Strong Bisimulation. Overview. References. Actions Labeled transition system Transition semantics Simulation Bisimulation

Size: px
Start display at page:

Download "Strong Bisimulation. Overview. References. Actions Labeled transition system Transition semantics Simulation Bisimulation"

Transcription

1 Strong Bisimultion Overview Actions Lbeled trnsition system Trnsition semntics Simultion Bisimultion References Robin Milner, Communiction nd Concurrency Robin Milner, Communicting nd Mobil Systems 32

2 Actions nd Sttes Actions: We presuppose n infinite set N of nmes; we use, b, to rnge over N. Then we introduce the set N = { N }, which we cll co-nmes. We ssume tht N nd Nre disjoint, nd we denote their union N N, by L, the set of lbels (the kind of lbels, which identifies the buttons on our blck boxes). For the moment, the set L nd Σ coincide. Conceptul chnges: Wht mtters bout string s - sequence of ctions - is not whether it drives the utomton into n ccepting stte (since we cnnot detect this by interction) but whether the utomton is ble to perform the sequence of s interctively. A lbeled trnsition system cn be thought of s n utomton without strt or ccepting sttes. Any stte cn be considered s the strt. 33

3 Generl Automton,b,c b,c q3,b q0 q2 c b q1 c 34

4 Lbeled Trnsition System A lbeled trnsition system over ctions Σ is pir (Q, T ) consisting of: set Q = {q 0, q 1, } of sttes, ternry reltion T (Q Σ Q), known s trnsition reltion. If (q,, q ) T we write q q', nd we cll q the source nd q the trget of the trnsition. Alterntive definition: (S, T, { t : t T } ) S is set of sttes T is set of trnsition lbels t S S is trnsition reltion for ech t T. 35

5 LTS nd Automton An LTS cn be though of s n utomton without strt or ccepting sttes. By omitting the strt stte, we gin the freedom to consider ny stte s the strt. Ech selection of strt defines different utomton, but is bsed upon the sme LTS. 36

6 Strong Simultion - Ide In 1981 D. Prk proposed new pproch to define the equivlence of utomtons - bisimultion. Given lbeled trnsition system there exists stndrd definition of bisimultion equivlence tht cn be pplied to this lbeled trnsition system. The definition of bisimultion is given in coinductive style tht is, two systems re bisimulr if we cnnot show tht they re not. Informlly, to sy system S1 simultes system S2 mens tht S1 s observble behvior is t lest s rich s tht of S2. 37

7 Strong Simultion - Definition Let (Q, T ) be n lbeled trnsition system, nd let S be binry reltion over Q. Then S is clled strong simultion over (Q, T ) if, whenever p S q, If p α p' then there exists q Q such tht q α q' nd p S q. We sy tht q strongly simultes p if there exists strong simultion S such tht p S q. 38

8 Strong Simultion - Exmple S1: q0 S2: 25ct 25ct q1 p1 25ct te te q2 q4 p2 coffee q3 Clim: The sttes q0 nd p0 re different. Therefore, the systems S1 nd S2 should not be considered equivlent. p0 25ct p3 25ct p4 coffee p5 39

9 Defining S If we define S = {(p0, q0), (p1, q1), (p3, q1), (p2, q4), (p4, q2), (p5, q3)} then S is strong simultion; hence S1 strongly simultes S2. To verify this, for every pir (p, q) S we hve to consider ech trnsition of p, nd show tht it is properly mtched by some trnsition of q. However, there exists no strong simultion R tht contins the pir (q1, p1), becuse one of q1 s trnsition could never be mtched by p1. Therefore, the sttes q0 nd p0 re different, nd the systems S1 nd S2 re not considered to be equivlent. 40

10 Strong Bisimultion The converse R -1 of ny binry reltion R is the set of pirs (y, x) such tht (x, y) R. Let (Q, T ) be n lbeled trnsition system, nd let S be binry reltion over Q. Then S is clled strong bisimultion over (Q, T ) if both S nd its converse S -1 re strong simultions. We sy tht tht the sttes p nd q re strongly bisimulr or strongly equivlent, written p ~ q, if there exists strong bisimultion S such tht p S q. 41

11 Digrms The condition for S to be strong bisimultion cn be expressed in digrms: if p S q then for some q, q p p S q Thus q strongly simultes p, or p is strongly simulted by q, mens tht whtever trnsition pth p tkes, q cn mtch it by pth, which retins ll of p s options. 42

12 Bisimultion - Bord Gme Checking the equivlence of interctive systems cn be considered bord gme between two persons, the unbeliever, who thinks tht S1 nd S2 re not equivlent, nd the believer, who thinks tht S1 nd S2 re equivlent. The underlying strtegy of this gme is tht the (demonic) unbeliever is trying to perform trnsitions, which the cnnot be mtched by the (ngelic) believer. The unbeliever loses if there re no trnsitions left for either systems, wheres the believer loses, if he cnnot mtch move mde by the unbeliever. 43

13 Working With Simultions Wht do we do with (bi)simultions? Exhibiting (bi)simultion: guessing reltion S tht contins (p,q) Checking (bi)simultion: checking tht given reltion S is in fct (bi)simultion There exist lgorithms nd tools (e.g. CWB) tht cn generte reltions tht by construction stisfy the property of being (bi)simultion. Results on (semi-)decidbility re very importnt for such tools. 44

14 Checking Bisimultion S1: p1 b p2 S1 ~ S2? To construct S strt with (p0, q0) nd check whether S2 cn mtch ll trnsitions of S1: S = { (p0, q0), (p1, q1), (p3, q1), (p2, q2), (p4, q3) } p0 p3 c p4 System S2 cn simulte system S1. Now check, whether S -1 is simultion or not: S -1 = { (q0, p0), (q1, p1), (q1, p3), (q2, p2), (q3, p4) } q0 S2: q1 b c q2 q3 Strt with (q0, p0) S -1. 1: q0 hs one trnsition tht cn be mtched by two trnsitions of S1 (trget p1 nd p3, respectively) nd we hve (q1, p1) S -1 nd (q1, p3) S -1. 2: q1 hs two trnsitions b nd c, which, however, cnnot be ppropritely mtched by the relted sttes p1 nd p3 of system S1 (p1 hs only b trnsition whilst p3 hs only c trnsition). We hve, therefore, S1 ~ / S2. 45

15 Linking Sttes b p0 b p1 p2 q0 q2 b q1 S = {(p0,q0), (p0,q2), (p1,q1), (p2,q1)} 46

16 ~ is n Equivlence Reltion p ~ p p ~ q implies q ~ p p ~ q nd q ~ r imply p ~ r 47

17 Reflexivity Let Q be process nd Id Q = {(p,p) p Q}. For reflexivity, it is enough to show tht Id Q is bisimultion. Proof: Suppose Id Q = {(p,p) p Q}. We hve to show tht for ll (p,p) Id Q, if p p' α, then there exists q such tht p α q' nd (p,q ) Id Q. Now, let p Id Q p, if p p' α, then we hve to find stte q Q such tht p q' α nd p Id Q q. By ssumption, p Q, we tke q = p, hence p α p', nd by definition of Id Q, we hve p Id Q p, s required. Finlly, since Id Q = Id Q -1, Id Q is bisimultion. q.e.d. 48

18 Symmetry For symmetry, we hve to show tht if S is bisimultion then so is its converse S -1. However, this is obvious from the definition of bisimultion. 49

19 Trnsitivity S 1 S 2 = {(p, r) q exists with (p, q) S 1 nd (q, r) S 2 } Proof: Let (p, r) S 1 S 2. Then there exists q with (p, q) S 1 nd (q, r) S 2. ( ) If p α p', then since (p, q) S 1 there exists q nd q α q' nd (p, q ) S 1. Furthermore, since (q, r) S 2 there exists r with r α r' nd (q, r ) S 2. Due to the definition of S 1 S 2 it holds tht (p, r ) S 1 S 2 s required. ( ) similr to ( ). 50

20 Fct ~ is the lrgest strong bisimultion, tht is, ~ is strong bisimultion nd includes ny other such. Assume tht ech S i (i=1,2, ) is strong bisimultion. Then U S is strong bisimultion. i I i Let ech S i (i=1,2, ) be strong bisimultion. We hve to show tht U S is strong bisimultion. i I i Let (p,q) U S i I i. If p α p', then since (p,q) S i, 1 i n, there exists q S i with q α q' nd (p,q ) S i nd (p,q ) U S. By symmetry, the converse holds s well. i I i 51

21 Bisimultion - Summry Bisimultion is n equivlence reltion defined over lbeled trnsition system, which respects non-determinism. The bisimultion technique cn be used to compre the observble behvior of intercting systems. Note: Strong bisimultion does not cover unobservble behvior, which is present in systems tht hve opertors to define rection (tht is, internl ctions). 52

Summer School Verification Technology, Systems & Applications

Summer School Verification Technology, Systems & Applications VTSA 2011 Summer School Verifiction Technology, Systems & Applictions 4th edition since 2008: Liège (Belgium), Sep. 19 23, 2011 free prticiption, limited number of prticipnts ppliction dedline: July 22,

More information

Exercises with (Some) Solutions

Exercises with (Some) Solutions Exercises with (Some) Solutions Techer: Luc Tesei Mster of Science in Computer Science - University of Cmerino Contents 1 Strong Bisimultion nd HML 2 2 Wek Bisimultion 31 3 Complete Lttices nd Fix Points

More information

Designing finite automata II

Designing finite automata II Designing finite utomt II Prolem: Design DFA A such tht L(A) consists of ll strings of nd which re of length 3n, for n = 0, 1, 2, (1) Determine wht to rememer out the input string Assign stte to ech of

More information

Minimal DFA. minimal DFA for L starting from any other

Minimal DFA. minimal DFA for L starting from any other Miniml DFA Among the mny DFAs ccepting the sme regulr lnguge L, there is exctly one (up to renming of sttes) which hs the smllest possile numer of sttes. Moreover, it is possile to otin tht miniml DFA

More information

Theory of Computation Regular Languages. (NTU EE) Regular Languages Fall / 38

Theory of Computation Regular Languages. (NTU EE) Regular Languages Fall / 38 Theory of Computtion Regulr Lnguges (NTU EE) Regulr Lnguges Fll 2017 1 / 38 Schemtic of Finite Automt control 0 0 1 0 1 1 1 0 Figure: Schemtic of Finite Automt A finite utomton hs finite set of control

More information

Convert the NFA into DFA

Convert the NFA into DFA Convert the NF into F For ech NF we cn find F ccepting the sme lnguge. The numer of sttes of the F could e exponentil in the numer of sttes of the NF, ut in prctice this worst cse occurs rrely. lgorithm:

More information

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2018

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2018 Finite Automt Theory nd Forml Lnguges TMV027/DIT321 LP4 2018 Lecture 10 An Bove April 23rd 2018 Recp: Regulr Lnguges We cn convert between FA nd RE; Hence both FA nd RE ccept/generte regulr lnguges; More

More information

Theory of Computation Regular Languages

Theory of Computation Regular Languages Theory of Computtion Regulr Lnguges Bow-Yw Wng Acdemi Sinic Spring 2012 Bow-Yw Wng (Acdemi Sinic) Regulr Lnguges Spring 2012 1 / 38 Schemtic of Finite Automt control 0 0 1 0 1 1 1 0 Figure: Schemtic of

More information

Non-Deterministic Finite Automata. Fall 2018 Costas Busch - RPI 1

Non-Deterministic Finite Automata. Fall 2018 Costas Busch - RPI 1 Non-Deterministic Finite Automt Fll 2018 Costs Busch - RPI 1 Nondeterministic Finite Automton (NFA) Alphbet ={} q q2 1 q 0 q 3 Fll 2018 Costs Busch - RPI 2 Nondeterministic Finite Automton (NFA) Alphbet

More information

CMPSCI 250: Introduction to Computation. Lecture #31: What DFA s Can and Can t Do David Mix Barrington 9 April 2014

CMPSCI 250: Introduction to Computation. Lecture #31: What DFA s Can and Can t Do David Mix Barrington 9 April 2014 CMPSCI 250: Introduction to Computtion Lecture #31: Wht DFA s Cn nd Cn t Do Dvid Mix Brrington 9 April 2014 Wht DFA s Cn nd Cn t Do Deterministic Finite Automt Forml Definition of DFA s Exmples of DFA

More information

a,b a 1 a 2 a 3 a,b 1 a,b a,b 2 3 a,b a,b a 2 a,b CS Determinisitic Finite Automata 1

a,b a 1 a 2 a 3 a,b 1 a,b a,b 2 3 a,b a,b a 2 a,b CS Determinisitic Finite Automata 1 CS4 45- Determinisitic Finite Automt -: Genertors vs. Checkers Regulr expressions re one wy to specify forml lnguge String Genertor Genertes strings in the lnguge Deterministic Finite Automt (DFA) re nother

More information

1 Nondeterministic Finite Automata

1 Nondeterministic Finite Automata 1 Nondeterministic Finite Automt Suppose in life, whenever you hd choice, you could try oth possiilities nd live your life. At the end, you would go ck nd choose the one tht worked out the est. Then you

More information

Bisimulation. R.J. van Glabbeek

Bisimulation. R.J. van Glabbeek Bisimultion R.J. vn Glbbeek NICTA, Sydney, Austrli. School of Computer Science nd Engineering, The University of New South Wles, Sydney, Austrli. Computer Science Deprtment, Stnford University, CA 94305-9045,

More information

Handout: Natural deduction for first order logic

Handout: Natural deduction for first order logic MATH 457 Introduction to Mthemticl Logic Spring 2016 Dr Json Rute Hndout: Nturl deduction for first order logic We will extend our nturl deduction rules for sententil logic to first order logic These notes

More information

Bisimulation, Games & Hennessy Milner logic

Bisimulation, Games & Hennessy Milner logic Bisimultion, Gmes & Hennessy Milner logi Leture 1 of Modelli Mtemtii dei Proessi Conorrenti Pweł Soboiński Univeristy of Southmpton, UK Bisimultion, Gmes & Hennessy Milner logi p.1/32 Clssil lnguge theory

More information

Java II Finite Automata I

Java II Finite Automata I Jv II Finite Automt I Bernd Kiefer Bernd.Kiefer@dfki.de Deutsches Forschungszentrum für künstliche Intelligenz Finite Automt I p.1/13 Processing Regulr Expressions We lredy lerned out Jv s regulr expression

More information

Finite Automata. Informatics 2A: Lecture 3. John Longley. 22 September School of Informatics University of Edinburgh

Finite Automata. Informatics 2A: Lecture 3. John Longley. 22 September School of Informatics University of Edinburgh Lnguges nd Automt Finite Automt Informtics 2A: Lecture 3 John Longley School of Informtics University of Edinburgh jrl@inf.ed.c.uk 22 September 2017 1 / 30 Lnguges nd Automt 1 Lnguges nd Automt Wht is

More information

Worked out examples Finite Automata

Worked out examples Finite Automata Worked out exmples Finite Automt Exmple Design Finite Stte Automton which reds inry string nd ccepts only those tht end with. Since we re in the topic of Non Deterministic Finite Automt (NFA), we will

More information

Chapter Five: Nondeterministic Finite Automata. Formal Language, chapter 5, slide 1

Chapter Five: Nondeterministic Finite Automata. Formal Language, chapter 5, slide 1 Chpter Five: Nondeterministic Finite Automt Forml Lnguge, chpter 5, slide 1 1 A DFA hs exctly one trnsition from every stte on every symol in the lphet. By relxing this requirement we get relted ut more

More information

Hennessy-Milner Logic 1.

Hennessy-Milner Logic 1. Hennessy-Milner Logic 1. Colloquium in honor of Robin Milner. Crlos Olrte. Pontifici Universidd Jverin 28 April 2010. 1 Bsed on the tlks: [1,2,3] Prof. Robin Milner (R.I.P). LIX, Ecole Polytechnique. Motivtion

More information

Coalgebra, Lecture 15: Equations for Deterministic Automata

Coalgebra, Lecture 15: Equations for Deterministic Automata Colger, Lecture 15: Equtions for Deterministic Automt Julin Slmnc (nd Jurrin Rot) Decemer 19, 2016 In this lecture, we will study the concept of equtions for deterministic utomt. The notes re self contined

More information

Nondeterminism. Nondeterministic Finite Automata. Example: Moves on a Chessboard. Nondeterminism (2) Example: Chessboard (2) Formal NFA

Nondeterminism. Nondeterministic Finite Automata. Example: Moves on a Chessboard. Nondeterminism (2) Example: Chessboard (2) Formal NFA Nondeterminism Nondeterministic Finite Automt Nondeterminism Subset Construction A nondeterministic finite utomton hs the bility to be in severl sttes t once. Trnsitions from stte on n input symbol cn

More information

f(x) dx, If one of these two conditions is not met, we call the integral improper. Our usual definition for the value for the definite integral

f(x) dx, If one of these two conditions is not met, we call the integral improper. Our usual definition for the value for the definite integral Improper Integrls Every time tht we hve evluted definite integrl such s f(x) dx, we hve mde two implicit ssumptions bout the integrl:. The intervl [, b] is finite, nd. f(x) is continuous on [, b]. If one

More information

First Midterm Examination

First Midterm Examination Çnky University Deprtment of Computer Engineering 203-204 Fll Semester First Midterm Exmintion ) Design DFA for ll strings over the lphet Σ = {,, c} in which there is no, no nd no cc. 2) Wht lnguge does

More information

1. For each of the following theorems, give a two or three sentence sketch of how the proof goes or why it is not true.

1. For each of the following theorems, give a two or three sentence sketch of how the proof goes or why it is not true. York University CSE 2 Unit 3. DFA Clsses Converting etween DFA, NFA, Regulr Expressions, nd Extended Regulr Expressions Instructor: Jeff Edmonds Don t chet y looking t these nswers premturely.. For ech

More information

Good-for-Games Automata versus Deterministic Automata.

Good-for-Games Automata versus Deterministic Automata. Good-for-Gmes Automt versus Deterministic Automt. Denis Kuperberg 1,2 Mich l Skrzypczk 1 1 University of Wrsw 2 IRIT/ONERA (Toulouse) Séminire MoVe 12/02/2015 LIF, Luminy Introduction Deterministic utomt

More information

Let's start with an example:

Let's start with an example: Finite Automt Let's strt with n exmple: Here you see leled circles tht re sttes, nd leled rrows tht re trnsitions. One of the sttes is mrked "strt". One of the sttes hs doule circle; this is terminl stte

More information

CS 267: Automated Verification. Lecture 8: Automata Theoretic Model Checking. Instructor: Tevfik Bultan

CS 267: Automated Verification. Lecture 8: Automata Theoretic Model Checking. Instructor: Tevfik Bultan CS 267: Automted Verifiction Lecture 8: Automt Theoretic Model Checking Instructor: Tevfik Bultn LTL Properties Büchi utomt [Vrdi nd Wolper LICS 86] Büchi utomt: Finite stte utomt tht ccept infinite strings

More information

Finite Automata-cont d

Finite Automata-cont d Automt Theory nd Forml Lnguges Professor Leslie Lnder Lecture # 6 Finite Automt-cont d The Pumping Lemm WEB SITE: http://ingwe.inghmton.edu/ ~lnder/cs573.html Septemer 18, 2000 Exmple 1 Consider L = {ww

More information

Improper Integrals. Type I Improper Integrals How do we evaluate an integral such as

Improper Integrals. Type I Improper Integrals How do we evaluate an integral such as Improper Integrls Two different types of integrls cn qulify s improper. The first type of improper integrl (which we will refer to s Type I) involves evluting n integrl over n infinite region. In the grph

More information

Intermediate Math Circles Wednesday, November 14, 2018 Finite Automata II. Nickolas Rollick a b b. a b 4

Intermediate Math Circles Wednesday, November 14, 2018 Finite Automata II. Nickolas Rollick a b b. a b 4 Intermedite Mth Circles Wednesdy, Novemer 14, 2018 Finite Automt II Nickols Rollick nrollick@uwterloo.c Regulr Lnguges Lst time, we were introduced to the ide of DFA (deterministic finite utomton), one

More information

Graph Theory. Dr. Saad El-Zanati, Faculty Mentor Ryan Bunge Graduate Assistant Illinois State University REU. Graph Theory

Graph Theory. Dr. Saad El-Zanati, Faculty Mentor Ryan Bunge Graduate Assistant Illinois State University REU. Graph Theory Grph Theory Gibson, Ngel, Stnley, Zle Specil Types of Bckground Motivtion Grph Theory Dniel Gibson, Concordi University Jckelyn Ngel, Dominicn University Benjmin Stnley, New Mexico Stte University Allison

More information

NFAs and Regular Expressions. NFA-ε, continued. Recall. Last class: Today: Fun:

NFAs and Regular Expressions. NFA-ε, continued. Recall. Last class: Today: Fun: CMPU 240 Lnguge Theory nd Computtion Spring 2019 NFAs nd Regulr Expressions Lst clss: Introduced nondeterministic finite utomt with -trnsitions Tody: Prove n NFA- is no more powerful thn n NFA Introduce

More information

Anatomy of a Deterministic Finite Automaton. Deterministic Finite Automata. A machine so simple that you can understand it in less than one minute

Anatomy of a Deterministic Finite Automaton. Deterministic Finite Automata. A machine so simple that you can understand it in less than one minute Victor Admchik Dnny Sletor Gret Theoreticl Ides In Computer Science CS 5-25 Spring 2 Lecture 2 Mr 3, 2 Crnegie Mellon University Deterministic Finite Automt Finite Automt A mchine so simple tht you cn

More information

Chapter 14. Matrix Representations of Linear Transformations

Chapter 14. Matrix Representations of Linear Transformations Chpter 4 Mtrix Representtions of Liner Trnsformtions When considering the Het Stte Evolution, we found tht we could describe this process using multipliction by mtrix. This ws nice becuse computers cn

More information

Automata and Languages

Automata and Languages Automt nd Lnguges Prof. Mohmed Hmd Softwre Engineering Lb. The University of Aizu Jpn Grmmr Regulr Grmmr Context-free Grmmr Context-sensitive Grmmr Regulr Lnguges Context Free Lnguges Context Sensitive

More information

CSC 473 Automata, Grammars & Languages 11/9/10

CSC 473 Automata, Grammars & Languages 11/9/10 CSC 473 utomt, Grmmrs & Lnguges 11/9/10 utomt, Grmmrs nd Lnguges Discourse 06 Decidbility nd Undecidbility Decidble Problems for Regulr Lnguges Theorem 4.1: (embership/cceptnce Prob. for DFs) = {, w is

More information

1.4 Nonregular Languages

1.4 Nonregular Languages 74 1.4 Nonregulr Lnguges The number of forml lnguges over ny lphbet (= decision/recognition problems) is uncountble On the other hnd, the number of regulr expressions (= strings) is countble Hence, ll

More information

Grammar. Languages. Content 5/10/16. Automata and Languages. Regular Languages. Regular Languages

Grammar. Languages. Content 5/10/16. Automata and Languages. Regular Languages. Regular Languages 5//6 Grmmr Automt nd Lnguges Regulr Grmmr Context-free Grmmr Context-sensitive Grmmr Prof. Mohmed Hmd Softwre Engineering L. The University of Aizu Jpn Regulr Lnguges Context Free Lnguges Context Sensitive

More information

CS375: Logic and Theory of Computing

CS375: Logic and Theory of Computing CS375: Logic nd Theory of Computing Fuhu (Frnk) Cheng Deprtment of Computer Science University of Kentucky 1 Tble of Contents: Week 1: Preliminries (set lgebr, reltions, functions) (red Chpters 1-4) Weeks

More information

CSCI FOUNDATIONS OF COMPUTER SCIENCE

CSCI FOUNDATIONS OF COMPUTER SCIENCE 1 CSCI- 2200 FOUNDATIONS OF COMPUTER SCIENCE Spring 2015 My 7, 2015 2 Announcements Homework 9 is due now. Some finl exm review problems will be posted on the web site tody. These re prcqce problems not

More information

AUTOMATA AND LANGUAGES. Definition 1.5: Finite Automaton

AUTOMATA AND LANGUAGES. Definition 1.5: Finite Automaton 25. Finite Automt AUTOMATA AND LANGUAGES A system of computtion tht only hs finite numer of possile sttes cn e modeled using finite utomton A finite utomton is often illustrted s stte digrm d d d. d q

More information

Finite Automata Part Three

Finite Automata Part Three Finite Automt Prt Three Hello Hello Wonderful Wonderful Condensed Condensed Slide Slide Reders! Reders! The The first first hlf hlf of of this this lecture lecture consists consists lmost lmost exclusively

More information

This lecture covers Chapter 8 of HMU: Properties of CFLs

This lecture covers Chapter 8 of HMU: Properties of CFLs This lecture covers Chpter 8 of HMU: Properties of CFLs Turing Mchine Extensions of Turing Mchines Restrictions of Turing Mchines Additionl Reding: Chpter 8 of HMU. Turing Mchine: Informl Definition B

More information

Lecture 08: Feb. 08, 2019

Lecture 08: Feb. 08, 2019 4CS4-6:Theory of Computtion(Closure on Reg. Lngs., regex to NDFA, DFA to regex) Prof. K.R. Chowdhry Lecture 08: Fe. 08, 2019 : Professor of CS Disclimer: These notes hve not een sujected to the usul scrutiny

More information

CS5371 Theory of Computation. Lecture 20: Complexity V (Polynomial-Time Reducibility)

CS5371 Theory of Computation. Lecture 20: Complexity V (Polynomial-Time Reducibility) CS5371 Theory of Computtion Lecture 20: Complexity V (Polynomil-Time Reducibility) Objectives Polynomil Time Reducibility Prove Cook-Levin Theorem Polynomil Time Reducibility Previously, we lernt tht if

More information

CS 301. Lecture 04 Regular Expressions. Stephen Checkoway. January 29, 2018

CS 301. Lecture 04 Regular Expressions. Stephen Checkoway. January 29, 2018 CS 301 Lecture 04 Regulr Expressions Stephen Checkowy Jnury 29, 2018 1 / 35 Review from lst time NFA N = (Q, Σ, δ, q 0, F ) where δ Q Σ P (Q) mps stte nd n lphet symol (or ) to set of sttes We run n NFA

More information

CISC 4090 Theory of Computation

CISC 4090 Theory of Computation 9/6/28 Stereotypicl computer CISC 49 Theory of Computtion Finite stte mchines & Regulr lnguges Professor Dniel Leeds dleeds@fordhm.edu JMH 332 Centrl processing unit (CPU) performs ll the instructions

More information

CS:4330 Theory of Computation Spring Regular Languages. Equivalences between Finite automata and REs. Haniel Barbosa

CS:4330 Theory of Computation Spring Regular Languages. Equivalences between Finite automata and REs. Haniel Barbosa CS:4330 Theory of Computtion Spring 208 Regulr Lnguges Equivlences between Finite utomt nd REs Hniel Brbos Redings for this lecture Chpter of [Sipser 996], 3rd edition. Section.3. Finite utomt nd regulr

More information

20 MATHEMATICS POLYNOMIALS

20 MATHEMATICS POLYNOMIALS 0 MATHEMATICS POLYNOMIALS.1 Introduction In Clss IX, you hve studied polynomils in one vrible nd their degrees. Recll tht if p(x) is polynomil in x, the highest power of x in p(x) is clled the degree of

More information

Infinite Geometric Series

Infinite Geometric Series Infinite Geometric Series Finite Geometric Series ( finite SUM) Let 0 < r < 1, nd let n be positive integer. Consider the finite sum It turns out there is simple lgebric expression tht is equivlent to

More information

More on automata. Michael George. March 24 April 7, 2014

More on automata. Michael George. March 24 April 7, 2014 More on utomt Michel George Mrch 24 April 7, 2014 1 Automt constructions Now tht we hve forml model of mchine, it is useful to mke some generl constructions. 1.1 DFA Union / Product construction Suppose

More information

Formal Languages and Automata

Formal Languages and Automata Moile Computing nd Softwre Engineering p. 1/5 Forml Lnguges nd Automt Chpter 2 Finite Automt Chun-Ming Liu cmliu@csie.ntut.edu.tw Deprtment of Computer Science nd Informtion Engineering Ntionl Tipei University

More information

On Determinisation of History-Deterministic Automata.

On Determinisation of History-Deterministic Automata. On Deterministion of History-Deterministic Automt. Denis Kupererg Mich l Skrzypczk University of Wrsw YR-ICALP 2014 Copenhgen Introduction Deterministic utomt re centrl tool in utomt theory: Polynomil

More information

Non Deterministic Automata. Linz: Nondeterministic Finite Accepters, page 51

Non Deterministic Automata. Linz: Nondeterministic Finite Accepters, page 51 Non Deterministic Automt Linz: Nondeterministic Finite Accepters, pge 51 1 Nondeterministic Finite Accepter (NFA) Alphbet ={} q 1 q2 q 0 q 3 2 Nondeterministic Finite Accepter (NFA) Alphbet ={} Two choices

More information

Recursively Enumerable and Recursive. Languages

Recursively Enumerable and Recursive. Languages Recursively Enumerble nd Recursive nguges 1 Recll Definition (clss 19.pdf) Definition 10.4, inz, 6 th, pge 279 et S be set of strings. An enumertion procedure for Turing Mchine tht genertes ll strings

More information

Riemann Sums and Riemann Integrals

Riemann Sums and Riemann Integrals Riemnn Sums nd Riemnn Integrls Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University August 26, 2013 Outline 1 Riemnn Sums 2 Riemnn Integrls 3 Properties

More information

Improper Integrals, and Differential Equations

Improper Integrals, and Differential Equations Improper Integrls, nd Differentil Equtions October 22, 204 5.3 Improper Integrls Previously, we discussed how integrls correspond to res. More specificlly, we sid tht for function f(x), the region creted

More information

Closure Properties of Regular Languages

Closure Properties of Regular Languages Closure Properties of Regulr Lnguges Regulr lnguges re closed under mny set opertions. Let L 1 nd L 2 e regulr lnguges. (1) L 1 L 2 (the union) is regulr. (2) L 1 L 2 (the conctention) is regulr. (3) L

More information

Semantic reachability for simple process algebras. Richard Mayr. Abstract

Semantic reachability for simple process algebras. Richard Mayr. Abstract Semntic rechbility for simple process lgebrs Richrd Myr Abstrct This pper is n pproch to combine the rechbility problem with semntic notions like bisimultion equivlence. It dels with questions of the following

More information

Chapter 2 Finite Automata

Chapter 2 Finite Automata Chpter 2 Finite Automt 28 2.1 Introduction Finite utomt: first model of the notion of effective procedure. (They lso hve mny other pplictions). The concept of finite utomton cn e derived y exmining wht

More information

Riemann Sums and Riemann Integrals

Riemann Sums and Riemann Integrals Riemnn Sums nd Riemnn Integrls Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University August 26, 203 Outline Riemnn Sums Riemnn Integrls Properties Abstrct

More information

The Regulated and Riemann Integrals

The Regulated and Riemann Integrals Chpter 1 The Regulted nd Riemnn Integrls 1.1 Introduction We will consider severl different pproches to defining the definite integrl f(x) dx of function f(x). These definitions will ll ssign the sme vlue

More information

New data structures to reduce data size and search time

New data structures to reduce data size and search time New dt structures to reduce dt size nd serch time Tsuneo Kuwbr Deprtment of Informtion Sciences, Fculty of Science, Kngw University, Hirtsuk-shi, Jpn FIT2018 1D-1, No2, pp1-4 Copyright (c)2018 by The Institute

More information

Lecture 3: Equivalence Relations

Lecture 3: Equivalence Relations Mthcmp Crsh Course Instructor: Pdric Brtlett Lecture 3: Equivlence Reltions Week 1 Mthcmp 2014 In our lst three tlks of this clss, we shift the focus of our tlks from proof techniques to proof concepts

More information

Nondeterminism and Nodeterministic Automata

Nondeterminism and Nodeterministic Automata Nondeterminism nd Nodeterministic Automt 61 Nondeterminism nd Nondeterministic Automt The computtionl mchine models tht we lerned in the clss re deterministic in the sense tht the next move is uniquely

More information

Finite Automata. Informatics 2A: Lecture 3. Mary Cryan. 21 September School of Informatics University of Edinburgh

Finite Automata. Informatics 2A: Lecture 3. Mary Cryan. 21 September School of Informatics University of Edinburgh Finite Automt Informtics 2A: Lecture 3 Mry Cryn School of Informtics University of Edinburgh mcryn@inf.ed.c.uk 21 September 2018 1 / 30 Lnguges nd Automt Wht is lnguge? Finite utomt: recp Some forml definitions

More information

CSE : Exam 3-ANSWERS, Spring 2011 Time: 50 minutes

CSE : Exam 3-ANSWERS, Spring 2011 Time: 50 minutes CSE 260-002: Exm 3-ANSWERS, Spring 20 ime: 50 minutes Nme: his exm hs 4 pges nd 0 prolems totling 00 points. his exm is closed ook nd closed notes.. Wrshll s lgorithm for trnsitive closure computtion is

More information

State Minimization for DFAs

State Minimization for DFAs Stte Minimiztion for DFAs Red K & S 2.7 Do Homework 10. Consider: Stte Minimiztion 4 5 Is this miniml mchine? Step (1): Get rid of unrechle sttes. Stte Minimiztion 6, Stte is unrechle. Step (2): Get rid

More information

5. (±±) Λ = fw j w is string of even lengthg [ 00 = f11,00g 7. (11 [ 00)± Λ = fw j w egins with either 11 or 00g 8. (0 [ ffl)1 Λ = 01 Λ [ 1 Λ 9.

5. (±±) Λ = fw j w is string of even lengthg [ 00 = f11,00g 7. (11 [ 00)± Λ = fw j w egins with either 11 or 00g 8. (0 [ ffl)1 Λ = 01 Λ [ 1 Λ 9. Regulr Expressions, Pumping Lemm, Right Liner Grmmrs Ling 106 Mrch 25, 2002 1 Regulr Expressions A regulr expression descries or genertes lnguge: it is kind of shorthnd for listing the memers of lnguge.

More information

CSCI 340: Computational Models. Kleene s Theorem. Department of Computer Science

CSCI 340: Computational Models. Kleene s Theorem. Department of Computer Science CSCI 340: Computtionl Models Kleene s Theorem Chpter 7 Deprtment of Computer Science Unifiction In 1954, Kleene presented (nd proved) theorem which (in our version) sttes tht if lnguge cn e defined y ny

More information

1.3 Regular Expressions

1.3 Regular Expressions 56 1.3 Regulr xpressions These hve n importnt role in describing ptterns in serching for strings in mny pplictions (e.g. wk, grep, Perl,...) All regulr expressions of lphbet re 1.Ønd re regulr expressions,

More information

CS 275 Automata and Formal Language Theory

CS 275 Automata and Formal Language Theory CS 275 Automt nd Forml Lnguge Theory Course Notes Prt II: The Recognition Problem (II) Chpter II.6.: Push Down Automt Remrk: This mteril is no longer tught nd not directly exm relevnt Anton Setzer (Bsed

More information

CS415 Compilers. Lexical Analysis and. These slides are based on slides copyrighted by Keith Cooper, Ken Kennedy & Linda Torczon at Rice University

CS415 Compilers. Lexical Analysis and. These slides are based on slides copyrighted by Keith Cooper, Ken Kennedy & Linda Torczon at Rice University CS415 Compilers Lexicl Anlysis nd These slides re sed on slides copyrighted y Keith Cooper, Ken Kennedy & Lind Torczon t Rice University First Progrmming Project Instruction Scheduling Project hs een posted

More information

Harvard University Computer Science 121 Midterm October 23, 2012

Harvard University Computer Science 121 Midterm October 23, 2012 Hrvrd University Computer Science 121 Midterm Octoer 23, 2012 This is closed-ook exmintion. You my use ny result from lecture, Sipser, prolem sets, or section, s long s you quote it clerly. The lphet is

More information

GNFA GNFA GNFA GNFA GNFA

GNFA GNFA GNFA GNFA GNFA DFA RE NFA DFA -NFA REX GNFA Definition GNFA A generlize noneterministic finite utomton (GNFA) is grph whose eges re lele y regulr expressions, with unique strt stte with in-egree, n unique finl stte with

More information

Finite-State Automata: Recap

Finite-State Automata: Recap Finite-Stte Automt: Recp Deepk D Souz Deprtment of Computer Science nd Automtion Indin Institute of Science, Bnglore. 09 August 2016 Outline 1 Introduction 2 Forml Definitions nd Nottion 3 Closure under

More information

Quantum Nonlocality Pt. 2: No-Signaling and Local Hidden Variables May 1, / 16

Quantum Nonlocality Pt. 2: No-Signaling and Local Hidden Variables May 1, / 16 Quntum Nonloclity Pt. 2: No-Signling nd Locl Hidden Vriles My 1, 2018 Quntum Nonloclity Pt. 2: No-Signling nd Locl Hidden Vriles My 1, 2018 1 / 16 Non-Signling Boxes The primry lesson from lst lecture

More information

Math 4310 Solutions to homework 1 Due 9/1/16

Math 4310 Solutions to homework 1 Due 9/1/16 Mth 4310 Solutions to homework 1 Due 9/1/16 1. Use the Eucliden lgorithm to find the following gretest common divisors. () gcd(252, 180) = 36 (b) gcd(513, 187) = 1 (c) gcd(7684, 4148) = 68 252 = 180 1

More information

CS 275 Automata and Formal Language Theory

CS 275 Automata and Formal Language Theory CS 275 Automt nd Forml Lnguge Theory Course Notes Prt II: The Recognition Problem (II) Chpter II.5.: Properties of Context Free Grmmrs (14) Anton Setzer (Bsed on book drft by J. V. Tucker nd K. Stephenson)

More information

In words: Let be the relation on Z given by a b if a b. (Note that we use language like in definitions, where if actually means if and only if.

In words: Let be the relation on Z given by a b if a b. (Note that we use language like in definitions, where if actually means if and only if. Reltions A binry reltion on set A is subset R Ñ A ˆ A, where elements p, bq re written s b. Exmple: A Z nd R t b bu. In words: Let be the reltion on Z given by b if b. (Note tht we use lnguge like in definitions,

More information

Math Lecture 23

Math Lecture 23 Mth 8 - Lecture 3 Dyln Zwick Fll 3 In our lst lecture we delt with solutions to the system: x = Ax where A is n n n mtrix with n distinct eigenvlues. As promised, tody we will del with the question of

More information

Homework 3 Solutions

Homework 3 Solutions CS 341: Foundtions of Computer Science II Prof. Mrvin Nkym Homework 3 Solutions 1. Give NFAs with the specified numer of sttes recognizing ech of the following lnguges. In ll cses, the lphet is Σ = {,1}.

More information

1 Online Learning and Regret Minimization

1 Online Learning and Regret Minimization 2.997 Decision-Mking in Lrge-Scle Systems My 10 MIT, Spring 2004 Hndout #29 Lecture Note 24 1 Online Lerning nd Regret Minimiztion In this lecture, we consider the problem of sequentil decision mking in

More information

CS 373, Spring Solutions to Mock midterm 1 (Based on first midterm in CS 273, Fall 2008.)

CS 373, Spring Solutions to Mock midterm 1 (Based on first midterm in CS 273, Fall 2008.) CS 373, Spring 29. Solutions to Mock midterm (sed on first midterm in CS 273, Fll 28.) Prolem : Short nswer (8 points) The nswers to these prolems should e short nd not complicted. () If n NF M ccepts

More information

CM10196 Topic 4: Functions and Relations

CM10196 Topic 4: Functions and Relations CM096 Topic 4: Functions nd Reltions Guy McCusker W. Functions nd reltions Perhps the most widely used notion in ll of mthemtics is tht of function. Informlly, function is n opertion which tkes n input

More information

AQA Further Pure 1. Complex Numbers. Section 1: Introduction to Complex Numbers. The number system

AQA Further Pure 1. Complex Numbers. Section 1: Introduction to Complex Numbers. The number system Complex Numbers Section 1: Introduction to Complex Numbers Notes nd Exmples These notes contin subsections on The number system Adding nd subtrcting complex numbers Multiplying complex numbers Complex

More information

Energy Bands Energy Bands and Band Gap. Phys463.nb Phenomenon

Energy Bands Energy Bands and Band Gap. Phys463.nb Phenomenon Phys463.nb 49 7 Energy Bnds Ref: textbook, Chpter 7 Q: Why re there insultors nd conductors? Q: Wht will hppen when n electron moves in crystl? In the previous chpter, we discussed free electron gses,

More information

Module 9: Tries and String Matching

Module 9: Tries and String Matching Module 9: Tries nd String Mtching CS 240 - Dt Structures nd Dt Mngement Sjed Hque Veronik Irvine Tylor Smith Bsed on lecture notes by mny previous cs240 instructors Dvid R. Cheriton School of Computer

More information

Module 9: Tries and String Matching

Module 9: Tries and String Matching Module 9: Tries nd String Mtching CS 240 - Dt Structures nd Dt Mngement Sjed Hque Veronik Irvine Tylor Smith Bsed on lecture notes by mny previous cs240 instructors Dvid R. Cheriton School of Computer

More information

CMSC 330: Organization of Programming Languages. DFAs, and NFAs, and Regexps (Oh my!)

CMSC 330: Organization of Programming Languages. DFAs, and NFAs, and Regexps (Oh my!) CMSC 330: Orgniztion of Progrmming Lnguges DFAs, nd NFAs, nd Regexps (Oh my!) CMSC330 Spring 2018 Types of Finite Automt Deterministic Finite Automt (DFA) Exctly one sequence of steps for ech string All

More information

Section: Other Models of Turing Machines. Definition: Two automata are equivalent if they accept the same language.

Section: Other Models of Turing Machines. Definition: Two automata are equivalent if they accept the same language. Section: Other Models of Turing Mchines Definition: Two utomt re equivlent if they ccept the sme lnguge. Turing Mchines with Sty Option Modify δ, Theorem Clss of stndrd TM s is equivlent to clss of TM

More information

CS103B Handout 18 Winter 2007 February 28, 2007 Finite Automata

CS103B Handout 18 Winter 2007 February 28, 2007 Finite Automata CS103B ndout 18 Winter 2007 Ferury 28, 2007 Finite Automt Initil text y Mggie Johnson. Introduction Severl childrens gmes fit the following description: Pieces re set up on plying ord; dice re thrown or

More information

Introduction to Group Theory

Introduction to Group Theory Introduction to Group Theory Let G be n rbitrry set of elements, typiclly denoted s, b, c,, tht is, let G = {, b, c, }. A binry opertion in G is rule tht ssocites with ech ordered pir (,b) of elements

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Lerning Tom Mitchell, Mchine Lerning, chpter 13 Outline Introduction Comprison with inductive lerning Mrkov Decision Processes: the model Optiml policy: The tsk Q Lerning: Q function Algorithm

More information

a b b a pop push read unread

a b b a pop push read unread A Finite Automton A Pushdown Automton 0000 000 red unred b b pop red unred push 2 An Exmple A Pushdown Automton Recll tht 0 n n not regulr. cn push symbols onto the stck cn pop them (red them bck) lter

More information

THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS.

THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS. THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS RADON ROSBOROUGH https://intuitiveexplntionscom/picrd-lindelof-theorem/ This document is proof of the existence-uniqueness theorem

More information

How do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique?

How do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique? XII. LINEAR ALGEBRA: SOLVING SYSTEMS OF EQUATIONS Tody we re going to tlk bout solving systems of liner equtions. These re problems tht give couple of equtions with couple of unknowns, like: 6 2 3 7 4

More information

Myhill-Nerode Theorem

Myhill-Nerode Theorem Overview Myhill-Nerode Theorem Correspondence etween DA s nd MN reltions Cnonicl DA for L Computing cnonicl DFA Myhill-Nerode Theorem Deepk D Souz Deprtment of Computer Science nd Automtion Indin Institute

More information

Categorical approaches to bisimilarity

Categorical approaches to bisimilarity Ctegoricl pproches to bisimilrity PPS seminr, IRIF, Pris 7 Jérémy Dubut Ntionl Institute of Informtics Jpnese-French Lbortory for Informtics April 2nd Jérémy Dubut (NII & JFLI) Ctegoricl pproches to bisimilrity

More information