PAPER 2 THEORY QUESTIONS

Size: px
Start display at page:

Download "PAPER 2 THEORY QUESTIONS"

Transcription

1 PAPER 2 THEORY QUESTIONS 1 Fig. 1.1 shows the arrangement of atoms in a solid block. Fig. 1.1 (a) End X of the block is heated. Energy is conducted to end Y, which becomes warm. (i) Explain how heat is conducted from X to Y by the atoms.... [2] (ii) Explain why the solid block expands when it is heated. (b) The block is heated and becomes a liquid. Describe the changes that occur to the arrangement and the motion of the atoms [2] 2 Fig. 2.1 shows a metal pan containing water on a cooker. The hotplate heats the water. Fig. 1.2 (a) (i) State the method of heat transfer through the metal pan. (ii) Describe how the molecules transfer heat through the metal pan. MS / Sh.M / FT 12 / Gr 10/ Physics / Theory questions / Thermal physics 1

2 (b) (i) On Fig. 2.1, draw an arrow to show the direction of movement of the water at point X.[1] (ii) Explain why the water moves in this direction.... [3] 3 Fig. 3.1 shows a metal roof. One side is facing the Sun. Fig. 3.1 (a) State the means by which thermal energy (heat) is transferred from the Sun to the Earth and explain why other means of thermal energy transfer are not involved [2] (b) Describe how thermal energy is transferred through the metal roof from the heated surface [2] (c) During the night, the metal roof loses J of thermal energy and its temperature falls by 20 C. The specific heat capacity of the metal in the roof is 400 J / (kg C). Calculate the mass of metal in the roof. mass =... [2] MS / Sh.M / FT 12 / Gr 10/ Physics / Theory questions / Thermal physics 2

3 4 Three horizontal rods are placed with one end just above a Bunsen flame. The other end of each rod is coated with wax, as shown in Fig Fig. 4.1 (a) Describe how you would use the apparatus to discover which rod is the best conductor of heat [2] (b) Two metal teapots are identical except that one is black on the outside and the other is white on the outside, as shown in Fig Fig. 4.2 The teapots each contain the same amount of hot water. State and explain which teapot will cool down more quickly [2] 5 Heat is transferred by conduction, convection and radiation. (a) (i) State which of the three methods is responsible for the transfer of heat from the Sun to the Earth. (ii) Explain why the other two methods cannot be involved in this transfer.. [2] (b) A hand feels hot when placed above a lighted match, as shown in Fig Explain in detail how convection causes this to happen [2] Fig. 5.1 MS / Sh.M / FT 12 / Gr 10/ Physics / Theory questions / Thermal physics 3

4 (c) Fig. 5.2 shows a layer of fibreglass placed between the ceiling of a room and the roof of a house. Fig. 5.2 Explain how the layer of fibreglass helps to keep the room warm when it is cold outside [2] 6 Fig. 6.1 shows a refrigerator. Fig. 6.1 Inside the pipes in the ice-box, a liquid boils and takes in latent heat. The gas condenses in the pipes at the back of the refrigerator and thermal energy (heat) leaves through the black metal fins. (a) (i) State one similarity and one difference between boiling and evaporation. (ii) Explain, in terms of the molecules involved, why latent heat is needed to boil the liquid... [5] MS / Sh.M / FT 12 / Gr 10/ Physics / Theory questions / Thermal physics 4

5 (b) (i) Explain how the ice box at the top of the refrigerator keeps the whole of the food compartment cool. (ii) Explain why the fins are black... [4] (c) A plastic ice tray has 16 sections filled with water. When placed in the ice box, the water freezes to form ice cubes. Each section contains a mass of 20 g of water that is initially completely liquid at a temperature of 0 C. The specific latent heat of fusion of ice is 330 J/g. (i) Calculate the amount of energy that must be taken from the tray of water to enable all the water in the tray to become ice at 0 C. energy =. (ii) State why the heat capacity of the plastic tray does not affect the answer to (i). (iii) The ice box takes energy from the water at a rate of 30W. Estimate the time taken for all the water in the tray to become ice. time taken =. [6] 7 A heat pipe is a device that transmits thermal energy along its length. It can transmit energy thousands of times faster than a solid copper rod. Fig. 7.1 shows a heat pipe attached to black metal fins. The fins absorb energy from the Sun. The sealed pipe transmits this energy along its length into a tank of cold water. Fig. 7.1 MS / Sh.M / FT 12 / Gr 10/ Physics / Theory questions / Thermal physics 5

6 (a) (i) Describe how molecules in the copper conduct energy to the alcohol. (ii) Explain how boiling and condensation within the heat pipe cause the transfer of energy. (iii) Explain why the heat pipe is able to transfer energy at a fast rate.... [4] (b) In one minute, a mass of 25 g of alcohol condenses at the end of the heat pipe. The specific latent heat of vaporisation of alcohol is 840 J/g. (i) Define specific latent heat of vaporisation. (ii) Clculate the amount of energy released when 25 g of alcohol condenses. You may neglect any change in the temperature of the alcohol. energy =.. (iii) Calculate the maximum rise in temperature that the energy calculated in (ii) produces when used to heat 500 g of cold water. The specific heat capacity of water is 4.2 J/(g C). temperature = [6] (c) Black surfaces absorb and emit infra-red radiation better than white surfaces. (i) Describe an experiment that shows black surfaces absorb radiation better than white surfaces. (ii) Describe an experiment that shows black surfaces emit radiation better than white surfaces at the same temperature... [5] MS / Sh.M / FT 12 / Gr 10/ Physics / Theory questions / Thermal physics 6

7 8 Fig. 8.1 shows an electric boiler in a school kitchen. Fig. 8.1 The boiler contains 35 kg of water at 22 C. The specific heat capacity of water is 4200 J / (kg C). (a) (i) Calculate the thermal energy (heat) needed to raise the temperature of the water from 22 C to its boiling point. energy = [3] (ii) The water in the boiler is heated with a 2600 W immersion heater. Calculate the minimum time for the heater to bring the water to its boiling point. time taken =. [2] (iii) Suggest one reason why the actual time is greater than the time calculated in (ii).. [1] (b) (i) The immersion heater is placed in the water at the bottom of the boiler. Explain in detail how this ensures that the thermal energy (heat) is transferred throughout the water.... [4] (ii) The boiler is made of steel and has two large plastic handles. When the water is boiling, the steel surface at X is hot while the plastic handle at Y is cool. Explain why.... [2] MS / Sh.M / FT 12 / Gr 10/ Physics / Theory questions / Thermal physics 7

8 (c) Before the water reaches boiling point, water vapour is seen escaping from the boiler. (i) State the name of the process that produces this water vapour. (ii) State two differences between this process and boiling.... [2] 9 When a house is heated, energy is lost to the outside. Fig. 9.1 shows where the energy is lost from the house. Fig. 9.1 (a) (i) Calculate the percentage of the energy lost through the roof. [1] (ii) Energy is lost through the roof by conduction and from the roof by convection and by radiation. Explain in detail how this happens... [6] (iii) Fitting carpets on the floor reduces energy loss. Explain how a carpet reduces energy loss... [2] MS / Sh.M / FT 12 / Gr 10/ Physics / Theory questions / Thermal physics 8

9 (b) The table gives information about three methods of reducing energy loss. (i) Calculate the values of X and Y. [2] (ii) Which one of these three methods should the house owner choose? Explain your answer... [2] (iii) State two other ways, not already mentioned, of reducing energy loss from the house... [2] 10 The Aluminium bar is placed in a small furnace. Fig shows how the temperature of the bar varies with time t. Fig (i) State what happens to the bar between t = 600 s and 1000 s. MS / Sh.M / FT 12 / Gr 10/ Physics / Theory questions / Thermal physics 9

10 (ii) Explain what effect the energy supplied to the bar has on its molecules between t = 0 and 1000 s. (iii) The mass of the bar is kg and the specific heat capacity of aluminium is 880 J/(kg C). Calculate the energy supplied to the bar between t = 0 and 600 s. energy = (iv) Between t = 600 s and 1000 s the furnace supplies 30 joules of energy per second to the bar. Calculate the specific latent heat of fusion of aluminium. specific latent heat of fusion = 11 A lead bullet of mass 1.9 g is fired from a rifle in a sports club. The bullet misses the target and embeds itself in a wall behind the target. The bullet melts as it is stopped by the wall. The specific latent heat of fusion of lead is J / kg. (a) State what is meant by melting point [1] (b) (i) Calculate the energy required to melt the bullet, at its melting point, without raising its temperature. energy =... [3] (ii) Assume that the energy that melts the bullet is equal to its kinetic energy just before it strikes the wall. Calculate the speed of the bullet just before it strikes the wall. speed =... [3] (iii) Suggest two reasons why the speed of the bullet as it leaves the rifle is greater than the value calculated in (ii)... [2] MS / Sh.M / FT 12 / Gr 10/ Physics / Theory questions / Thermal physics 10

11 (c) Describe how the molecular structure of the lead changes as it melts [3] (d) On another occasion, lead bullets of twice the mass are used. One of these heavier bullets hits the wall with the speed calculated in (b)(ii). State and explain whether this bullet melts as it is stopped by the wall [3] 12 Fig shows a thermometer. Fig (a) Explain how to calibrate a thermometer [3] (b) (i) State the range of the thermometer in Fig (ii) State how you know that the scale of the thermometer in Fig is linear. (c) Fig shows a thermometer which is more sensitive than the thermometer in Fig Only 0 C is marked on this new thermometer. On Fig. 12.2, draw the temperature markings for 10 C and 20 C. [1] Fig MS / Sh.M / FT 12 / Gr 10/ Physics / Theory questions / Thermal physics 11

12 13 Fig shows a laboratory thermometer. Fig (a) (i) State the range of the thermometer. (ii) State one change in the design of the thermometer to increase its range. (b) (i) Describe how the behaviour of a more sensitive thermometer is different from a less sensitive thermometer. (ii) State one change in the design of the thermometer to make it more sensitive. (c) Describe how a clinical thermometer differs from a laboratory thermometer. A diagram may be included in your answer [3] (d) (i) In the space below, draw a labelled diagram of a thermocouple thermometer. [2] (ii) State two reasons why a thermocouple thermometer is sometimes a better choice than a laboratory thermometer.... [2] MS / Sh.M / FT 12 / Gr 10/ Physics / Theory questions / Thermal physics 12

13 (e) Fig shows a copper block of mass 1.8 kg with two holes in the top. An 80 W heater is placed in one hole and a thermometer in the other. Fig The heater is switched on for 5.0 minutes. Assume that no energy is lost from the block. (i) Calculate the energy supplied to the block. energy supplied =... [2] (ii) The specific heat capacity of copper is 390 J / (kg C). Calculate the rise in temperature of the block. 14 Thermal expansion can be a problem temperature rise =... [2] Fig Small gaps are left in railway lines and in bridges, as shown in Fig (a) Explain in detail why the gaps are needed [2] (b) State one other problem caused by thermal expansion and explain how it can be solved [1] MS / Sh.M / FT 12 / Gr 10/ Physics / Theory questions / Thermal physics 13

14 15 A mercury thermometer uses the expansion of mercury to measure temperature. The thermometer is calibrated by placing it in pure melting ice, and then in steam at 100 C. This is illustrated in Fig Fig (a) State the temperature of the thermometer when it is in pure melting ice... [1] (b) The length of the mercury column is 4.0 cm in pure melting ice and 28.0 cm in the steam. Calculate the temperature for a length of 22.0 cm. temperature =... C [2] (c) The heat capacity of the thermometer is 2.4 J/ C. Calculate the amount of energy needed to heat the thermometer from the temperature of pure melting ice to 100 C. energy =... J [1] (d) State one other physical property of a substance that may be used to measure temperature... [1] 16 A student notices puddles of water on a road, as shown in Fig Fig MS / Sh.M / FT 12 / Gr 10/ Physics / Theory questions / Thermal physics 14

15 Later in the day, he passes the puddles again and some of the water has evaporated. (a) State two changes to the atmospheric conditions that would cause the water to evaporate faster [2] (b) Explain, in terms of molecules, what happens during evaporation [2] 17 Fig shows the arrangement of molecules in a solid and in a liquid. Fig (a) State one difference between the two arrangements [1] (b) By writing about the forces between molecules and the motion of molecules, explain why (i) the molecules of a solid and of a liquid have different arrangements, (ii) the evaporation of a liquid cools the liquid,... [2] (iii) the rate of evaporation is greater when a liquid is hotter.... [2] MS / Sh.M / FT 12 / Gr 10/ Physics / Theory questions / Thermal physics 15

16 18 Fig illustrates the arrangement of the molecules of a substance in its solid, liquid and gaseous states. Fig (a) State which arrangement, A, B or C, contains molecules with the most energy... [1] (b) Explain, in terms of the forces between the molecules and their separation, why (i) gases are easier to compress than liquids,.. [2] (ii) latent heat is needed to change the substance from solid to liquid... [2] (c) Define the term specific latent heat of fusion of a substance [2] MS / Sh.M / FT 12 / Gr 10/ Physics / Theory questions / Thermal physics 16

4.1. Physics Module Form 4 Chapter 4 - Heat GCKL UNDERSTANDING THERMAL EQUILIBRIUM. What is thermal equilibrium?

4.1. Physics Module Form 4 Chapter 4 - Heat GCKL UNDERSTANDING THERMAL EQUILIBRIUM. What is thermal equilibrium? 4.1 4 UNDERSTANDING THERMAL EQUILIBRIUM What is thermal equilibrium? 1. ( Heat, Temperature ) is a form of energy that flows from a hot body to a cold body. 2. The SI unit for ( heat, temperature) is Joule,

More information

Chapter 1 Heating Processes

Chapter 1 Heating Processes Chapter 1 Heating Processes Section 1.1 Heat and temperature Worked example: Try yourself 1.1.1 CALCULATING THE CHANGE IN INTERNAL ENERGY A student places a heating element and a paddle wheel apparatus

More information

1. Thermal energy is transferred through the glass windows of a house mainly by. D. radiation and convection. (1)

1. Thermal energy is transferred through the glass windows of a house mainly by. D. radiation and convection. (1) 1. Thermal energy is transferred through the glass windows of a house mainly by A. conduction. B. radiation. C. conduction and convection. D. radiation and convection. 2. The specific latent heat of vaporization

More information

4.1. Physics Module Form 4 Chapter 4 - Heat GCKL UNDERSTANDING THERMAL EQUILIBRIUM. What is thermal equilibrium?

4.1. Physics Module Form 4 Chapter 4 - Heat GCKL UNDERSTANDING THERMAL EQUILIBRIUM. What is thermal equilibrium? Physics Module Form 4 Chapter 4 - Heat GCKL 2010 4.1 4 UNDERSTANDING THERMAL EQUILIBRIUM What is thermal equilibrium? 1. (, Temperature ) is a form of energy that flows from a hot body to a cold body.

More information

Topic 19b. Thermal Properties of Matter

Topic 19b. Thermal Properties of Matter Topic 19b The infra-red image of a head shows the distribution of heat. Different colours indicate different temperatures. Which do you think are the warmest regions? Thermal Properties of Matter contents

More information

Name... Class... Date... Specific heat capacity and specific latent heat

Name... Class... Date... Specific heat capacity and specific latent heat Specific heat capacity and specific latent heat Specification references: P3.2.2 Temperature changes in a system and specific heat capacity P3.2.3 Changes of heat and specific latent heat Aims This is

More information

SPH3U1 Lesson 03 Energy

SPH3U1 Lesson 03 Energy THERMAL ENERGY AND LATENT HEAT LEARNING GOALS Students will learn: Heat changes the amount of thermal energy in an object Temperature is a measure of the average thermal energy in an object Heat capacity

More information

Unit 11: Temperature and heat

Unit 11: Temperature and heat Unit 11: Temperature and heat 1. Thermal energy 2. Temperature 3. Heat and thermal equlibrium 4. Effects of heat 5. Transference of heat 6. Conductors and insulators Think and answer a. Is it the same

More information

PURE PHYSICS THERMAL PHYSICS (PART I)

PURE PHYSICS THERMAL PHYSICS (PART I) PURE PHYSICS THERMAL PHYSICS (PART I) 1 The kinetic theory of matter states that all matters are made up of or, which are in and motion. forces hold the atoms or molecules together. The nature of these

More information

CLASSIFIED 2 PRESSURE THERMAL PHYSICS MR. HUSSAM SAMIR

CLASSIFIED 2 PRESSURE THERMAL PHYSICS MR. HUSSAM SAMIR CLASSIFIED 2 PRESSURE THERMAL PHYSICS MR. HUSSAM SAMIR 1. The diagram shows a simple mercury barometer. If atmospheric pressure increases, what happens to level X and to level Y? 2. Four flower vases have

More information

IGCSE Double Award Extended Coordinated Science

IGCSE Double Award Extended Coordinated Science IGCSE Double Award Extended Coordinated Science Physics 5 - Thermal Properties of Matter Thermal Expansion You need to know thermal expansions for solids, liquids, and gases, and their applications. Thermal

More information

Thermal Effects. IGCSE Physics

Thermal Effects. IGCSE Physics Thermal Effects IGCSE Physics Starter What is the difference between heat and temperature? What unit is thermal energy measured in? And what does it depend on? In which direction does heat flow? Heat (Thermal

More information

1. How much heat was needed to raise the bullet to its final temperature?

1. How much heat was needed to raise the bullet to its final temperature? Name: Date: Use the following to answer question 1: A 0.0500-kg lead bullet of volume 5.00 10 6 m 3 at 20.0 C hits a block that is made of an ideal thermal insulator and comes to rest at its center. At

More information

Demonstrate understanding of aspects of heat

Demonstrate understanding of aspects of heat Demonstrate understanding of aspects of heat Heat Transfer Temperature - temperature is a measure of the average kinetic energy of the particles making up an object (measured in C or K) 0 K = -273 o C

More information

Put sufficient ice cubes into water (1 M) and wait for equilibrium (both exist) (1 M)

Put sufficient ice cubes into water (1 M) and wait for equilibrium (both exist) (1 M) NAME : F.5 ( ) Marks: /70 FORM FOUR PHYSICS REVISION TEST on HEAT Allowed: 70 minutes This paper consists of two sections. Section A (50 marks) consists of the structure-type questions, and Section B (20

More information

Tick the box next to those resources for which the Sun is also the source of energy.

Tick the box next to those resources for which the Sun is also the source of energy. 1 (a) The source of solar energy is the Sun. Tick the box next to those resources for which the Sun is also the source of energy. coal geothermal hydroelectric nuclear wind [2] (b) Fig. 4.1 shows a solar

More information

S6. (a) State what is meant by an ideal gas...

S6. (a) State what is meant by an ideal gas... IB PHYSICS Name: DEVIL PHYSICS Period: Date: BADDEST CLASS ON CAMPUS TSOKOS CHAPTER 3 TEST REVIEW S1. Thermal energy is transferred through the glass windows of a house mainly by A. conduction. B. radiation.

More information

Handout 10: Heat and heat transfer. Heat capacity

Handout 10: Heat and heat transfer. Heat capacity 1 Handout 10: Heat and heat transfer Heat capacity Consider an experiment in Figure 1. Heater is inserted into a solid substance of mass m and the temperature rise T degrees Celsius is measured by a thermometer.

More information

Chapter: Heat and States

Chapter: Heat and States Table of Contents Chapter: Heat and States of Matter Section 1: Temperature and Thermal Energy Section 2: States of Matter Section 3: Transferring Thermal Energy Section 4: Using Thermal Energy 1 Temperature

More information

THERMAL PROPERTIES OF MATTER

THERMAL PROPERTIES OF MATTER CHP # 8 HERMA PROPERIES OF MAER Q.1 Differentiate between heat and temperature? (Ans) Heat It can be defined as "the sum of kinetic energy of the molecules present in a substance is called heat". Heat

More information

Ordinary Level Physics Long Questions: TEMPERATURE AND HEAT

Ordinary Level Physics Long Questions: TEMPERATURE AND HEAT Ordinary Level Physics Long Questions: TEMPERATURE AND HEAT Temperature 2014 Question 7 (a) [Ordinary Level] The temperature of an object can be measured using a thermometer which is based on a suitable

More information

Exam questions: HEAT. 2. [2003 OL][2004 OL][2005 OL][2006 OL][2007 OL][2008 OL][2009] Name two methods by which heat can be transferred.

Exam questions: HEAT. 2. [2003 OL][2004 OL][2005 OL][2006 OL][2007 OL][2008 OL][2009] Name two methods by which heat can be transferred. Exam questions: HEAT Specific heat capacity of copper = 390 J kg 1 K 1 ; Specific heat capacity of water = 4200 J kg 1 K 1 s.h.c. of aluminium = 910 J kg -1 K -1 ; Specific latent heat of fusion of ice

More information

P5 Heat and Particles Revision Kinetic Model of Matter: States of matter

P5 Heat and Particles Revision Kinetic Model of Matter: States of matter P5 Heat and Particles Revision Kinetic Model of Matter: States of matter State Size Shape Solid occupies a fixed volume has a fixed shape Liquid occupies a fixed volume takes the shape of its container

More information

(ii) the total kinetic energy of the gas molecules (1 mark) (iii) the total potential energy of the gas molecules (1 mark)

(ii) the total kinetic energy of the gas molecules (1 mark) (iii) the total potential energy of the gas molecules (1 mark) NAME : F.5 ( ) Marks: /70 FORM FOUR PHYSICS REVISION TEST on HEAT Allowed: 70 minutes This paper consists of two sections. Section A (50 marks) consists of the structure-type questions, and Section B (20

More information

NATIONAL 5 PHYSICS THERMODYNAMICS

NATIONAL 5 PHYSICS THERMODYNAMICS NATIONAL 5 PHYSICS THERMODYNAMICS HEAT AND TEMPERATURE Heat and temperature are not the same thing! Heat Heat is a type of energy. Like all types of energy it is measured in joules (J). The heat energy

More information

CIE Physics IGCSE. Topic 2: Thermal Physics

CIE Physics IGCSE. Topic 2: Thermal Physics CIE Physics IGCSE Topic 2: Thermal Physics Summary Notes Simple kinetic molecular model of matter Molecular model Solids Molecules close together in regular pattern Strong intermolecular forces of attraction

More information

3. EFFECTS OF HEAT. Thus, heat can be defined as a form of energy that gives the sensation of hotness or coldness

3. EFFECTS OF HEAT. Thus, heat can be defined as a form of energy that gives the sensation of hotness or coldness 3. EFFECTS OF HEAT In the previous class you have learnt that heat is a form of energy. Heat can be obtained from various sources like the sun, fire, etc. When we read the weather forecast we observe that

More information

EDULABZ INTERNATIONAL. Heat ASSIGNMENT

EDULABZ INTERNATIONAL. Heat ASSIGNMENT Heat ASSIGNMENT 1. Fill in the blank spaces by choosing the correct words from the list given below : List : substance, thermal capacity, mass, latent, heat, cold, constant, water, J C 1, fusion, hot.

More information

Chapter 11. Energy in Thermal Processes

Chapter 11. Energy in Thermal Processes Chapter 11 Energy in Thermal Processes Energy Transfer When two objects of different temperatures are placed in thermal contact, the temperature of the warmer decreases and the temperature of the cooler

More information

Preview. Heat Section 1. Section 1 Temperature and Thermal Equilibrium. Section 2 Defining Heat. Section 3 Changes in Temperature and Phase

Preview. Heat Section 1. Section 1 Temperature and Thermal Equilibrium. Section 2 Defining Heat. Section 3 Changes in Temperature and Phase Heat Section 1 Preview Section 1 Temperature and Thermal Equilibrium Section 2 Defining Heat Section 3 Changes in Temperature and Phase Heat Section 1 TEKS The student is expected to: 6E describe how the

More information

Thermal Physics. Temperature (Definition #1): a measure of the average random kinetic energy of all the particles of a system Units: o C, K

Thermal Physics. Temperature (Definition #1): a measure of the average random kinetic energy of all the particles of a system Units: o C, K Thermal Physics Internal Energy: total potential energy and random kinetic energy of the molecules of a substance Symbol: U Units: J Internal Kinetic Energy: arises from random translational, vibrational,

More information

Name: New Document 1. Class: Date: 83 minutes. Time: 82 marks. Marks: Comments:

Name: New Document 1. Class: Date: 83 minutes. Time: 82 marks. Marks: Comments: New Document Name: Class: Date: Time: 83 minutes Marks: 82 marks Comments: Q. Solid, liquid and gas are three different states of matter. (a) Describe the difference between the solid and gas states, in

More information

40P (2 x 60 x 60) = 2.5 x 10 6 (4200)(5) P = 1.82 x 10 5 W

40P (2 x 60 x 60) = 2.5 x 10 6 (4200)(5) P = 1.82 x 10 5 W NAME : F.3C ( ) Marks: /50 Form 3 Physics Assessment on Heat Time allowed: 45 minutes Section A (34 marks) 1. An indoor swimming pool containing 2.5 x 10 6 kg of water uses 40 identical heaters to maintain

More information

Question 11.1: The triple points of neon and carbon dioxide are 24.57 K and 216.55 K respectively. Express these temperatures on the Celsius and Fahrenheit scales. Kelvin and Celsius scales are related

More information

1. This question is about modelling the thermal processes involved when a person is running.

1. This question is about modelling the thermal processes involved when a person is running. 1. This question is about modelling the thermal processes involved when a person is running. When running, a person generates thermal energy but maintains approximately constant temperature. (a) Explain

More information

Answer: The relation between kelvin scale and Celsius scale is TK =TC => TC=TK

Answer: The relation between kelvin scale and Celsius scale is TK =TC => TC=TK Question The triple points of neon and carbon dioxide are 24.57 K and 216.55 K respectively. Express these temperatures on the Celsius and Fahrenheit scales. Answer: The relation between kelvin scale and

More information

M1. (a) range of speeds 1. moving in different directions accept random motion 1. internal energy 1. density = mass / volume 1. (d) / 0.

M1. (a) range of speeds 1. moving in different directions accept random motion 1. internal energy 1. density = mass / volume 1. (d) / 0. M. (a) range of speeds moving in different directions accept random motion (b) internal energy (c) density = mass / volume (d) 0.00254 / 0.04 0.8 accept 0.8 with no working shown for the 2 calculation

More information

3.3 Phase Changes 88 A NATURAL APPROACH TO CHEMISTRY. Section 3.3 Phase Changes

3.3 Phase Changes 88 A NATURAL APPROACH TO CHEMISTRY. Section 3.3 Phase Changes Section 3.3 Phase Changes 3.3 Phase Changes Solid, liquid and gas During a phase change, a substance rearranges the order of its particles (atoms or molecules). Examples of phase change include melting

More information

Thermodynamics - Heat Transfer June 04, 2013

Thermodynamics - Heat Transfer June 04, 2013 THERMODYNAMICS - Heat and Heat Transfer: Heat (Q) is a form of Energy that is transferred between an object and another object or its surrounding environment due to a difference in Temperature. Heat is

More information

5. Temperature and Heat

5. Temperature and Heat Leaving Cert Physics Long Questions 2017-2002 5. Temperature and Heat Please remember to photocopy 4 pages onto one sheet by going A3 A4 and using back to back on the photocopier Contents Temperature:

More information

There are four phases of matter: Phases of Matter

There are four phases of matter: Phases of Matter HEAT SCIENCE There are four phases of matter: Phases of Matter There are four phases of matter: Phases of Matter Animation States of Matter Solids Solids: Are rigid, crystalline Hold their shape Have little

More information

* Defining Temperature * Temperature is proportional to the kinetic energy of atoms and molecules. * Temperature * Internal energy

* Defining Temperature * Temperature is proportional to the kinetic energy of atoms and molecules. * Temperature * Internal energy * Defining Temperature * We associate temperature with how hot or cold an object feels. * Our sense of touch serves as a qualitative indicator of temperature. * Energy must be either added or removed from

More information

6-3 Particle model of matter Physics

6-3 Particle model of matter Physics 6-3 Particle model of matter Physics.0 A teacher uses a tray filled with table tennis balls to model how particles are arranged in materials, as shown in Figure Figure. Initially the balls are arranged

More information

PHYS102 Previous Exam Problems. Temperature, Heat & The First Law of Thermodynamics

PHYS102 Previous Exam Problems. Temperature, Heat & The First Law of Thermodynamics PHYS102 Previous Exam Problems CHAPTER 18 Temperature, Heat & The First Law of Thermodynamics Equilibrium & temperature scales Thermal expansion Exchange of heat First law of thermodynamics Heat conduction

More information

The triple points of neon and carbon dioxide are K and K respectively. Express these temperatures on the Celsius and Fahrenheit scales.

The triple points of neon and carbon dioxide are K and K respectively. Express these temperatures on the Celsius and Fahrenheit scales. Question 11.1: The triple points of neon and carbon dioxide are 24.57 K and 216.55 K respectively. Express these temperatures on the Celsius and Fahrenheit scales. Kelvin and Celsius scales are related

More information

Comparing the actual value and the experimental value on heat. By conservation of energy

Comparing the actual value and the experimental value on heat. By conservation of energy Topic: Heat 1. Temperature and thermometers a. Temperature: - measure degree of hotness. -measure the average kinetic energy of molecules in random motions. b. Fixed points: -Lower fixed point: temperature

More information

CALORIEMETRY. Similar to the other forms of the energy, The S.I unit of heat is joule. joule is represented as J.

CALORIEMETRY. Similar to the other forms of the energy, The S.I unit of heat is joule. joule is represented as J. CALORIEMETRY CALORIMETRY Heat is the kinetic energy due to random motion of the molecules of a substance is called heat energy. Heat is a an invisible energy, that causes in us the sensation of hotness

More information

6-3 Particle model of matter Trilogy

6-3 Particle model of matter Trilogy 6-3 Particle model of matter Trilogy.0 A teacher uses a tray filled with table tennis balls to model how particles are arranged in materials, as shown in Figure Figure. Initially the balls are arranged

More information

Electricity and Energy 1 Content Statements

Electricity and Energy 1 Content Statements Keep this in good condition, it will help you pass your final exams. The school will only issue one paper copy per pupil. An e-copy will be placed on the school s web-site. Electricity and Energy 1 Content

More information

Thermal energy. Thermal energy is the internal energy of a substance. I.e. Thermal energy is the kinetic energy of atoms and molecules.

Thermal energy. Thermal energy is the internal energy of a substance. I.e. Thermal energy is the kinetic energy of atoms and molecules. Thermal energy Thermal energy is the internal energy of a substance. I.e. Thermal energy is the kinetic energy of atoms and molecules. Heat is the transfer of thermal energy between substances. Until the

More information

Chapter 14: Temperature and Heat

Chapter 14: Temperature and Heat Chapter 14 Lecture Chapter 14: Temperature and Heat Goals for Chapter 14 To study temperature and temperature scales. To describe thermal expansion and its applications. To explore and solve problems involving

More information

UNIVERSITY COLLEGE LONDON. University of London EXAMINATION FOR INTERNAL STUDENTS. For The Following Qualifications:-

UNIVERSITY COLLEGE LONDON. University of London EXAMINATION FOR INTERNAL STUDENTS. For The Following Qualifications:- UNIVERSITY COLLEGE LONDON University of London EXAMINATION FOR INTERNAL STUDENTS For The Following Qualifications:- B.Sc. M.Sci. Physics 1B28: Thermal Physics COURSE CODE : PHYSIB28 UNIT VALUE : 0.50 DATE

More information

Study Guide Unit 3 Chapter 6 DRAFT

Study Guide Unit 3 Chapter 6 DRAFT Study Guide Unit 3 Chapter 6 DRAFT Unit 3 BIG IDEAS Energy can be transformed from one type into another. Energy transformation systems often involve thermal energy losses and are never 100 % efficient.

More information

Conduction and Convection

Conduction and Convection Conduction and Convection Convection Currents Definition Convection is the transfer of heat in liquids and gases. The hotter the liquid/gas the particles move faster and spread out. This means the gas/liquid

More information

4.3.1 Changes of state and the particle model Density of materials. ρ = m. Content. Key opportunities for skills development

4.3.1 Changes of state and the particle model Density of materials. ρ = m. Content. Key opportunities for skills development 4.3 Particle model of matter The particle model is widely used to predict the behaviour of solids, liquids and gases and this has many applications in everyday life. It helps us to explain a wide range

More information

PROGRAM OF PHYSICS. Lecturer: Dr. DO Xuan Hoi Room A

PROGRAM OF PHYSICS. Lecturer: Dr. DO Xuan Hoi Room A PROGRAM OF PHYSICS Lecturer: Dr. DO Xuan Hoi Room A1. 503 E-mail : dxhoi@hcmiu.edu.vn PHYSICS 2 (FLUID MECHANICS AND THERMAL PHYSICS) 02 credits (30 periods) Chapter 1 Fluid Mechanics Chapter 2 Heat, Temperature

More information

High temperature He is hot

High temperature He is hot Lecture 9 What is Temperature and Heat? High temperature He is hot Some important definitions * Two objects are in Thermal contact with each other if energy can be exchanged between them. Thermal equilibrium

More information

Name Class Date. What are three kinds of energy transfer? What are conductors and insulators? What makes something a good conductor of heat?

Name Class Date. What are three kinds of energy transfer? What are conductors and insulators? What makes something a good conductor of heat? CHAPTER 14 SECTION Heat and Temperature 2 Energy Transfer KEY IDEAS As you read this section, keep these questions in mind: What are three kinds of energy transfer? What are conductors and insulators?

More information

Heat and Temperature

Heat and Temperature Chapter 4 Heat Heat and Temperature Heat is a form of energy Heat is the energy of random motion of molecules constituting the body. It flows from a hot body to a cold body. Unit of heat is joule (J) and

More information

O-LEVELS REQUIREMENT. Name: Class: Date: THERMAL PROPETIES OF MATTER

O-LEVELS REQUIREMENT. Name: Class: Date: THERMAL PROPETIES OF MATTER Name: Class: Date: Unit 11 THERMAL PROPETIES OF MATTER 82465685 calvinkongphysics@yahoo.com NOTES O-LEVELS REQUIREMENT Candidates should be able to: 1. describe a rise in temperature of a body in terms

More information

Review: Heat, Temperature, Heat Transfer and Specific Heat Capacity

Review: Heat, Temperature, Heat Transfer and Specific Heat Capacity Name: Block: Date: IP 614 Review: Heat, Temperature, Heat Transfer and Specific Heat Capacity All these questions are real MCAS questions! 1. In a copper wire, a temperature increase is the result of which

More information

P6 Molecules and matter. Student Book answers. P6.1 Density. Question Answer Marks Guidance. 1 a m 3 (= 0.80 m 0.60 m 0.

P6 Molecules and matter. Student Book answers. P6.1 Density. Question Answer Marks Guidance. 1 a m 3 (= 0.80 m 0.60 m 0. P6. Density a 0.024 m 3 (= 0.80 m 0.60 m 0.05 m) b = 2500 kg/m 3 2 a 36 g 48 g = 88 g 2 b =. g/cm 3 3 a i 0.000 40 m 3 (= 0.0 m 0.080 m 0.05 m) 3 a ii = 9 000 kg/m 3 3 b v = = 7.9 0 8 m 3 thickness t =

More information

AQA (Trilogy) Combined Science GCSE Unit 6.3 Particle Model of Matter

AQA (Trilogy) Combined Science GCSE Unit 6.3 Particle Model of Matter AQA (Trilogy) Combined Science GCSE Unit 6.3 Particle Model of Matter Test (Levels 4 9) Time allowed: 50 minutes Question Links to Student Progress Sheet Score Total Marks Available Score Estimated Grade

More information

Chemistry Heat Review. Heat: Temperature: Enthalpy: Calorimetry: Activation energy:

Chemistry Heat Review. Heat: Temperature: Enthalpy: Calorimetry: Activation energy: Chemistry Heat Review Name Date Vocabulary Heat: Temperature: Enthalpy: Calorimetry: Activation energy: Formulas Heat of phase change Heat for temperature increase Heat of reaction Endothermic/Exothermic

More information

Figure 1.1. Relation between Celsius and Fahrenheit scales. From Figure 1.1. (1.1)

Figure 1.1. Relation between Celsius and Fahrenheit scales. From Figure 1.1. (1.1) CHAPTER I ELEMENTS OF APPLIED THERMODYNAMICS 1.1. INTRODUCTION. The Air Conditioning systems extract heat from some closed location and deliver it to other places. To better understanding the principles

More information

Particle Model of Matter. AQA Physics topic 3

Particle Model of Matter. AQA Physics topic 3 21/11/2017 Particle Model of Matter AQA Physics topic 3 3.1 Changes of State and the Particle Model 21/11/2017 Particle theory revision Particle theory is all about explaining the properties of solids,

More information

Chapter 14 Temperature and Heat

Chapter 14 Temperature and Heat Chapter 14 Temperature and Heat To understand temperature and temperature scales. To describe thermal expansion and its applications. To explore and solve problems involving heat, phase changes and calorimetry.

More information

We call the characteristic of a system that determines how much its temperature will change heat capacity.

We call the characteristic of a system that determines how much its temperature will change heat capacity. 3/3 Measuring Heat If all we do is add heat to a system its temperature will rise. How much the temperature rises depends on the system. We call the characteristic of a system that determines how much

More information

PHASE CHANGE. Freezing Sublimation

PHASE CHANGE. Freezing Sublimation Melting Graphic Organizer Deposition PHASE CHANGE Freezing Sublimation Boiling Evaporation Condensation PHASE CHANGE Phase change happens as the temperature changes. All matter can move from one state

More information

Two students investigated the change of state of stearic acid from liquid to solid.

Two students investigated the change of state of stearic acid from liquid to solid. Two students investigated the change of state of stearic acid from liquid to solid. They measured how the temperature of stearic acid changed over 5 minutes as it changed from liquid to solid. Figure shows

More information

KS3 Science. Heat and Energy

KS3 Science. Heat and Energy KS3 Science Heat and Energy Heat and Energy Key Words Write a definition for each of the key words listed below Key words States of matter Melt Freeze Evaporate Condense Heat Conduction Convention Radiation

More information

A thermodynamic system is taken from an initial state X along the path XYZX as shown in the PV-diagram.

A thermodynamic system is taken from an initial state X along the path XYZX as shown in the PV-diagram. AP Physics Multiple Choice Practice Thermodynamics 1. The maximum efficiency of a heat engine that operates between temperatures of 1500 K in the firing chamber and 600 K in the exhaust chamber is most

More information

Chapter 4: Heat Capacity and Heat Transfer

Chapter 4: Heat Capacity and Heat Transfer Chapter 4: Heat Capacity and Heat Transfer Chapter 4: Heat Capacity and Heat Transfer Chapter 4: Heat Capacity and Heat Transfer 4.1 Material Structure 4.2 Temperature and Material Properties 4.3 Heating

More information

2,000-gram mass of water compared to a 1,000-gram mass.

2,000-gram mass of water compared to a 1,000-gram mass. 11.2 Heat To change the temperature, you usually need to add or subtract energy. For example, when it s cold outside, you turn up the heat in your house or apartment and the temperature goes up. You know

More information

GraspIT AQA Particle Model Questions

GraspIT AQA Particle Model Questions A. Particle model of matter Density of materials and changes of state 1. A 45 g piece of plasticine is placed in water and 30 cm 3 of water was displaced. Calculate the density of the plasticine in kg/m

More information

NIT 6 MATTER AND HEAT

NIT 6 MATTER AND HEAT NIT 6 MATTER AND HEAT Radiation Convection Thermostat Spread as Spread as Conduction Used in technology as Spread as Bi-Metal Strips HEAT Solid state In Solids Liquid Gas state state State Changes causes

More information

What is a change of state? What happens during a change of state? What can happen when a substance loses or gains energy?

What is a change of state? What happens during a change of state? What can happen when a substance loses or gains energy? CHAPTER 3 3 Changes of State SECTION States of Matter BEFORE YOU READ After you read this section, you should be able to answer these questions: What is a change of state? What happens during a change

More information

Topic 3 &10 Review Thermodynamics

Topic 3 &10 Review Thermodynamics Name: Date: Topic 3 &10 Review Thermodynamics 1. The kelvin temperature of an object is a measure of A. the total energy of the molecules of the object. B. the total kinetic energy of the molecules of

More information

THE PARTICLE MODEL AND PROPERTIES OF THE GASES, LIQUIDS AND SOLIDS. STATES CHANGES

THE PARTICLE MODEL AND PROPERTIES OF THE GASES, LIQUIDS AND SOLIDS. STATES CHANGES THE PARTICLE MODEL AND PROPERTIES OF THE GASES, LIQUIDS AND SOLIDS. STATES CHANGES The particle model of a gas A gas has no fixed shape or volume, but always spreads out to fill any container. There are

More information

Thermal Energy. Practice Quiz Solutions

Thermal Energy. Practice Quiz Solutions Thermal Energy Practice Quiz Solutions What is thermal energy? What is thermal energy? Thermal energy is the energy that comes from heat. This heat is generated by the movement of tiny particles within

More information

CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level. PHYSICS 5054/02 Paper 2 Theory October/November 2003

CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level. PHYSICS 5054/02 Paper 2 Theory October/November 2003 Centre Number Candidate Number Name CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level PHYSICS 5054/02 Paper 2 Theory October/November 2003 Candidates answer on the Question

More information

SPECIFIC HEAT CAPACITY AND HEAT OF FUSION

SPECIFIC HEAT CAPACITY AND HEAT OF FUSION SPECIFIC HEAT CAPACITY AND HEAT OF FUSION Apparatus on each table: Thermometer, metal cube, complete calorimeter, outer calorimeter can (aluminum only), balance, 4 styrofoam cups, graduated container,

More information

HEAT HISTORY. D. Whitehall

HEAT HISTORY. D. Whitehall 1 HEAT HISTORY 18 th Century In the 18 th century it was assumed that there was an invisible substance called caloric. When objects got it was assumed that they gained caloric, therefore hot objects should

More information

Temperature and Heat. Two systems of temperature. Temperature conversions. PHY heat - J. Hedberg

Temperature and Heat. Two systems of temperature. Temperature conversions. PHY heat - J. Hedberg Temperature and Heat 1. Two systems of temperature 1. Temperature conversions 2. Real science (one scale to rule them all) 3. Temperature scales 2. Effects of temperature on materials 1. Linear Thermal

More information

Physical Science Chapter 5 Cont3. Temperature & Heat

Physical Science Chapter 5 Cont3. Temperature & Heat Physical Science Chapter 5 Cont3 Temperature & Heat What are we going to study? Heat Transfer Phases of Matter The Kinetic Theory of Gases Thermodynamics Specific Heat (Capacity) Specific Heat Latent Heat

More information

Estimate, for this water, the specific heat capacity, specific heat capacity =... J kg 1 K 1. the specific latent heat of vaporisation.

Estimate, for this water, the specific heat capacity, specific heat capacity =... J kg 1 K 1. the specific latent heat of vaporisation. 1 A kettle is rated as 2.3 kw. A mass of 750 g of water at 20 C is poured into the kettle. When the kettle is switched on, it takes 2.0 minutes for the water to start boiling. In a further 7.0 minutes,

More information

CHAPTER-11 NCERT SOLUTIONS

CHAPTER-11 NCERT SOLUTIONS CHAPTER-11 NCERT SOLUTIONS Question 11.1: The triple points of neon and carbon dioxide are 24.57 K and 216.55 K respectively. Express these temperatures on the Celsius and Fahrenheit scales. Kelvin and

More information

SPECIFIC HEAT CAPACITY

SPECIFIC HEAT CAPACITY SPECIFIC HEAT CAPACITY Apparatus: Thermometer, balance, two large double Styrofoam cups, lid, hooked metal cube, lifting tool, hot plate, boiling pot. Any material is capable of storing some heat or thermal

More information

Temperature and Heat. Chapter 10. Table of Contents. Chapter 10. Chapter 10. Bellringer. Objectives. Chapter 10. Chapter 10

Temperature and Heat. Chapter 10. Table of Contents. Chapter 10. Chapter 10. Bellringer. Objectives. Chapter 10. Chapter 10 Heat and Heat Technology Table of Contents Temperature and Heat Section 3 Matter and Heat Bellringer Objectives The temperature of boiling water is 100 on the Celsius scale and 212 on the Fahrenheit scale.

More information

Chapter 3: Matter and Energy

Chapter 3: Matter and Energy Chapter 3: Matter and Energy Convert between Fahrenheit, Celsius, and Kelvin temperature scales. Relate energy, temperature change, and heat capacity. The atoms and molecules that compose matter are in

More information

Chapter 10 Temperature and Heat

Chapter 10 Temperature and Heat Chapter 10 Temperature and Heat Thermodynamics deals with 1. Temperature. 2. The transfer and transformation of energy. 3. The relationship between macroscopic properties and microscopic dynamics. Temperature

More information

2. State the direction of heat transfer between the surroundings and the water in the bottle from 7 a.m. to 3 p.m.

2. State the direction of heat transfer between the surroundings and the water in the bottle from 7 a.m. to 3 p.m. Base your answers to questions 1 through 3 on the information below. A student investigated heat transfer using a bottle of water. The student placed the bottle in a room at 20.5 C. The student measured

More information

12. Heat of melting and evaporation of water

12. Heat of melting and evaporation of water VS 12. Heat of melting and evaporation of water 12.1 Introduction The change of the physical state of a substance in general requires the absorption or release of heat. In this case, one speaks of a first

More information

Chapter 11. Energy in Thermal Processes

Chapter 11. Energy in Thermal Processes Chapter 11 Energy in Thermal Processes Energy Transfer When two objects of different temperatures are placed in thermal contact, the temperature of the warmer decreases and the temperature of the cooler

More information

3.3 Phase Changes Charactaristics of Phase Changes phase change

3.3 Phase Changes Charactaristics of Phase Changes phase change A large iceberg contains enough fresh water to supply millions of people with water for a year. As it moves into warmer areas, the ice changes to liquid water and eventually disappears. What happens when

More information

Homework - Lecture 11.

Homework - Lecture 11. Homework - Lecture 11. Name: Topic: Heat Capacity and Specific Heat Type: Numerical 1. Two liquids, A and B, are mixed together, and the resulting temperature is 22 C. If liquid A has mass m and was initially

More information

Physics Mechanics

Physics Mechanics 1 Physics 170 - Mechanics Lecture 35 Heat 2 Definition and Units of Heat Heat is a form of energy, and therefore is measured in joules. There are other units of heat, the most common one is the kilocalorie:

More information

Per 5 Activity Solutions: Thermal Energy, the Microscopic Picture

Per 5 Activity Solutions: Thermal Energy, the Microscopic Picture er 5 Activity Solutions: Thermal Energy, the Microscopic icture 5. How Is Temperature Related to Molecular Motion? ) Temperature Your instructor will discuss molecular motion and temperature. a) Watch

More information

Solid Liquid Gas 1. Solids have a fixed volume and a definite shape.

Solid Liquid Gas 1. Solids have a fixed volume and a definite shape. 1 MATTER:- Anything or everything which occupies space and has mass is called matter. This word is used to cover all the substances and the material from which the universe is made. For example, the air

More information

kinetic molecular theory thermal energy.

kinetic molecular theory thermal energy. Thermal Physics 1 Thermal Energy The kinetic molecular theory is based on the assumption that matter is made up of tiny particles that are always in motion. In a hot object the particles are moving faster

More information