Complex Variables. Chapter 1. Complex Numbers Section 1.2. Basic Algebraic Properties Proofs of Theorems. December 16, 2016

Size: px
Start display at page:

Download "Complex Variables. Chapter 1. Complex Numbers Section 1.2. Basic Algebraic Properties Proofs of Theorems. December 16, 2016"

Transcription

1 Complex Variables Chapter 1. Complex Numbers Section 1.2. Basic Algebraic Properties Proofs of Theorems December 16, 2016 () Complex Variables December 16, / 12

2 Table of contents 1 Theorem Corollary () Complex Variables December 16, / 12

3 Theorem Theorem For any a 1, z 2, z 3 C we have the following. 1. Commutivity of addition and multiplication: z 1 + z 2 = z 2 + z 1 and z 1 z 2 = z 2 z Associativity of addition and multiplication: (z 1 + z 2 ) + z 3 = z 1 + (z 2 + z 3 ) and (z 1 z 2 )z 3 = z 1 (z 2 z 3 ). 3. Distribution of multiplication over addition: z 1 (z 2 + z 3 ) = z 1 z 2 + z 1 z There is an additive identity 0 = 0 + i0 such that 0 + z = z for all z C. There is a multiplicative identity 1 = 1 + i0 such that z1 = z for all z C. Also, z0 = 0 for all z C. 5. For each z C there is z C such that z + z = 0. z is the additive inverse of z (denoted z). If z 0, then there is z C such that z z = 1. z is the multiplicative inverse of z. () Complex Variables December 16, / 12

4 Theorem (continued 1) Proof. We have abandoned the ordered pair notation, so let z k = x k + iy k for k = 1, 2, 3 and let z = x + iy, where x k, y k, x, y R 1. (Commutivity) For addition, we have z 1 + z 2 = (z 1 + iy 1 ) + (x 2 + iy 2 ) = (x 1 + x 2 ) + i(y 1 + y 2 ) by the definition of + in C = (x 2 + x 1 ) + i(y 2 + y 1 ) since + is commutative in R = (x 2 + iy 2 ) + (x 1 + iy 1 ) by the definition of + in C = z 2 + z 1. () Complex Variables December 16, / 12

5 Theorem (continued 2) Proof. For multiplication we have z 1 z 2 = (x 1 + iy 1 )(x 2 + iy 2 ) = (x 1 x 2 + y 1 y 2 ) + i(y 1 x 2 + x 1 y 2 ) by the definition of in C = (x 2 x 1 y 2 y 1 ) + i(x 1 y 2 + y 1 x 2 ) since and + are commutative in R = (x 2 + iy 2 )(x 1 + iy 1 ) by the definition of in C = z 2 z (Associativity) For addition we have (z 1 + z 2 ) + z 3 = ((x 1 + iy 1 ) + (x 2 + iy 2 )) + (x 3 + iy 3 ) = ((x 1 + x 2 ) + i(y 1 + y 2 )) + (x 3 + iy 3 ) by the definition of + in C () Complex Variables December 16, / 12

6 Theorem (continued 2) Proof. For multiplication we have z 1 z 2 = (x 1 + iy 1 )(x 2 + iy 2 ) = (x 1 x 2 + y 1 y 2 ) + i(y 1 x 2 + x 1 y 2 ) by the definition of in C = (x 2 x 1 y 2 y 1 ) + i(x 1 y 2 + y 1 x 2 ) since and + are commutative in R = (x 2 + iy 2 )(x 1 + iy 1 ) by the definition of in C = z 2 z (Associativity) For addition we have (z 1 + z 2 ) + z 3 = ((x 1 + iy 1 ) + (x 2 + iy 2 )) + (x 3 + iy 3 ) = ((x 1 + x 2 ) + i(y 1 + y 2 )) + (x 3 + iy 3 ) by the definition of + in C () Complex Variables December 16, / 12

7 Theorem (continued 3) (z 1 + z 2 ) + z 3 = ((x 1 + x 2 ) + x 3 ) + i((y 1 + y 2 ) + y 3 ) by the definition of + in C = (x 1 + (x 2 + x 3 )) + i(y 1 + (y 2 + y 3 )) since + is associative in R = (x 1 + iy 1 ) + ((x 2 + x 3 ) + i(y 2 + y 3 )) by the definition of + in C = z 1 + (z 2 + z 3 ) For multiplication we have (z 1 z 2 )z 3 = ((x 1 + iy 1 )(x 2 + iy 2 ))(x 3 + iy 3 ) = ((x 1 x 2 y 1 y 2 ) + i(y 1 x 2 + x 1 y 2 ))(x 3 + iy 3 ) by the definition of in C () Complex Variables December 16, / 12

8 Theorem (continued 3) (z 1 + z 2 ) + z 3 = ((x 1 + x 2 ) + x 3 ) + i((y 1 + y 2 ) + y 3 ) by the definition of + in C = (x 1 + (x 2 + x 3 )) + i(y 1 + (y 2 + y 3 )) since + is associative in R = (x 1 + iy 1 ) + ((x 2 + x 3 ) + i(y 2 + y 3 )) by the definition of + in C = z 1 + (z 2 + z 3 ) For multiplication we have (z 1 z 2 )z 3 = ((x 1 + iy 1 )(x 2 + iy 2 ))(x 3 + iy 3 ) = ((x 1 x 2 y 1 y 2 ) + i(y 1 x 2 + x 1 y 2 ))(x 3 + iy 3 ) by the definition of in C () Complex Variables December 16, / 12

9 Theorem (continued 4) (z 1 z 2 )z 3 = ((x 1 x 2 y 1 y 2 )x 3 (y 1 x 2 x 1 y 2 )y 3 ) + i((y 1 x 2 + x 1 y 2 )x 3 + (x 1 x 2 y 1 y 2 )y 3 ) by the definition of in C = (x 1 (x 2 x 3 y 2 y 3 ) y 1 (y 2 x 3 + x 2 y 3 )) +i(y 1 (x 2 x 3 y 2 y 3 ) + x 1 (y 2 x 3 + x 2 y 3 )) by distribution, commutivity, and associativity in R = (x 1 + iy 1 )((x 2 x 3 y 2 y 3 ) + i(y 2 x 3 + x 2 y 3 )) by the definition of in C = (x 2 + iy 1 )((x 2 + iy 2 )(x 3 + iy 3 )) by the definition of in C = z 1 (z 2 z 3 ). () Complex Variables December 16, / 12

10 Theorem (continued 5) 3. (Distribution) For distribution we have z 1 (z 2 + z 3 ) = (z 1 + iy 1 )((x 2 + iy 2 ) + (x 3 + iy 3 )) = (x 1 + iy 1 )((x 2 + x 3 ) + i(y 2 + y 3 )) by the definition of + in C = (x 1 (x 2 + x 3 ) y 1 (y 2 + y 3 )) + i(y 1 (x 2 + x 3 ) + x 1 (y 2 + y 3 )) by the definition of in C = (x 1 x 2 + x 1 x 3 y 1 y 2 y 1 y 3 ) + i(y 1 x 2 + y 1 x 3 + x 1 y 2 + x 1 y 3 ) by distribution in R = ((x 1 x 2 y 1 y 2 ) + i(y 1 x 2 + x 1 y 2 )) + ((x 1 x 3 y 1 y 3 ) +i(y 1 x 3 + x 1 y 3 ) by the definition of + in C = (x 1 + iy 1 )(x 2 + iy 2 ) + (x 1 + iy 1 )(x 3 + iy 3 ) by the definition of in C = z 1 z 2 + z 1 z 3. () Complex Variables December 16, / 12

11 Theorem (continued 6) 4. (Identities) We easily have 0 + z = (0 + i0) + (x + iy) = (0 + x) + i(0 + y) by the definition of + in C = x + iy since 0 is the additive identity in R = z and 1z = (1 + i0) + (x + iy) = ((1)(x) (0)(y)) + i((0)(x) + (1)(y)) by the definition of in C = x + iy since 1 is the multiplicative identity in R = z. () Complex Variables December 16, / 12

12 Theorem (continued 6) 4. (Identities) We easily have 0 + z = (0 + i0) + (x + iy) = (0 + x) + i(0 + y) by the definition of + in C = x + iy since 0 is the additive identity in R = z and 1z = (1 + i0) + (x + iy) = ((1)(x) (0)(y)) + i((0)(x) + (1)(y)) by the definition of in C = x + iy since 1 is the multiplicative identity in R = z. () Complex Variables December 16, / 12

13 Theorem (continued 6) Also, z0 = (x + iy)(0 + i0) = ((x)(0) (y)(0)) + i((y)(0) + (x)(0)) by the definition of in C = 0 + i0 since r0 = 0 for all r R = (Inverses) For z = x + iy, we take z = ( x) + i( y) and then z + z = (x + iy) + (( x) + i( y)) = (x + ( x)) + i(y + ( y)) by the definition of + in C = 0 + i0 since x and y are the + inverses of x and y, respectively, in R = 0. () Complex Variables December 16, / 12

14 Theorem (continued 6) Also, z0 = (x + iy)(0 + i0) = ((x)(0) (y)(0)) + i((y)(0) + (x)(0)) by the definition of in C = 0 + i0 since r0 = 0 for all r R = (Inverses) For z = x + iy, we take z = ( x) + i( y) and then z + z = (x + iy) + (( x) + i( y)) = (x + ( x)) + i(y + ( y)) by the definition of + in C = 0 + i0 since x and y are the + inverses of x and y, respectively, in R = 0. () Complex Variables December 16, / 12

15 Theorem (continued 6) For z = x + iy 0, take z = x/(x 2 + y 2 ) + i( y)/(x 2 + y 2 ) (see page 4 of the text for motivation). Then zz = (x + iy)(x/(x 2 + y 2 ) + i( y)/(x 2 + y 2 )) = ((x)(x/(x 2 + y 2 ) (y)(( y)/x 2 + y 2 ))) +i((y)(x/(x 2 + y 2 )) + x(( y)/(x 2 + y 2 ))) by the definition of in C = 1 + i0 by the multiplicative and additive inverse properties in R = 1. () Complex Variables December 16, / 12

16 Corollary Corollary Corollary For z 1, z 2, z 3 C if z 1 z 2 = 0 then either z 1 = 0 or z 2 = 0. That is, C has no zero divisors. Proof. Suppose one of z 1 or z 2 in nonzero. WLOG, say z 1 0. Then, by Theorem 1.2.1(5), there is a multiplicative inverse z1 1 C such that z 1 z1 1 = 1. () Complex Variables December 16, / 12

17 Corollary Corollary Corollary For z 1, z 2, z 3 C if z 1 z 2 = 0 then either z 1 = 0 or z 2 = 0. That is, C has no zero divisors. Proof. Suppose one of z 1 or z 2 in nonzero. WLOG, say z 1 0. Then, by Theorem 1.2.1(5), there is a multiplicative inverse z1 1 C such that z 1 z1 1 = 1. So z 2 = z 2 1 by Theorem 1.2.1(4) ( identity) = z 2 (z 1 z2 1 = (z 1 z1 1 2 = (z1 1 1)z 2 by Theorem 1.2.1(1) (commutivity of ) = z 1 1 (z 1z 2 ) by Theorem 1.2.1(2) (associativity of ) (0) by hypothesis = z1 1 = 0 by Theorem 1.2.1(4). So if one of z 1, z 2 is nonzero, then the other is 0 and the result follows. () Complex Variables December 16, / 12

18 Corollary Corollary Corollary For z 1, z 2, z 3 C if z 1 z 2 = 0 then either z 1 = 0 or z 2 = 0. That is, C has no zero divisors. Proof. Suppose one of z 1 or z 2 in nonzero. WLOG, say z 1 0. Then, by Theorem 1.2.1(5), there is a multiplicative inverse z1 1 C such that z 1 z1 1 = 1. So z 2 = z 2 1 by Theorem 1.2.1(4) ( identity) = z 2 (z 1 z2 1 = (z 1 z1 1 2 = (z1 1 1)z 2 by Theorem 1.2.1(1) (commutivity of ) = z 1 1 (z 1z 2 ) by Theorem 1.2.1(2) (associativity of ) (0) by hypothesis = z1 1 = 0 by Theorem 1.2.1(4). So if one of z 1, z 2 is nonzero, then the other is 0 and the result follows. () Complex Variables December 16, / 12

MANY BILLS OF CONCERN TO PUBLIC

MANY BILLS OF CONCERN TO PUBLIC - 6 8 9-6 8 9 6 9 XXX 4 > -? - 8 9 x 4 z ) - -! x - x - - X - - - - - x 00 - - - - - x z - - - x x - x - - - - - ) x - - - - - - 0 > - 000-90 - - 4 0 x 00 - -? z 8 & x - - 8? > 9 - - - - 64 49 9 x - -

More information

PanHomc'r I'rui;* :".>r '.a'' W"»' I'fltolt. 'j'l :. r... Jnfii<on. Kslaiaaac. <.T i.. %.. 1 >

PanHomc'r I'rui;* :.>r '.a'' W»' I'fltolt. 'j'l :. r... Jnfii<on. Kslaiaaac. <.T i.. %.. 1 > 5 28 (x / &» )»(»»» Q ( 3 Q» (» ( (3 5» ( q 2 5 q 2 5 5 8) 5 2 2 ) ~ ( / x {» /»»»»» (»»» ( 3 ) / & Q ) X ] Q & X X X x» 8 ( &» 2 & % X ) 8 x & X ( #»»q 3 ( ) & X 3 / Q X»»» %» ( z 22 (»» 2» }» / & 2 X

More information

d A L. T O S O U LOWELL, MICHIGAN. THURSDAY, DECEMBER 5, 1929 Cadillac, Nov. 20. Indignation

d A L. T O S O U LOWELL, MICHIGAN. THURSDAY, DECEMBER 5, 1929 Cadillac, Nov. 20. Indignation ) - 5 929 XXX - $ 83 25 5 25 $ ( 2 2 z 52 $9285)9 7 - - 2 72 - - 2 3 zz - 9 86 - - - - 88 - q 2 882 q 88 - - - - - - ( 89 < - Q - 857-888 - - - & - - q - { q 7 - - - - q - - - - - - q - - - - 929 93 q

More information

Neatest and Promptest Manner. E d i t u r ami rul)lihher. FOIt THE CIIILDIIES'. Trifles.

Neatest and Promptest Manner. E d i t u r ami rul)lihher. FOIt THE CIIILDIIES'. Trifles. » ~ $ ) 7 x X ) / ( 8 2 X 39 ««x» ««! «! / x? \» «({? «» q «(? (?? x! «? 8? ( z x x q? ) «q q q ) x z x 69 7( X X ( 3»«! ( ~«x ««x ) (» «8 4 X «4 «4 «8 X «x «(» X) ()»» «X «97 X X X 4 ( 86) x) ( ) z z

More information

OWELL WEEKLY JOURNAL

OWELL WEEKLY JOURNAL Y \»< - } Y Y Y & #»»» q ] q»»»>) & - - - } ) x ( - { Y» & ( x - (» & )< - Y X - & Q Q» 3 - x Q Y 6 \Y > Y Y X 3 3-9 33 x - - / - -»- --

More information

LOWELL WEEKI.Y JOURINAL

LOWELL WEEKI.Y JOURINAL / $ 8) 2 {!»!» X ( (!!!?! () ~ x 8» x /»!! $?» 8! ) ( ) 8 X x /! / x 9 ( 2 2! z»!!»! ) / x»! ( (»»!» [ ~!! 8 X / Q X x» ( (!»! Q ) X x X!! (? ( ()» 9 X»/ Q ( (X )!» / )! X» x / 6!»! }? ( q ( ) / X! 8 x»

More information

.1 "patedl-righl" timti tame.nto our oai.c iii C. W.Fiak&Co. She ftowtt outnal,

.1 patedl-righl timti tame.nto our oai.c iii C. W.Fiak&Co. She ftowtt outnal, J 2 X Y J Y 3 : > Y 6? ) Q Y x J Y Y // 6 : : \ x J 2 J Q J Z 3 Y 7 2 > 3 [6 2 : x z (7 :J 7 > J : 7 (J 2 J < ( q / 3 6 q J $3 2 6:J : 3 q 2 6 3 2 2 J > 2 :2 : J J 2 2 J 7 J 7 J \ : q 2 J J Y q x ( ) 3:

More information

r/lt.i Ml s." ifcr ' W ATI II. The fnncrnl.icniccs of Mr*. John We mil uppn our tcpiiblicnn rcprc Died.

r/lt.i Ml s. ifcr ' W ATI II. The fnncrnl.icniccs of Mr*. John We mil uppn our tcpiiblicnn rcprc Died. $ / / - (\ \ - ) # -/ ( - ( [ & - - - - \ - - ( - - - - & - ( ( / - ( \) Q & - - { Q ( - & - ( & q \ ( - ) Q - - # & - - - & - - - $ - 6 - & # - - - & -- - - - & 9 & q - / \ / - - - -)- - ( - - 9 - - -

More information

LOWELL WEEKLY JOURNAL

LOWELL WEEKLY JOURNAL G $ G 2 G ««2 ««q ) q «\ { q «««/ 6 «««««q «] «q 6 ««Z q «««Q \ Q «q «X ««G X G ««? G Q / Q Q X ««/«X X «««Q X\ «q «X \ / X G XX «««X «x «X «x X G X 29 2 ««Q G G «) 22 G XXX GG G G G G G X «x G Q «) «G

More information

' Liberty and Umou Ono and Inseparablo "

' Liberty and Umou Ono and Inseparablo 3 5? #< q 8 2 / / ) 9 ) 2 ) > < _ / ] > ) 2 ) ) 5 > x > [ < > < ) > _ ] ]? <

More information

LOWELL. MICHIGAN. WEDNESDAY, FEBRUARY NUMllEE 33, Chicago. >::»«ad 0:30am, " 16.n«l w 00 ptn Jaekten,.'''4snd4:4(>a tii, ijilwopa

LOWELL. MICHIGAN. WEDNESDAY, FEBRUARY NUMllEE 33, Chicago. >::»«ad 0:30am,  16.n«l w 00 ptn Jaekten,.'''4snd4:4(>a tii, ijilwopa 4/X6 X 896 & # 98 # 4 $2 q $ 8 8 $ 8 6 8 2 8 8 2 2 4 2 4 X q q!< Q 48 8 8 X 4 # 8 & q 4 ) / X & & & Q!! & & )! 2 ) & / / ;) Q & & 8 )

More information

Section 19 Integral domains

Section 19 Integral domains Section 19 Integral domains Instructor: Yifan Yang Spring 2007 Observation and motivation There are rings in which ab = 0 implies a = 0 or b = 0 For examples, Z, Q, R, C, and Z[x] are all such rings There

More information

LOWELL JOURNAL. MUST APOLOGIZE. such communication with the shore as Is m i Boimhle, noewwary and proper for the comfort

LOWELL JOURNAL. MUST APOLOGIZE. such communication with the shore as Is m i Boimhle, noewwary and proper for the comfort - 7 7 Z 8 q ) V x - X > q - < Y Y X V - z - - - - V - V - q \ - q q < -- V - - - x - - V q > x - x q - x q - x - - - 7 -» - - - - 6 q x - > - - x - - - x- - - q q - V - x - - ( Y q Y7 - >»> - x Y - ] [

More information

Complex Variables. Chapter 2. Analytic Functions Section Harmonic Functions Proofs of Theorems. March 19, 2017

Complex Variables. Chapter 2. Analytic Functions Section Harmonic Functions Proofs of Theorems. March 19, 2017 Complex Variables Chapter 2. Analytic Functions Section 2.26. Harmonic Functions Proofs of Theorems March 19, 2017 () Complex Variables March 19, 2017 1 / 5 Table of contents 1 Theorem 2.26.1. 2 Theorem

More information

A DARK GREY P O N T, with a Switch Tail, and a small Star on the Forehead. Any

A DARK GREY P O N T, with a Switch Tail, and a small Star on the Forehead. Any Y Y Y X X «/ YY Y Y ««Y x ) & \ & & } # Y \#$& / Y Y X» \\ / X X X x & Y Y X «q «z \x» = q Y # % \ & [ & Z \ & { + % ) / / «q zy» / & / / / & x x X / % % ) Y x X Y $ Z % Y Y x x } / % «] «] # z» & Y X»

More information

a s*:?:; -A: le London Dyers ^CleanefSt * S^d. per Y ard. -P W ..n 1 0, , c t o b e e d n e sd *B A J IllW6fAi>,EB. E D U ^ T IG r?

a s*:?:; -A: le London Dyers ^CleanefSt * S^d. per Y ard. -P W ..n 1 0, , c t o b e e d n e sd *B A J IllW6fAi>,EB. E D U ^ T IG r? ? 9 > 25? < ( x x 52 ) < x ( ) ( { 2 2 8 { 28 ] ( 297 «2 ) «2 2 97 () > Q ««5 > «? 2797 x 7 82 2797 Q z Q (

More information

Homework 1/Solutions. Graded Exercises

Homework 1/Solutions. Graded Exercises MTH 310-3 Abstract Algebra I and Number Theory S18 Homework 1/Solutions Graded Exercises Exercise 1. Below are parts of the addition table and parts of the multiplication table of a ring. Complete both

More information

ACCEPTS HUGE FLORAL KEY TO LOWELL. Mrs, Walter Laid to Rest Yesterday

ACCEPTS HUGE FLORAL KEY TO LOWELL. Mrs, Walter Laid to Rest Yesterday $ j < < < > XXX Y 928 23 Y Y 4% Y 6 -- Q 5 9 2 5 Z 48 25 )»-- [ Y Y Y & 4 j q - Y & Y 7 - -- - j \ -2 -- j j -2 - - - - [ - - / - ) ) - - / j Y 72 - ) 85 88 - / X - j ) \ 7 9 Y Y 2 3» - ««> Y 2 5 35 Y

More information

Educjatipnal. L a d ie s * COBNWALILI.S H IG H SCHOOL. I F O R G IR L S A n B k i n d e r g a r t e n.

Educjatipnal. L a d ie s * COBNWALILI.S H IG H SCHOOL. I F O R G IR L S A n B k i n d e r g a r t e n. - - - 0 x ] - ) ) -? - Q - - z 0 x 8 - #? ) 80 0 0 Q ) - 8-8 - ) x ) - ) -] ) Q x?- x - - / - - x - - - x / /- Q ] 8 Q x / / - 0-0 0 x 8 ] ) / - - /- - / /? x ) x x Q ) 8 x q q q )- 8-0 0? - Q - - x?-

More information

Section IV.23. Factorizations of Polynomials over a Field

Section IV.23. Factorizations of Polynomials over a Field IV.23 Factorizations of Polynomials 1 Section IV.23. Factorizations of Polynomials over a Field Note. Our experience with classical algebra tells us that finding the zeros of a polynomial is equivalent

More information

Q SON,' (ESTABLISHED 1879L

Q SON,' (ESTABLISHED 1879L ( < 5(? Q 5 9 7 00 9 0 < 6 z 97 ( # ) $ x 6 < ( ) ( ( 6( ( ) ( $ z 0 z z 0 ) { ( % 69% ( ) x 7 97 z ) 7 ) ( ) 6 0 0 97 )( 0 x 7 97 5 6 ( ) 0 6 ) 5 ) 0 ) 9%5 z» 0 97 «6 6» 96? 0 96 5 0 ( ) ( ) 0 x 6 0

More information

LOWELL WEEKLY JOURNAL.

LOWELL WEEKLY JOURNAL. Y $ Y Y 7 27 Y 2» x 7»» 2» q» ~ [ } q q $ $ 6 2 2 2 2 2 2 7 q > Y» Y >» / Y» ) Y» < Y»» _»» < Y > Y Y < )»» >» > ) >» >> >Y x x )»» > Y Y >>»» }> ) Y < >» /» Y x» > / x /»»»»» >» >» >»» > > >» < Y /~ >

More information

Homework 7 Solutions to Selected Problems

Homework 7 Solutions to Selected Problems Homework 7 Solutions to Selected Prolems May 9, 01 1 Chapter 16, Prolem 17 Let D e an integral domain and f(x) = a n x n +... + a 0 and g(x) = m x m +... + 0 e polynomials with coecients in D, where a

More information

g(x) = 1 1 x = 1 + x + x2 + x 3 + is not a polynomial, since it doesn t have finite degree. g(x) is an example of a power series.

g(x) = 1 1 x = 1 + x + x2 + x 3 + is not a polynomial, since it doesn t have finite degree. g(x) is an example of a power series. 6 Polynomial Rings We introduce a class of rings called the polynomial rings, describing computation, factorization and divisibility in such rings For the case where the coefficients come from an integral

More information

Lecture 7.4: Divisibility and factorization

Lecture 7.4: Divisibility and factorization Lecture 7.4: Divisibility and factorization Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 4120, Modern Algebra M. Macauley (Clemson)

More information

University of Colorado at Denver Mathematics Department Applied Linear Algebra Preliminary Exam With Solutions 16 January 2009, 10:00 am 2:00 pm

University of Colorado at Denver Mathematics Department Applied Linear Algebra Preliminary Exam With Solutions 16 January 2009, 10:00 am 2:00 pm University of Colorado at Denver Mathematics Department Applied Linear Algebra Preliminary Exam With Solutions 16 January 2009, 10:00 am 2:00 pm Name: The proctor will let you read the following conditions

More information

Governor Green Triumphs Over Mudslinging

Governor Green Triumphs Over Mudslinging ; XXX 6 928 - x 22 5 Q 0 x 2- Q- & & x 30 - x 93000000 95000000 50 000 x 0:30 7 7 2 x q 9 0 0:30 2;00 7:30 9 ( 9 & ( ( - ( - 225000 x ( ( 800 ) - 70000 200000 - x ; 200-0: 3333 0850; 778: 5-38 090; 002;

More information

P A L A C E P IE R, S T. L E O N A R D S. R a n n o w, q u a r r y. W WALTER CR O TC H, Esq., Local Chairman. E. CO O PER EVANS, Esq.,.

P A L A C E P IE R, S T. L E O N A R D S. R a n n o w, q u a r r y. W WALTER CR O TC H, Esq., Local Chairman. E. CO O PER EVANS, Esq.,. ? ( # [ ( 8? [ > 3 Q [ ««> » 9 Q { «33 Q> 8 \ \ 3 3 3> Q»«9 Q ««« 3 8 3 8 X \ [ 3 ( ( Z ( Z 3( 9 9 > < < > >? 8 98 ««3 ( 98 < # # Q 3 98? 98 > > 3 8 9 9 ««««> 3 «>

More information

Two Posts to Fill On School Board

Two Posts to Fill On School Board Y Y 9 86 4 4 qz 86 x : ( ) z 7 854 Y x 4 z z x x 4 87 88 Y 5 x q x 8 Y 8 x x : 6 ; : 5 x ; 4 ( z ; ( ) ) x ; z 94 ; x 3 3 3 5 94 ; ; ; ; 3 x : 5 89 q ; ; x ; x ; ; x : ; ; ; ; ; ; 87 47% : () : / : 83

More information

NPTEL web course on Complex Analysis. A. Swaminathan I.I.T. Roorkee, India. and. V.K. Katiyar I.I.T. Roorkee, India

NPTEL web course on Complex Analysis. A. Swaminathan I.I.T. Roorkee, India. and. V.K. Katiyar I.I.T. Roorkee, India NPTEL web course on Complex Analysis A. Swaminathan I.I.T. Roorkee, India and V.K. Katiyar I.I.T. Roorkee, India A.Swaminathan and V.K.Katiyar (NPTEL) Complex Analysis 1 / 14 Complex Analysis Module: 1:

More information

Chapter 1. Wedderburn-Artin Theory

Chapter 1. Wedderburn-Artin Theory 1.1. Basic Terminology and Examples 1 Chapter 1. Wedderburn-Artin Theory Note. Lam states on page 1: Modern ring theory began when J.J.M. Wedderburn proved his celebrated classification theorem for finite

More information

4.6. Linear Operators on Hilbert Spaces

4.6. Linear Operators on Hilbert Spaces 4.6. Linear Operators on Hilbert Spaces 1 4.6. Linear Operators on Hilbert Spaces Note. This section explores a number of different kinds of bounded linear transformations (or, equivalently, operators

More information

ALGEBRAIC GEOMETRY COURSE NOTES, LECTURE 2: HILBERT S NULLSTELLENSATZ.

ALGEBRAIC GEOMETRY COURSE NOTES, LECTURE 2: HILBERT S NULLSTELLENSATZ. ALGEBRAIC GEOMETRY COURSE NOTES, LECTURE 2: HILBERT S NULLSTELLENSATZ. ANDREW SALCH 1. Hilbert s Nullstellensatz. The last lecture left off with the claim that, if J k[x 1,..., x n ] is an ideal, then

More information

DIVISORS ON NONSINGULAR CURVES

DIVISORS ON NONSINGULAR CURVES DIVISORS ON NONSINGULAR CURVES BRIAN OSSERMAN We now begin a closer study of the behavior of projective nonsingular curves, and morphisms between them, as well as to projective space. To this end, we introduce

More information

Chapter 2. Vectors and Vector Spaces

Chapter 2. Vectors and Vector Spaces 2.1. Operations on Vectors 1 Chapter 2. Vectors and Vector Spaces Section 2.1. Operations on Vectors Note. In this section, we define several arithmetic operations on vectors (especially, vector addition

More information

Lesson 7: Algebraic Expressions The Commutative, Associative and Distributive Properties

Lesson 7: Algebraic Expressions The Commutative, Associative and Distributive Properties Hart Interactive Algebra 1 Algebraic Expressions The Commutative, Associative and Distributive Properties Exploratory Activity In elementary school you learned that 3 + 4 gives the same answer as 4 + 3

More information

LOWELL WEEKLY JOURNAL. ^Jberxy and (Jmott Oao M d Ccmsparftble. %m >ai ruv GEEAT INDUSTRIES

LOWELL WEEKLY JOURNAL. ^Jberxy and (Jmott Oao M d Ccmsparftble. %m >ai ruv GEEAT INDUSTRIES ? (») /»» 9 F ( ) / ) /»F»»»»»# F??»»» Q ( ( »»» < 3»» /» > > } > Q ( Q > Z F 5

More information

Prime and irreducible elements of the ring of integers modulo n

Prime and irreducible elements of the ring of integers modulo n Prime and irreducible elements of the ring of integers modulo n M. H. Jafari and A. R. Madadi Department of Pure Mathematics, Faculty of Mathematical Sciences University of Tabriz, Tabriz, Iran Abstract

More information

Johns Hopkins University, Department of Mathematics Abstract Algebra - Spring 2013 Midterm Exam Solution

Johns Hopkins University, Department of Mathematics Abstract Algebra - Spring 2013 Midterm Exam Solution Johns Hopkins University, Department of Mathematics 110.40 Abstract Algebra - Spring 013 Midterm Exam Solution Instructions: This exam has 6 pages. No calculators, books or notes allowed. You must answer

More information

Chapter 1. Complex Numbers. Dr. Pulak Sahoo

Chapter 1. Complex Numbers. Dr. Pulak Sahoo Chapter 1 Complex Numbers BY Dr. Pulak Sahoo Assistant Professor Department of Mathematics University Of Kalyani West Bengal, India E-mail : sahoopulak1@gmail.com 1 Module-1: Basic Ideas 1 Introduction

More information

MATH 3030, Abstract Algebra FALL 2012 Toby Kenney Midyear Examination Friday 7th December: 7:00-10:00 PM

MATH 3030, Abstract Algebra FALL 2012 Toby Kenney Midyear Examination Friday 7th December: 7:00-10:00 PM MATH 3030, Abstract Algebra FALL 2012 Toby Kenney Midyear Examination Friday 7th December: 7:00-10:00 PM Basic Questions 1. Compute the factor group Z 3 Z 9 / (1, 6). The subgroup generated by (1, 6) is

More information

PROBLEMS, MATH 214A. Affine and quasi-affine varieties

PROBLEMS, MATH 214A. Affine and quasi-affine varieties PROBLEMS, MATH 214A k is an algebraically closed field Basic notions Affine and quasi-affine varieties 1. Let X A 2 be defined by x 2 + y 2 = 1 and x = 1. Find the ideal I(X). 2. Prove that the subset

More information

Crew of25 Men Start Monday On Showboat. Many Permanent Improvements To Be Made;Project Under WPA

Crew of25 Men Start Monday On Showboat. Many Permanent Improvements To Be Made;Project Under WPA U G G G U 2 93 YX Y q 25 3 < : z? 0 (? 8 0 G 936 x z x z? \ 9 7500 00? 5 q 938 27? 60 & 69? 937 q? G x? 937 69 58 } x? 88 G # x 8 > x G 0 G 0 x 8 x 0 U 93 6 ( 2 x : X 7 8 G G G q x U> x 0 > x < x G U 5

More information

COMMUNICATIONS IN ALGEBRA, 15(3), (1987) A NOTE ON PRIME IDEALS WHICH TEST INJECTIVITY. John A. Beachy and William D.

COMMUNICATIONS IN ALGEBRA, 15(3), (1987) A NOTE ON PRIME IDEALS WHICH TEST INJECTIVITY. John A. Beachy and William D. COMMUNICATIONS IN ALGEBRA, 15(3), 471 478 (1987) A NOTE ON PRIME IDEALS WHICH TEST INJECTIVITY John A. Beachy and William D. Weakley Department of Mathematical Sciences Northern Illinois University DeKalb,

More information

Study Guide and Intervention

Study Guide and Intervention Study Guide and Intervention Pure Imaginary Numbers A square root of a number n is a number whose square is n. For nonnegative real numbers a and b, ab = a b and a b = a, b 0. b The imaginary unit i is

More information

ORIE 6300 Mathematical Programming I August 25, Recitation 1

ORIE 6300 Mathematical Programming I August 25, Recitation 1 ORIE 6300 Mathematical Programming I August 25, 2016 Lecturer: Calvin Wylie Recitation 1 Scribe: Mateo Díaz 1 Linear Algebra Review 1 1.1 Independence, Spanning, and Dimension Definition 1 A (usually infinite)

More information

Physics 307. Mathematical Physics. Luis Anchordoqui. Wednesday, August 31, 16

Physics 307. Mathematical Physics. Luis Anchordoqui. Wednesday, August 31, 16 Physics 307 Mathematical Physics Luis Anchordoqui 1 Bibliography L. A. Anchordoqui and T. C. Paul, ``Mathematical Models of Physics Problems (Nova Publishers, 2013) G. F. D. Duff and D. Naylor, ``Differential

More information

Name: Solutions Final Exam

Name: Solutions Final Exam Instructions. Answer each of the questions on your own paper. Be sure to show your work so that partial credit can be adequately assessed. Put your name on each page of your paper. 1. [10 Points] All of

More information

An other approach of the diameter of Γ(R) and Γ(R[X])

An other approach of the diameter of Γ(R) and Γ(R[X]) arxiv:1812.08212v1 [math.ac] 19 Dec 2018 An other approach of the diameter of Γ(R) and Γ(R[X]) A. Cherrabi, H. Essannouni, E. Jabbouri, A. Ouadfel Laboratory of Mathematics, Computing and Applications-Information

More information

Primary Decomposition of Ideals Arising from Hankel Matrices

Primary Decomposition of Ideals Arising from Hankel Matrices Primary Decomposition of Ideals Arising from Hankel Matrices Paul Brodhead University of Wisconsin-Madison Malarie Cummings Hampton University Cora Seidler University of Texas-El Paso August 10 2000 Abstract

More information

County Council Named for Kent

County Council Named for Kent \ Y Y 8 9 69 6» > 69 ««] 6 : 8 «V z 9 8 x 9 8 8 8?? 9 V q» :: q;; 8 x () «; 8 x ( z x 9 7 ; x >«\ 8 8 ; 7 z x [ q z «z : > ; ; ; ( 76 x ; x z «7 8 z ; 89 9 z > q _ x 9 : ; 6? ; ( 9 [ ) 89 _ ;»» «; x V

More information

Notes 6: Polynomials in One Variable

Notes 6: Polynomials in One Variable Notes 6: Polynomials in One Variable Definition. Let f(x) = b 0 x n + b x n + + b n be a polynomial of degree n, so b 0 0. The leading term of f is LT (f) = b 0 x n. We begin by analyzing the long division

More information

JORDAN NORMAL FORM. Contents Introduction 1 Jordan Normal Form 1 Conclusion 5 References 5

JORDAN NORMAL FORM. Contents Introduction 1 Jordan Normal Form 1 Conclusion 5 References 5 JORDAN NORMAL FORM KATAYUN KAMDIN Abstract. This paper outlines a proof of the Jordan Normal Form Theorem. First we show that a complex, finite dimensional vector space can be decomposed into a direct

More information

A Generalization of Boolean Rings

A Generalization of Boolean Rings A Generalization of Boolean Rings Adil Yaqub Abstract: A Boolean ring satisfies the identity x 2 = x which, of course, implies the identity x 2 y xy 2 = 0. With this as motivation, we define a subboolean

More information

Extension theorems for homomorphisms

Extension theorems for homomorphisms Algebraic Geometry Fall 2009 Extension theorems for homomorphisms In this note, we prove some extension theorems for homomorphisms from rings to algebraically closed fields. The prototype is the following

More information

We say that a polynomial is in the standard form if it is written in the order of decreasing exponents of x. Operations on polynomials:

We say that a polynomial is in the standard form if it is written in the order of decreasing exponents of x. Operations on polynomials: R.4 Polynomials in one variable A monomial: an algebraic expression of the form ax n, where a is a real number, x is a variable and n is a nonnegative integer. : x,, 7 A binomial is the sum (or difference)

More information

3+4=2 5+6=3 7 4=4. a + b =(a + b) mod m

3+4=2 5+6=3 7 4=4. a + b =(a + b) mod m Rings and fields The ring Z m -part2(z 5 and Z 8 examples) Suppose we are working in the ring Z 5, consisting of the set of congruence classes Z 5 := {[0] 5, [1] 5, [2] 5, [3] 5, [4] 5 } with the operations

More information

1. Partial Fraction Expansion All the polynomials in this note are assumed to be complex polynomials.

1. Partial Fraction Expansion All the polynomials in this note are assumed to be complex polynomials. Partial Fraction Expansion All the polynomials in this note are assumed to be complex polynomials A rational function / is a quotient of two polynomials P, Q with 0 By Fundamental Theorem of algebra, =

More information

Factorization in Domains

Factorization in Domains Last Time Chain Conditions and s Uniqueness of s The Division Algorithm Revisited in Domains Ryan C. Trinity University Modern Algebra II Last Time Chain Conditions and s Uniqueness of s The Division Algorithm

More information

On the Universal Enveloping Algebra: Including the Poincaré-Birkhoff-Witt Theorem

On the Universal Enveloping Algebra: Including the Poincaré-Birkhoff-Witt Theorem On the Universal Enveloping Algebra: Including the Poincaré-Birkhoff-Witt Theorem Tessa B. McMullen Ethan A. Smith December 2013 1 Contents 1 Universal Enveloping Algebra 4 1.1 Construction of the Universal

More information

Part IV. Rings and Fields

Part IV. Rings and Fields IV.18 Rings and Fields 1 Part IV. Rings and Fields Section IV.18. Rings and Fields Note. Roughly put, modern algebra deals with three types of structures: groups, rings, and fields. In this section we

More information

Morera s Theorem for Functions of a Hyperbolic Variable

Morera s Theorem for Functions of a Hyperbolic Variable Int. Journal of Math. Analysis, Vol. 7, 2013, no. 32, 1595-1600 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2013.212354 Morera s Theorem for Functions of a Hyperbolic Variable Kristin

More information

Linear maps. Matthew Macauley. Department of Mathematical Sciences Clemson University Math 8530, Spring 2017

Linear maps. Matthew Macauley. Department of Mathematical Sciences Clemson University  Math 8530, Spring 2017 Linear maps Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 8530, Spring 2017 M. Macauley (Clemson) Linear maps Math 8530, Spring 2017

More information

Discrete Mathematics. CS204: Spring, Jong C. Park Computer Science Department KAIST

Discrete Mathematics. CS204: Spring, Jong C. Park Computer Science Department KAIST Discrete Mathematics CS204: Spring, 2008 Jong C. Park Computer Science Department KAIST Today s Topics Combinatorial Circuits Properties of Combinatorial Circuits Boolean Algebras Boolean Functions and

More information

Arithmetic Analogues of Derivations

Arithmetic Analogues of Derivations JOURNAL OF ALGEBRA 198, 9099 1997 ARTICLE NO. JA977177 Arithmetic Analogues of Derivations Alexandru Buium Department of Math and Statistics, Uniersity of New Mexico, Albuquerque, New Mexico 87131 Communicated

More information

4.5 Hilbert s Nullstellensatz (Zeros Theorem)

4.5 Hilbert s Nullstellensatz (Zeros Theorem) 4.5 Hilbert s Nullstellensatz (Zeros Theorem) We develop a deep result of Hilbert s, relating solutions of polynomial equations to ideals of polynomial rings in many variables. Notation: Put A = F[x 1,...,x

More information

ARITHMETIC PROGRESSIONS IN CYCLES OF QUADRATIC POLYNOMIALS

ARITHMETIC PROGRESSIONS IN CYCLES OF QUADRATIC POLYNOMIALS ARITHMETIC PROGRESSIONS IN CYCLES OF QUADRATIC POLYNOMIALS TIMO ERKAMA It is an open question whether n-cycles of complex quadratic polynomials can be contained in the field Q(i) of complex rational numbers

More information

Research Article On Prime Near-Rings with Generalized Derivation

Research Article On Prime Near-Rings with Generalized Derivation International Mathematics and Mathematical Sciences Volume 2008, Article ID 490316, 5 pages doi:10.1155/2008/490316 Research Article On Prime Near-Rings with Generalized Derivation Howard E. Bell Department

More information

Lesson 7: Lesson Summary. Sample Solution. Write a mathematical proof of the algebraic equivalence of ( ) and ( ). ( ) = ( )

Lesson 7: Lesson Summary. Sample Solution. Write a mathematical proof of the algebraic equivalence of ( ) and ( ). ( ) = ( ) Sample Solution Write a mathematical proof of the algebraic equivalence of () and (). () = () associative property = () commutative property Lesson Summary Properties of Arithmetic THE COMMUTATIVE PROPERTY

More information

A Theorem on Unique Factorization Domains Analogue for Modules

A Theorem on Unique Factorization Domains Analogue for Modules Int. J. Contemp. Math. Sciences, Vol. 6, 2011, no. 32, 1589-1596 A Theorem on Unique Factorization Domains Analogue for Modules M. Roueentan Department of Mathematics Shiraz University, Iran m.rooeintan@yahoo.com

More information

MATH 433 Applied Algebra Lecture 22: Semigroups. Rings.

MATH 433 Applied Algebra Lecture 22: Semigroups. Rings. MATH 433 Applied Algebra Lecture 22: Semigroups. Rings. Groups Definition. A group is a set G, together with a binary operation, that satisfies the following axioms: (G1: closure) for all elements g and

More information

In Class Problem Set #15

In Class Problem Set #15 In Class Problem Set #15 CSE 1400 and MTH 2051 Fall 2012 Relations Definitions A relation is a set of ordered pairs (x, y) where x is related to y. Let denote a relational symbol. Write x y to express

More information

Kevin James. MTHSC 412 Section 3.4 Cyclic Groups

Kevin James. MTHSC 412 Section 3.4 Cyclic Groups MTHSC 412 Section 3.4 Cyclic Groups Definition If G is a cyclic group and G =< a > then a is a generator of G. Definition If G is a cyclic group and G =< a > then a is a generator of G. Example 1 Z is

More information

MTH Abstract Algebra I and Number Theory S17. Homework 6/Solutions

MTH Abstract Algebra I and Number Theory S17. Homework 6/Solutions MTH 310-3 Abstract Algebra I and Number Theory S17 Homework 6/Solutions Exercise 1. Let a, b and e be integers. Suppose a and b are not both zero and that e is a positive common divisor of a and b. Put

More information

1. Valuative Criteria Specialization vs being closed

1. Valuative Criteria Specialization vs being closed 1. Valuative Criteria 1.1. Specialization vs being closed Proposition 1.1 (Specialization vs Closed). Let f : X Y be a quasi-compact S-morphisms, and let Z X be closed non-empty. 1) For every z Z there

More information

1. Group Theory Permutations.

1. Group Theory Permutations. 1.1. Permutations. 1. Group Theory Problem 1.1. Let G be a subgroup of S n of index 2. Show that G = A n. Problem 1.2. Find two elements of S 7 that have the same order but are not conjugate. Let π S 7

More information

Criteria for existence of semigroup homomorphisms and projective rank functions. George M. Bergman

Criteria for existence of semigroup homomorphisms and projective rank functions. George M. Bergman Criteria for existence of semigroup homomorphisms and projective rank functions George M. Bergman Suppose A, S, and T are semigroups, e: A S and f: A T semigroup homomorphisms, and X a generating set for

More information

HILBERT FUNCTIONS. 1. Introduction

HILBERT FUNCTIONS. 1. Introduction HILBERT FUCTIOS JORDA SCHETTLER 1. Introduction A Hilbert function (so far as we will discuss) is a map from the nonnegative integers to themselves which records the lengths of composition series of each

More information

Part IX. Factorization

Part IX. Factorization IX.45. Unique Factorization Domains 1 Part IX. Factorization Section IX.45. Unique Factorization Domains Note. In this section we return to integral domains and concern ourselves with factoring (with respect

More information

LOWHLL #WEEKLY JOURNAL.

LOWHLL #WEEKLY JOURNAL. # F 7 F --) 2 9 Q - Q - - F - x $ 2 F? F \ F q - x q - - - - )< - -? - F - - Q z 2 Q - x -- - - - 3 - % 3 3 - - ) F x - \ - - - - - q - q - - - - -z- < F 7-7- - Q F 2 F - F \x -? - - - - - z - x z F -

More information

Algebra Homework, Edition 2 9 September 2010

Algebra Homework, Edition 2 9 September 2010 Algebra Homework, Edition 2 9 September 2010 Problem 6. (1) Let I and J be ideals of a commutative ring R with I + J = R. Prove that IJ = I J. (2) Let I, J, and K be ideals of a principal ideal domain.

More information

8 Appendix: Polynomial Rings

8 Appendix: Polynomial Rings 8 Appendix: Polynomial Rings Throughout we suppose, unless otherwise specified, that R is a commutative ring. 8.1 (Largely) a reminder about polynomials A polynomial in the indeterminate X with coefficients

More information

Outline. MSRI-UP 2009 Coding Theory Seminar, Week 2. The definition. Link to polynomials

Outline. MSRI-UP 2009 Coding Theory Seminar, Week 2. The definition. Link to polynomials Outline MSRI-UP 2009 Coding Theory Seminar, Week 2 John B. Little Department of Mathematics and Computer Science College of the Holy Cross Cyclic Codes Polynomial Algebra More on cyclic codes Finite fields

More information

Skew Polynomial Rings

Skew Polynomial Rings Skew Polynomial Rings NIU November 14, 2018 Bibliography Beachy, Introductory Lectures on Rings and Modules, Cambridge Univ. Press, 1999 Goodearl and Warfield, An Introduction to Noncommutative Noetherian

More information

Rings, Integral Domains, and Fields

Rings, Integral Domains, and Fields Rings, Integral Domains, and Fields S. F. Ellermeyer September 26, 2006 Suppose that A is a set of objects endowed with two binary operations called addition (and denoted by + ) and multiplication (denoted

More information

A. H. Hall, 33, 35 &37, Lendoi

A. H. Hall, 33, 35 &37, Lendoi 7 X x > - z Z - ----»»x - % x x» [> Q - ) < % - - 7»- -Q 9 Q # 5 - z -> Q x > z»- ~» - x " < z Q q»» > X»? Q ~ - - % % < - < - - 7 - x -X - -- 6 97 9

More information

CHAPTER 10: POLYNOMIALS (DRAFT)

CHAPTER 10: POLYNOMIALS (DRAFT) CHAPTER 10: POLYNOMIALS (DRAFT) LECTURE NOTES FOR MATH 378 (CSUSM, SPRING 2009). WAYNE AITKEN The material in this chapter is fairly informal. Unlike earlier chapters, no attempt is made to rigorously

More information

4 Powers of an Element; Cyclic Groups

4 Powers of an Element; Cyclic Groups 4 Powers of an Element; Cyclic Groups Notation When considering an abstract group (G, ), we will often simplify notation as follows x y will be expressed as xy (x y) z will be expressed as xyz x (y z)

More information

T k b p M r will so ordered by Ike one who quits squuv. fe2m per year, or year, jo ad vaoce. Pleaie and THE ALTO SOLO

T k b p M r will so ordered by Ike one who quits squuv. fe2m per year, or year, jo ad vaoce. Pleaie and THE ALTO SOLO q q P XXX F Y > F P Y ~ Y P Y P F q > ##- F F - 5 F F?? 5 7? F P P?? - - F - F F - P 7 - F P - F F % P - % % > P F 9 P 86 F F F F F > X7 F?? F P Y? F F F P F F

More information

Polyhedral Mass Properties (Revisited)

Polyhedral Mass Properties (Revisited) Polyhedral Mass Properties (Revisited) David Eberly, Geometric Tools, Redmond WA 98052 https://www.geometrictools.com/ This work is licensed under the Creative Commons Attribution 4.0 International License.

More information

LOWELL WEEKLY JOURNAL

LOWELL WEEKLY JOURNAL Y -» $ 5 Y 7 Y Y -Y- Q x Q» 75»»/ q } # ]»\ - - $ { Q» / X x»»- 3 q $ 9 ) Y q - 5 5 3 3 3 7 Q q - - Q _»»/Q Y - 9 - - - )- [ X 7» -» - )»? / /? Q Y»» # X Q» - -?» Q ) Q \ Q - - - 3? 7» -? #»»» 7 - / Q

More information

P = 1 F m(p ) = IP = P I = f(i) = QI = IQ = 1 F m(p ) = Q, so we are done.

P = 1 F m(p ) = IP = P I = f(i) = QI = IQ = 1 F m(p ) = Q, so we are done. Section 1.6: Invertible Matrices One can show (exercise) that the composition of finitely many invertible functions is invertible. As a result, we have the following: Theorem 6.1: Any admissible row operation

More information

A Memorial. Death Crash Branch Out. Symbol The. at Crossing Flaming Poppy. in Belding

A Memorial. Death Crash Branch Out. Symbol The. at Crossing Flaming Poppy. in Belding - G Y Y 8 9 XXX G - Y - Q 5 8 G Y G Y - - * Y G G G G 9 - G - - : - G - - ) G G- Y G G q G G : Q G Y G 5) Y : z 6 86 ) ; - ) z; G ) 875 ; ) ; G -- ) ; Y; ) G 8 879 99 G 9 65 q 99 7 G : - G G Y ; - G 8

More information

Diameter of the Zero Divisor Graph of Semiring of Matrices over Boolean Semiring

Diameter of the Zero Divisor Graph of Semiring of Matrices over Boolean Semiring International Mathematical Forum, Vol. 9, 2014, no. 29, 1369-1375 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/imf.2014.47131 Diameter of the Zero Divisor Graph of Semiring of Matrices over

More information

Linear Algebra (Part II) Vector Spaces, Independence, Span and Bases

Linear Algebra (Part II) Vector Spaces, Independence, Span and Bases Linear Algebra (Part II) Vector Spaces, Independence, Span and Bases A vector space, or sometimes called a linear space, is an abstract system composed of a set of objects called vectors, an associated

More information

With Question/Answer Animations. Chapter 4

With Question/Answer Animations. Chapter 4 With Question/Answer Animations Chapter 4 Chapter Motivation Number theory is the part of mathematics devoted to the study of the integers and their properties. Key ideas in number theory include divisibility

More information