hagemann Entrainment Experiments

Numerical Simulation of the Hagemann Entrainment Experiments CCC Annual Report UIUC, August 14, 2013 Numerical Simulation of the Hagemann Entrainment Experiments Kenneth Swartz (BSME Student) Lance C. Hibbeler (Ph.D. Student) Department of Mechanical Science & Engineering

More information

Study on Non-Uniqueness of Taylor Vortex Flow Changing Inner Cylinder Acceleration Time

Study on Non-Uniqueness of Taylor Vortex Flow Changing Inner Cylinder Acceleration Time World Journal of Mechanics, 2018, 8, 301-310 http://www.scirp.org/journal/wjm ISSN Online: 2160-0503 ISSN Print: 2160-049X Study on Non-Uniqueness of Taylor Vortex Flow Changing Inner Cylinder Acceleration

More information

Validation 3. Laminar Flow Around a Circular Cylinder

Validation 3. Laminar Flow Around a Circular Cylinder Validation 3. Laminar Flow Around a Circular Cylinder 3.1 Introduction Steady and unsteady laminar flow behind a circular cylinder, representing flow around bluff bodies, has been subjected to numerous

More information

PROPERTIES OF THE FLOW AROUND TWO ROTATING CIRCULAR CYLINDERS IN SIDE-BY-SIDE ARRANGEMENT WITH DIFFERENT ROTATION TYPES

PROPERTIES OF THE FLOW AROUND TWO ROTATING CIRCULAR CYLINDERS IN SIDE-BY-SIDE ARRANGEMENT WITH DIFFERENT ROTATION TYPES THERMAL SCIENCE, Year, Vol. 8, No. 5, pp. 87-9 87 PROPERTIES OF THE FLOW AROUND TWO ROTATING CIRCULAR CYLINDERS IN SIDE-BY-SIDE ARRANGEMENT WITH DIFFERENT ROTATION TYPES by Cheng-Xu TU, a,b Fu-Bin BAO

More information

Manhar Dhanak Florida Atlantic University Graduate Student: Zaqie Reza

Manhar Dhanak Florida Atlantic University Graduate Student: Zaqie Reza REPRESENTING PRESENCE OF SUBSURFACE CURRENT TURBINES IN OCEAN MODELS Manhar Dhanak Florida Atlantic University Graduate Student: Zaqie Reza 1 Momentum Equations 2 Effect of inclusion of Coriolis force

More information

Flow Generated by Fractal Impeller in Stirred Tank: CFD Simulations

Flow Generated by Fractal Impeller in Stirred Tank: CFD Simulations Flow Generated by Fractal Impeller in Stirred Tank: CFD Simulations Gunwant M. Mule and Amol A. Kulkarni* Chem. Eng. & Proc. Dev. Division, CSIR-National Chemical Laboratory, Pune 411008, INDIA *Corresponding

More information

Numerical Investigation of Thermal Performance in Cross Flow Around Square Array of Circular Cylinders

Numerical Investigation of Thermal Performance in Cross Flow Around Square Array of Circular Cylinders Numerical Investigation of Thermal Performance in Cross Flow Around Square Array of Circular Cylinders A. Jugal M. Panchal, B. A M Lakdawala 2 A. M. Tech student, Mechanical Engineering Department, Institute

More information

FINITE ELEMENT ANALYSIS OF MIXED CONVECTION HEAT TRANSFER ENHANCEMENT OF A HEATED SQUARE HOLLOW CYLINDER IN A LID-DRIVEN RECTANGULAR ENCLOSURE

FINITE ELEMENT ANALYSIS OF MIXED CONVECTION HEAT TRANSFER ENHANCEMENT OF A HEATED SQUARE HOLLOW CYLINDER IN A LID-DRIVEN RECTANGULAR ENCLOSURE Proceedings of the International Conference on Mechanical Engineering 2011 (ICME2011) 18-20 December 2011, Dhaka, Bangladesh ICME11-TH-014 FINITE ELEMENT ANALYSIS OF MIXED CONVECTION HEAT TRANSFER ENHANCEMENT

More information

1. Introduction, tensors, kinematics

1. Introduction, tensors, kinematics 1. Introduction, tensors, kinematics Content: Introduction to fluids, Cartesian tensors, vector algebra using tensor notation, operators in tensor form, Eulerian and Lagrangian description of scalar and

More information

On numerical modelling of heat transfer and fluid flow in a scraped surface heat exchanger

On numerical modelling of heat transfer and fluid flow in a scraped surface heat exchanger archives of thermodynamics Vol. 35(2014), No. 3, 251 264 On numerical modelling of heat transfer and fluid flow in a scraped surface heat exchanger PRZEMYSŁAW BŁASIAK 1 ZBIGNIEW GNUTEK Wroclaw University

More information

Calculation of Power and Flow Capacity of Rotor / Stator Devices in VisiMix RSD Program.

Calculation of Power and Flow Capacity of Rotor / Stator Devices in VisiMix RSD Program. Calculation of Power and Flow Capacity of Rotor / Stator Devices in VisiMix RSD Program. L.N.Braginsky, D.Sc. (Was invited to be presented on the CHISA 2010-13th Conference on Process Integration, Modelling

More information

THERMAL ANALYSIS OF SECOND STAGE GAS TURBINE ROTOR BLADE

THERMAL ANALYSIS OF SECOND STAGE GAS TURBINE ROTOR BLADE Polymers Research Journal ISSN: 195-50 Volume 6, Number 01 Nova Science Publishers, Inc. THERMAL ANALYSIS OF SECOND STAGE GAS TURBINE ROTOR BLADE E. Poursaeidi, M. Mohammadi and S. S. Khamesi University

More information

Contents. Microfluidics - Jens Ducrée Physics: Laminar and Turbulent Flow 1

Contents. Microfluidics - Jens Ducrée Physics: Laminar and Turbulent Flow 1 Contents 1. Introduction 2. Fluids 3. Physics of Microfluidic Systems 4. Microfabrication Technologies 5. Flow Control 6. Micropumps 7. Sensors 8. Ink-Jet Technology 9. Liquid Handling 10.Microarrays 11.Microreactors

More information

Performance evaluation of different model mixers by numerical simulation

Performance evaluation of different model mixers by numerical simulation Journal of Food Engineering 71 (2005) 295 303 www.elsevier.com/locate/jfoodeng Performance evaluation of different model mixers by numerical simulation Chenxu Yu, Sundaram Gunasekaran * Food and Bioprocess

More information

CHAPTER 4 OPTIMIZATION OF COEFFICIENT OF LIFT, DRAG AND POWER - AN ITERATIVE APPROACH

CHAPTER 4 OPTIMIZATION OF COEFFICIENT OF LIFT, DRAG AND POWER - AN ITERATIVE APPROACH 82 CHAPTER 4 OPTIMIZATION OF COEFFICIENT OF LIFT, DRAG AND POWER - AN ITERATIVE APPROACH The coefficient of lift, drag and power for wind turbine rotor is optimized using an iterative approach. The coefficient

More information

Application of COMSOL Multiphysics in Transport Phenomena Educational Processes

Application of COMSOL Multiphysics in Transport Phenomena Educational Processes Application of COMSOL Multiphysics in Transport Phenomena Educational Processes M. Vasilev, P. Sharma and P. L. Mills * Department of Chemical and Natural Gas Engineering, Texas A&M University-Kingsville,

More information

Design and Modeling of Fluid Power Systems ME 597/ABE Lecture 7

Design and Modeling of Fluid Power Systems ME 597/ABE Lecture 7 Systems ME 597/ABE 591 - Lecture 7 Dr. Monika Ivantysynova MAHA Professor Fluid Power Systems MAHA Fluid Power Research Center Purdue University Content of 6th lecture The lubricating gap as a basic design

More information

Simulation of Aeroelastic System with Aerodynamic Nonlinearity

Simulation of Aeroelastic System with Aerodynamic Nonlinearity Simulation of Aeroelastic System with Aerodynamic Nonlinearity Muhamad Khairil Hafizi Mohd Zorkipli School of Aerospace Engineering, Universiti Sains Malaysia, Penang, MALAYSIA Norizham Abdul Razak School

More information

Rotational viscometers

Rotational viscometers 42 Non-Newtonian Flow in the Process Industries Rotational viscometers Due to their relative importance as tools for the rheological characterisation of non-newtonian fluid behaviour, we concentrate on

More information

Digital Simulation for the Behavior of the Flow of Non-Newtonian Fluids in 90 Pipe Bend

Digital Simulation for the Behavior of the Flow of Non-Newtonian Fluids in 90 Pipe Bend International Journal of Engineering and Technical Research (IJETR) ISSN: 2321-0869 (O) 2454-4698 (P), Volume-3, Issue-8, August 2015 Digital Simulation for the Behavior of the Flow of Non-Newtonian Fluids

More information

DEVELOPMENT OF CFD MODEL FOR A SWIRL STABILIZED SPRAY COMBUSTOR

DEVELOPMENT OF CFD MODEL FOR A SWIRL STABILIZED SPRAY COMBUSTOR DRAFT Proceedings of ASME IMECE: International Mechanical Engineering Conference & Exposition Chicago, Illinois Nov. 5-10, 2006 IMECE2006-14867 DEVELOPMENT OF CFD MODEL FOR A SWIRL STABILIZED SPRAY COMBUSTOR

More information

Research Article. Slip flow and heat transfer through a rarefied nitrogen gas between two coaxial cylinders

Research Article. Slip flow and heat transfer through a rarefied nitrogen gas between two coaxial cylinders Available online wwwjocprcom Journal of Chemical and Pharmaceutical Research, 216, 8(8):495-51 Research Article ISSN : 975-7384 CODEN(USA) : JCPRC5 Slip flow and heat transfer through a rarefied nitrogen

More information

Numerical Simulation of the Evolution of Reynolds Number on Laminar Flow in a Rotating Pipe

Numerical Simulation of the Evolution of Reynolds Number on Laminar Flow in a Rotating Pipe American Journal of Fluid Dynamics 2014, 4(3): 79-90 DOI: 10.5923/j.ajfd.20140403.01 Numerical Simulation of the Evolution of Reynolds Number on Laminar Flow in a Rotating Pipe A. O. Ojo, K. M. Odunfa,

More information

Iran University of Science & Technology School of Mechanical Engineering Advance Fluid Mechanics

Iran University of Science & Technology School of Mechanical Engineering Advance Fluid Mechanics 1. Consider a sphere of radius R immersed in a uniform stream U0, as shown in 3 R Fig.1. The fluid velocity along streamline AB is given by V ui U i x 1. 0 3 Find (a) the position of maximum fluid acceleration

More information

Vortex Induced Vibrations

Vortex Induced Vibrations Vortex Induced Vibrations By: Abhiroop Jayanthi Indian Institute of Technology, Delhi Some Questions! What is VIV? What are the details of a steady approach flow past a stationary cylinder? How and why

More information

Heat and fluid flow in a scraped-surface heat exchanger containing a fluid with temperature-dependent viscosity

Heat and fluid flow in a scraped-surface heat exchanger containing a fluid with temperature-dependent viscosity Heat and fluid flow in a scraped-surface heat exchanger containing a fluid with temperature-dependent viscosity A. A. T. Smith, S. K. Wilson, B. R. Duffy Department of Mathematics and Statistics, University

More information

CFD STUDY OF MASS TRANSFER IN SPACER FILLED MEMBRANE MODULE

CFD STUDY OF MASS TRANSFER IN SPACER FILLED MEMBRANE MODULE GANIT J. Bangladesh Math. Soc. (ISSN 1606-3694) 31 (2011) 33-41 CFD STUDY OF MASS TRANSFER IN SPACER FILLED MEMBRANE MODULE Sharmina Hussain Department of Mathematics and Natural Science BRAC University,

More information

An Overview of Impellers, Velocity Profile and Reactor Design

An Overview of Impellers, Velocity Profile and Reactor Design An Overview of s, Velocity Profile and Reactor Design Praveen Patel 1, Pranay Vaidya 1, Gurmeet Singh 2 1 Indian Institute of Technology Bombay, India 1 Indian Oil Corporation Limited, R&D Centre Faridabad

More information

Numerical Analysis of Fluid Flow and Heat Transfer Characteristics of Ventilated Disc Brake Rotor Using CFD

Numerical Analysis of Fluid Flow and Heat Transfer Characteristics of Ventilated Disc Brake Rotor Using CFD International Journal of Engineering Inventions e-issn: 2278-7461, p-issn: 2319-6491 Volume 4, Issue 10 [June 2015] PP: 31-38 Numerical Analysis of Fluid Flow and Heat Transfer Characteristics of Ventilated

More information

Performance characteristics of turbo blower in a refuse collecting system according to operation conditions

Performance characteristics of turbo blower in a refuse collecting system according to operation conditions Journal of Mechanical Science and Technology 22 (2008) 1896~1901 Journal of Mechanical Science and Technology www.springerlink.com/content/1738-494x DOI 10.1007/s12206-008-0729-6 Performance characteristics

More information

Numerical Analysis of a Helical Coiled Heat Exchanger using CFD

Numerical Analysis of a Helical Coiled Heat Exchanger using CFD International Journal of Thermal Technologies ISSN 2277-4114 213 INPRESSCO. All Rights Reserved. Available at http://inpressco.com/category/ijtt Research Article Numerical Analysis of a Helical Coiled

More information

Introduction to Heat and Mass Transfer. Week 10

Introduction to Heat and Mass Transfer. Week 10 Introduction to Heat and Mass Transfer Week 10 Concentration Boundary Layer No concentration jump condition requires species adjacent to surface to have same concentration as at the surface Owing to concentration

More information

Simulation of Flow Pattern through a Three-Bucket Savonius. Wind Turbine by Using a Sliding Mesh Technique

Simulation of Flow Pattern through a Three-Bucket Savonius. Wind Turbine by Using a Sliding Mesh Technique Simulation of Flow Pattern through a Three-Bucket Savonius Wind Turbine by Using a Sliding Mesh Technique Dr. Dhirgham AL-Khafaji Department of Mechanical engineering/college of Engineering, University

More information

CHAPTER 7 NUMERICAL MODELLING OF A SPIRAL HEAT EXCHANGER USING CFD TECHNIQUE

CHAPTER 7 NUMERICAL MODELLING OF A SPIRAL HEAT EXCHANGER USING CFD TECHNIQUE CHAPTER 7 NUMERICAL MODELLING OF A SPIRAL HEAT EXCHANGER USING CFD TECHNIQUE In this chapter, the governing equations for the proposed numerical model with discretisation methods are presented. Spiral

More information

Exact Solution of an MHD Natural Convection Flow in Vertical Concentric Annulus with Heat Absorption

Exact Solution of an MHD Natural Convection Flow in Vertical Concentric Annulus with Heat Absorption International Journal of Fluid Mechanics & Thermal Sciences 217; 3(5): 52-61 http://www.sciencepublishinggroup.com/j/ijfmts doi: 1.11648/j.ijfmts.21735.12 ISSN: 2469-815 (Print); ISSN: 2469-8113 (Online)

More information

Fluid Dynamics: Theory, Computation, and Numerical Simulation Second Edition

Fluid Dynamics: Theory, Computation, and Numerical Simulation Second Edition Fluid Dynamics: Theory, Computation, and Numerical Simulation Second Edition C. Pozrikidis m Springer Contents Preface v 1 Introduction to Kinematics 1 1.1 Fluids and solids 1 1.2 Fluid parcels and flow

More information

Flow patterns analysis using experimental PIV technique inside scraped surface heat exchanger in continuous flow condition

Flow patterns analysis using experimental PIV technique inside scraped surface heat exchanger in continuous flow condition Flow patterns analysis using experimental PIV technique inside scraped surface heat exchanger in continuous flow condition Mourad Yataghene, Francine Fayolle, Jack Legrand To cite this version: Mourad

More information

Principles of Convection

Principles of Convection Principles of Convection Point Conduction & convection are similar both require the presence of a material medium. But convection requires the presence of fluid motion. Heat transfer through the: Solid

More information

Computation of Unsteady Flows With Moving Grids

Computation of Unsteady Flows With Moving Grids Computation of Unsteady Flows With Moving Grids Milovan Perić CoMeT Continuum Mechanics Technologies GmbH milovan@continuummechanicstechnologies.de Unsteady Flows With Moving Boundaries, I Unsteady flows

More information

Boundary-Layer Theory

Boundary-Layer Theory Hermann Schlichting Klaus Gersten Boundary-Layer Theory With contributions from Egon Krause and Herbert Oertel Jr. Translated by Katherine Mayes 8th Revised and Enlarged Edition With 287 Figures and 22

More information

Author s Accepted Manuscript

Author s Accepted Manuscript Author s Accepted Manuscript Large eddy simulations and stereoscopic particle image velocimetry measurements in a scraped heat exchanger crystallizer geometry M. Rodriguez Pascual, F. Ravelet, R. Delfos,

More information

The three-dimensional velocity distribution of wide gap Taylor-Couette flow modelled by CFD

The three-dimensional velocity distribution of wide gap Taylor-Couette flow modelled by CFD The three-dimensional velocity distribution of wide gap Taylor-Couette flow modelled by CFD D. Adebayo and A. Rona Department of Engineering, University of Leicester, University Road, Leicester, LE1 7RH,

More information

CENG 501 Examination Problem: Estimation of Viscosity with a Falling - Cylinder Viscometer

CENG 501 Examination Problem: Estimation of Viscosity with a Falling - Cylinder Viscometer CENG 501 Examination Problem: Estimation of Viscosity with a Falling - Cylinder Viscometer You are assigned to design a fallingcylinder viscometer to measure the viscosity of Newtonian liquids. A schematic

More information

Viscous dissipation and temperature dependent shear thinning rheology

Viscous dissipation and temperature dependent shear thinning rheology Viscous dissipation and temperature dependent shear thinning rheology M. Filippucci 1, A. Tallarico 1, M. Dragoni 2 1 Dipartimento di Scienze della Terra e Geoambientali, Università degli Studi di Bari

More information

Fluid Dynamics Exercises and questions for the course

Fluid Dynamics Exercises and questions for the course Fluid Dynamics Exercises and questions for the course January 15, 2014 A two dimensional flow field characterised by the following velocity components in polar coordinates is called a free vortex: u r

More information

Contents. I Introduction 1. Preface. xiii

Contents. I Introduction 1. Preface. xiii Contents Preface xiii I Introduction 1 1 Continuous matter 3 1.1 Molecules................................ 4 1.2 The continuum approximation.................... 6 1.3 Newtonian mechanics.........................

More information

NUMERICAL INVESTIGATION OF VERTICAL AXIS WIND TURBINE WITH TWIST ANGLE IN BLADES

NUMERICAL INVESTIGATION OF VERTICAL AXIS WIND TURBINE WITH TWIST ANGLE IN BLADES Eleventh International Conference on CFD in the Minerals and Process Industries CSIRO, Melbourne, Australia 7-9 December 05 NUMERICAL INVESTIGATION OF VERTICAL AXIS WIND TURBINE WITH TWIST ANGLE IN BLADES

More information

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t)

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t) IV. DIFFERENTIAL RELATIONS FOR A FLUID PARTICLE This chapter presents the development and application of the basic differential equations of fluid motion. Simplifications in the general equations and common

More information

Fluid Mechanics II Viscosity and shear stresses

Fluid Mechanics II Viscosity and shear stresses Fluid Mechanics II Viscosity and shear stresses Shear stresses in a Newtonian fluid A fluid at rest can not resist shearing forces. Under the action of such forces it deforms continuously, however small

More information

The effect of branching on the shear rheology and microstructure of wormlike micelles (WLMs): Supporting Information

The effect of branching on the shear rheology and microstructure of wormlike micelles (WLMs): Supporting Information The effect of branching on the shear rheology and microstructure of wormlike micelles (WLMs): Supporting Information Michelle A. Calabrese, Simon A. Rogers, Ryan P. Murphy, Norman J. Wagner University

More information

Experiments at the University of Minnesota (draft 2)

Experiments at the University of Minnesota (draft 2) Experiments at the University of Minnesota (draft 2) September 17, 2001 Studies of migration and lift and of the orientation of particles in shear flows Experiments to determine positions of spherical

More information

FLOW MALDISTRIBUTION IN A SIMPLIFIED PLATE HEAT EXCHANGER MODEL - A Numerical Study

FLOW MALDISTRIBUTION IN A SIMPLIFIED PLATE HEAT EXCHANGER MODEL - A Numerical Study FLOW MALDISTRIBUTION IN A SIMPLIFIED PLATE HEAT EXCHANGER MODEL - A Numerical Study Nityanand Pawar Mechanical Engineering, Sardar Patel College of Engineering, Mumbai, Maharashtra, India nitya.pawar@gmail.com

More information

Figure 3: Problem 7. (a) 0.9 m (b) 1.8 m (c) 2.7 m (d) 3.6 m

Figure 3: Problem 7. (a) 0.9 m (b) 1.8 m (c) 2.7 m (d) 3.6 m 1. For the manometer shown in figure 1, if the absolute pressure at point A is 1.013 10 5 Pa, the absolute pressure at point B is (ρ water =10 3 kg/m 3, ρ Hg =13.56 10 3 kg/m 3, ρ oil = 800kg/m 3 ): (a)

More information

Numerical study of blood fluid rheology in the abdominal aorta

Numerical study of blood fluid rheology in the abdominal aorta Design and Nature IV 169 Numerical study of blood fluid rheology in the abdominal aorta F. Carneiro 1, V. Gama Ribeiro 2, J. C. F. Teixeira 1 & S. F. C. F. Teixeira 3 1 Universidade do Minho, Departamento

More information

Intermittency in spiral Poiseuille flow

Intermittency in spiral Poiseuille flow Intermittency in spiral Poiseuille flow M. Heise, J. Abshagen, A. Menck, G. Pfister Institute of Experimental and Applied Physics, University of Kiel, 2498 Kiel, Germany E-mail: heise@physik.uni-kiel.de

More information

Heat and Mass Transfer Unit-1 Conduction

Heat and Mass Transfer Unit-1 Conduction 1. State Fourier s Law of conduction. Heat and Mass Transfer Unit-1 Conduction Part-A The rate of heat conduction is proportional to the area measured normal to the direction of heat flow and to the temperature

More information

EVALUATION OF FOUR TURBULENCE MODELS IN THE INTERACTION OF MULTI BURNERS SWIRLING FLOWS

EVALUATION OF FOUR TURBULENCE MODELS IN THE INTERACTION OF MULTI BURNERS SWIRLING FLOWS EVALUATION OF FOUR TURBULENCE MODELS IN THE INTERACTION OF MULTI BURNERS SWIRLING FLOWS A Aroussi, S Kucukgokoglan, S.J.Pickering, M.Menacer School of Mechanical, Materials, Manufacturing Engineering and

More information

CONTRIBUTION TO EXTRUDATE SWELL FROM THE VELOCITY FACTOR IN NON- ISOTHERMAL EXTRUSION

CONTRIBUTION TO EXTRUDATE SWELL FROM THE VELOCITY FACTOR IN NON- ISOTHERMAL EXTRUSION Second International Conference on CFD in the Minerals and Process Industries CSIRO, Melbourne, Australia 6-8 December 1999 CONTRIBUTION TO EXTRUDATE SWELL FROM THE VELOCITY FACTOR IN NON- ISOTHERMAL EXTRUSION

More information

Active Control of Separated Cascade Flow

Active Control of Separated Cascade Flow Chapter 5 Active Control of Separated Cascade Flow In this chapter, the possibility of active control using a synthetic jet applied to an unconventional axial stator-rotor arrangement is investigated.

More information

Circular Bearing Performance Parameters with Isothermal and Thermo-Hydrodynamic Approach Using Computational Fluid Dynamics

Circular Bearing Performance Parameters with Isothermal and Thermo-Hydrodynamic Approach Using Computational Fluid Dynamics Circular Bearing Performance Parameters with Isothermal and Thermo-Hydrodynamic Approach Using Computational Fluid Dynamics Amit Chauhan 1 Department of Mechanical Engineering, University Institute of

More information

Problem 4.3. Problem 4.4

Problem 4.3. Problem 4.4 Problem 4.3 Problem 4.4 Problem 4.5 Problem 4.6 Problem 4.7 This is forced convection flow over a streamlined body. Viscous (velocity) boundary layer approximations can be made if the Reynolds number Re

More information

TURBULENT FLOW ACROSS A ROTATING CYLINDER WITH SURFACE ROUGHNESS

TURBULENT FLOW ACROSS A ROTATING CYLINDER WITH SURFACE ROUGHNESS HEFAT2014 10 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 14 16 July 2014 Orlando, Florida TURBULENT FLOW ACROSS A ROTATING CYLINDER WITH SURFACE ROUGHNESS Everts, M.,

More information

LES modeling of heat and mass transfer in turbulent recirculated flows E. Baake 1, B. Nacke 1, A. Umbrashko 2, A. Jakovics 2

LES modeling of heat and mass transfer in turbulent recirculated flows E. Baake 1, B. Nacke 1, A. Umbrashko 2, A. Jakovics 2 MAGNETOHYDRODYNAMICS Vol. 00 (1964), No. 00, pp. 1 5 LES modeling of heat and mass transfer in turbulent recirculated flows E. Baake 1, B. Nacke 1, A. Umbrashko 2, A. Jakovics 2 1 Institute for Electrothermal

More information

Laminar Forced Convection Heat Transfer from Two Heated Square Cylinders in a Bingham Plastic Fluid

Laminar Forced Convection Heat Transfer from Two Heated Square Cylinders in a Bingham Plastic Fluid Laminar Forced Convection Heat Transfer from Two Heated Square Cylinders in a Bingham Plastic Fluid E. Tejaswini 1*, B. Sreenivasulu 2, B. Srinivas 3 1,2,3 Gayatri Vidya Parishad College of Engineering

More information

Study on Taylor Vortex Formation in a Liquid Gap with Significant Bounary Effects

Study on Taylor Vortex Formation in a Liquid Gap with Significant Bounary Effects 186i Study on Taylor Vortex Formation in a Liquid Gap with Significant Bounary Effects Rensheng Deng 1, 2, Make Yechyn 3, Chi-Hwa Wang 2, 3 and Kenneth A. Smith 1, 2 1 Department of Chemical Engineering,

More information

Wall Effects in Convective Heat Transfer from a Sphere to Power Law Fluids in Tubes

Wall Effects in Convective Heat Transfer from a Sphere to Power Law Fluids in Tubes Excerpt from the Proceedings of the COMSOL Conference 9 Boston Wall Effects in Convective Heat Transfer from a Sphere to Power Law Fluids in Tubes Daoyun Song *1, Rakesh K. Gupta 1 and Rajendra P. Chhabra

More information

Numerical Prediction Of Torque On Guide Vanes In A Reversible Pump-Turbine

Numerical Prediction Of Torque On Guide Vanes In A Reversible Pump-Turbine Journal of Multidisciplinary Engineering Science and Technology (JMEST) ISSN: 3159 Vol. 2 Issue 6, June - 215 Numerical Prediction Of Torque On Guide Vanes In A Reversible Pump-Turbine Turbine and pump

More information

Numerical simulation of fluid flow in a monolithic exchanger related to high temperature and high pressure operating conditions

Numerical simulation of fluid flow in a monolithic exchanger related to high temperature and high pressure operating conditions Advanced Computational Methods in Heat Transfer X 25 Numerical simulation of fluid flow in a monolithic exchanger related to high temperature and high pressure operating conditions F. Selimovic & B. Sundén

More information

SYMMETRY BREAKING PHENOMENA OF PURELY VISCOUS SHEAR-THINNING FLUID FLOW IN A LOCALLY CONSTRICTED CHANNEL

SYMMETRY BREAKING PHENOMENA OF PURELY VISCOUS SHEAR-THINNING FLUID FLOW IN A LOCALLY CONSTRICTED CHANNEL ISSN 1726-4529 Int j simul model 7 (2008) 4, 186-197 Original scientific paper SYMMETRY BREAKING PHENOMENA OF PURELY VISCOUS SHEAR-THINNING FLUID FLOW IN A LOCALLY CONSTRICTED CHANNEL Ternik, P. University

More information

Statistical Analysis of the Effect of Small Fluctuations on Final Modes Found in Flows between Rotating Cylinders

Statistical Analysis of the Effect of Small Fluctuations on Final Modes Found in Flows between Rotating Cylinders Statistical Analysis of the Effect of Small Fluctuations on Final Modes Found in Flows between Rotating Cylinders Toshiki Morita 1, Takashi Watanabe 2 and Yorinobu Toya 3 1. Graduate School of Information

More information

Turbulent Boundary Layers & Turbulence Models. Lecture 09

Turbulent Boundary Layers & Turbulence Models. Lecture 09 Turbulent Boundary Layers & Turbulence Models Lecture 09 The turbulent boundary layer In turbulent flow, the boundary layer is defined as the thin region on the surface of a body in which viscous effects

More information

CFD modelling of lab-scale anaerobic digesters to determine experimental sampling locations

CFD modelling of lab-scale anaerobic digesters to determine experimental sampling locations CFD modelling of lab-scale anaerobic digesters to determine experimental sampling locations Rebecca Sindall 1, John Bridgeman 1 and Cynthia Carliell-Marquet 1 1 School of Civil Engineering, University

More information

Modeling of turbulence in stirred vessels using large eddy simulation

Modeling of turbulence in stirred vessels using large eddy simulation Modeling of turbulence in stirred vessels using large eddy simulation André Bakker (presenter), Kumar Dhanasekharan, Ahmad Haidari, and Sung-Eun Kim Fluent Inc. Presented at CHISA 2002 August 25-29, Prague,

More information

Thermo-Hydraulic performance of Internal finned tube Automobile Radiator

Thermo-Hydraulic performance of Internal finned tube Automobile Radiator Thermo-Hydraulic performance of Internal finned tube Automobile Radiator Dr.Kailash Mohapatra 1, Deepiarani Swain 2 1 Department of Mechanical Engineering, Raajdhani Engineering College, Bhubaneswar, 751017,

More information

RAREFACTION EFFECT ON FLUID FLOW THROUGH MICROCHANNEL

RAREFACTION EFFECT ON FLUID FLOW THROUGH MICROCHANNEL ISSN (Online) : 2319-8753 ISSN (Print) : 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology An ISO 3297: 2007 Certified Organization, Volume 2, Special Issue

More information

HEAT TRANSFER ENHANCEMENT WITH ELLIPTICAL TUBE UNDER TURBULENT FLOW TiO 2 -WATER NANOFLUID

HEAT TRANSFER ENHANCEMENT WITH ELLIPTICAL TUBE UNDER TURBULENT FLOW TiO 2 -WATER NANOFLUID THERMAL SCIENCE: Year 2016, Vol. 20, No. 1, pp. 89-97 89 HEAT TRANSFER ENHANCEMENT WITH ELLIPTICAL TUBE UNDER TURBULENT FLOW TiO 2 -WATER NANOFLUID by Adnan M. HUSSEIN a*, Rosli Abu BAKAR b, Kumaran KADIRGAMA

More information

FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER

FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER ANKARA UNIVERSITY FACULTY OF AGRICULTURE DEPARTMENT OF AGRICULTURAL MACHINERY AND TECHNOLOGIES ENGINEERING 1 5. FLOW IN PIPES 5.1.3. Pressure and Shear Stress

More information

Experimental and Theoretical Investigation of Hydrodynamics Characteristics and Heat Transfer for Newtonian and Non-newtonian Fluids

Experimental and Theoretical Investigation of Hydrodynamics Characteristics and Heat Transfer for Newtonian and Non-newtonian Fluids International Journal of Energy Science and Engineering Vol. 2, No. 3, 2016, pp. 13-22 http://www.aiscience.org/journal/ijese ISSN: 2381-7267 (Print); ISSN: 2381-7275 (Online) Experimental and Theoretical

More information

Universal Viscosity Curve Theory

Universal Viscosity Curve Theory TM Universal Viscosity Curve Theory Turbine Flow Meters and Flow Viscosity Introduction Like any transducer, a turbine flow meter is sensitive to physical parameters other than the one which is of interest.

More information

Numerical solutions of 2-D incompressible driven cavity flow with wavy bottom surface

Numerical solutions of 2-D incompressible driven cavity flow with wavy bottom surface American Journal of Applied Mathematics 015; (1-1): 0-4 Published online December 5, 014 (http://www.sciencepublishinggroup.com/j/ajam) doi: 10.11648/j.ajam.s.01500101.14 ISSN: 0-004 (Print); ISSN: 0-006X

More information

Fluid Dynamic Simulations of Wind Turbines. John Abraham, Brian Plourde, Greg Mowry University of St. Thomas

Fluid Dynamic Simulations of Wind Turbines. John Abraham, Brian Plourde, Greg Mowry University of St. Thomas Fluid Dynamic Simulations of Wind Turbines John Abraham, Brian Plourde, Greg Mowry University of St. Thomas 1 Presentation Overview Why vertical-axis turbines? How are they modeled? How much energy can

More information

Rheometry. II.1 Introduction

Rheometry. II.1 Introduction II Rheometry II.1 Introduction Structured materials are generally composed of microstructures dispersed in a homogeneous phase [30]. These materials usually have a yield stress, i.e. a threshold stress

More information

Simplified Model of WWER-440 Fuel Assembly for ThermoHydraulic Analysis

Simplified Model of WWER-440 Fuel Assembly for ThermoHydraulic Analysis 1 Portál pre odborné publikovanie ISSN 1338-0087 Simplified Model of WWER-440 Fuel Assembly for ThermoHydraulic Analysis Jakubec Jakub Elektrotechnika 13.02.2013 This work deals with thermo-hydraulic processes

More information

TOPICAL PROBLEMS OF FLUID MECHANICS 195 STABILTY OF A CONDUCTING FLUID CONTAINED BETWEEN TWO ROTATING SPHERES SUBJECTED TO A DIPOLAR MAGNETIC FIELD

TOPICAL PROBLEMS OF FLUID MECHANICS 195 STABILTY OF A CONDUCTING FLUID CONTAINED BETWEEN TWO ROTATING SPHERES SUBJECTED TO A DIPOLAR MAGNETIC FIELD TOPICAL PROBLEMS OF FLUID MECHANICS 95 DOI: https://doi.org/0.43/tpfm.207.025 STABILTY OF A CONDUCTING FLUID CONTAINED BETWEEN TWO ROTATING SPHERES SUBJECTED TO A DIPOLAR MAGNETIC FIELD A. Lalaoua,2, F.

More information

Self-Excited Vibration in Hydraulic Ball Check Valve

Self-Excited Vibration in Hydraulic Ball Check Valve Self-Excited Vibration in Hydraulic Ball Check Valve L. Grinis, V. Haslavsky, U. Tzadka Abstract This paper describes an experimental, theoretical model and numerical study of concentrated vortex flow

More information

Flow of Newtonian and non-newtonian fluids in a concentric annulus with a rotating inner cylinder

Flow of Newtonian and non-newtonian fluids in a concentric annulus with a rotating inner cylinder Korea-Australia Rheology Journal, 25(2), 77-85 (May 2013) DOI: 10.1007/s13367-013-0008-7 www.springer.com/13367 Flow of Newtonian and non-newtonian fluids in a concentric annulus with a rotating inner

More information

The influence of disc friction losses and labyrinth losses on efficiency of high head Francis turbine

The influence of disc friction losses and labyrinth losses on efficiency of high head Francis turbine Journal of Physics: Conference Series OPEN ACCESS The influence of disc friction losses and labyrinth losses on efficiency of high head Francis turbine To cite this article: D eli and H Ondráka 2015 J.

More information

Vertical Mantle Heat Exchangers for Solar Water Heaters

Vertical Mantle Heat Exchangers for Solar Water Heaters for Solar Water Heaters Y.C., G.L. Morrison and M. Behnia School of Mechanical and Manufacturing Engineering The University of New South Wales Sydney 2052 AUSTRALIA E-mail: yens@student.unsw.edu.au Abstract

More information

ENERGY PERFORMANCE IMPROVEMENT, FLOW BEHAVIOR AND HEAT TRANSFER INVESTIGATION IN A CIRCULAR TUBE WITH V-DOWNSTREAM DISCRETE BAFFLES

ENERGY PERFORMANCE IMPROVEMENT, FLOW BEHAVIOR AND HEAT TRANSFER INVESTIGATION IN A CIRCULAR TUBE WITH V-DOWNSTREAM DISCRETE BAFFLES Journal of Mathematics and Statistics 9 (4): 339-348, 2013 ISSN: 1549-3644 2013 doi:10.3844/jmssp.2013.339.348 Published Online 9 (4) 2013 (http://www.thescipub.com/jmss.toc) ENERGY PERFORMANCE IMPROVEMENT,

More information