Variable Names. Some Ques(ons about Quan(fiers (but answers are not proven just stated here!) x ( z Q(z) y P(x,y) )

Size: px
Start display at page:

Download "Variable Names. Some Ques(ons about Quan(fiers (but answers are not proven just stated here!) x ( z Q(z) y P(x,y) )"

Transcription

1 FOL Con(nued Review Variable Names Note that just because variables have different names it does not mean they have different values e.g. over the domain of positive integers x. y. (x+y=2) is True, (exctly when x=y=1) But multiple occurrences of the same variable governed by one quantifier must be the same e.g. over the domain of integers x. (x+x=3) is False The rules of nesting multiple quantifiers with the same name are tricky. Avoid this x ( x Q(x) y P(x,y) ) Write instead the following, where variable x is renamed x ( z Q(z) y P(x,y) ) Some Ques(ons about Quan(fiers (but answers are not proven just stated here!)! Can you switch the order of quantifiers??! yes! The left and the right side will always have the same truth value. The order in which x and y are picked does not matter.?! No! The left and the right side may have different truth values for some propositional functions for P. Try U={a,b}, with P=likes, and facts {likes(a,b), likes(b,a)}. Then LHS is true, RHS is false NOTE: when something is not true, find smallest universe in which it is false, and fewest facts which provide a counter-example.

2 Some Ques(ons about Quan(fiers (but answers are not proven just stated!)! Can you distribute quantifiers over logical connectives?! Is this a valid equivalence? Yes! The left and the right side will always have the same truth value no matter what propositional functions are denoted by P(x) and Q(x).! Is this a valid equivalence? No! The left and the right side may have different truth values. Pick x = 1 for P(x) and x = 5 for Q(x) with U={1,5}. Then the left side is false, (when x is 5), but the rhs is always true bec. x(x=1) is False This is why we need rules of inference/equivalence dealing with quantifiers! Beware of universe issues Every student takes some course! If predicate takes(x,y) uses universe students for x but courses for y, then the real universe for the statement x y takes(x,y) is the union of students and courses! (And this statement is likely to be false according to the intuitive meaning of takes since courses do not take students or courses.)! So if you wanted to state that every student takes some course you would need to qualify the variables: x.( student(x) -> y (course(y) /\ takes(x,y) ) )! In general, Forall is used as an implication with a domain guard. Exists is used as a conjunction with a domain guard Transla(ng Mathema(cal Statements Example : Translate The sum of two positive integers is always positive into a logical expression. 1. Rewrite the statement to make the implied quantifiers and domains explicit: For every two integers, if these integers are both positive, then the sum of these integers is positive. 2. Introduce the variables x and y, and specify the domain (integers), to obtain: For all positive integers x and y, x + y is positive. 3. The result is: x y ((x > 0) (y > 0) (x + y > 0)) where the domain consists of all integers (Aside: why having small domains is not good) Example : Different translation of The sum of two positive integers is always positive 1. Rewrite the statement to make the implied quantifiers and domains explicit: For every two positive integers, if they are both positive, then the sum of these integers is positive. 2. Introduce the variables x and y, and specify the domain (positive integers), to obtain: For all positive integers x and y, x + y is positive. 3. The result is: x y (x + y > 0) where the domain consists of all positive integers But now note that the constant 0 appearing in the formula does not belong to the domain! (This is illegal in standard logic, where all constants must belong to U)

3 Transla(ng English into FOL Example: Use quantifiers to express the statement There is a woman who has taken a flight on every airline in the world. 1. Let Took(w,f) be w has taken f and FlightOf(f,a) be f is a flight of a. 2. The domain of w is all women, the domain of f is all flights, and the domain of a is all airlines. (This means that the total domain is the union of these!) 3. Then the statement can be expressed as: Equivalences in Predicate Logic w.{ woman(w) a. [airline(a) f.(?light(f) Took (w,f) FlightOf (f,a))]} Note that the formula w. a. f.(took(w,f) FlightOf(f,a)) reads there is a w such that for all a (including women, flights, airlines) there is f such that... f is a flight on a. Since a can be other things than airlines in the quantification, yet FlightOf(_,a) might only be true of airline a, FLightOf(,a) will be false when a is a woman!!! Equivalences in Predicate Logic! Statements involving predicates and quantifiers are logically equivalent if and only if they have the same truth value! for every predicate substituted into these statements and! for every universe! Example: x S(x) x S(x)! The proof rules of equivalence require entire subformulas to be substituted with equivalent ones. So even if x S(x) y S(y) you cannot take just x S(x) from x ( S(x) Q(x) ) and replace it by the equivalent y S(y). The resulting formula y ( S(y) \/ Q(x) ) would NOT be equivalent!!! Quan(fiers as Conjunc(ons and Disjunc(ons! If the domain is finite, a universally quantified proposition is equivalent to a conjunction of propositions without quantifiers and an existentially quantified proposition is equivalent to a disjunction of propositions without quantifiers.! If U = {1,2,3}! Even if the domains are infinite, you can still think of the quantifiers in this fashion, but the equivalent expressions without quantifiers will be infinitely long.! What if the domain is empty? NOT ALLOWED!! But the following is legal: suppose predicate F(x) is always false: x. F(x) P(x) x. False P(x) True x. F(x) P(x) x. False P(x) False

4 Nega(ng Quan(fied Expressions 1. Consider x Smart(x) Every student is smart. Here Smart(x) is x smart and the domain is students 2. Negating the original statement gives It is not the case that every student is smart. This implies that There is a student in your class who is not smart.! And conversely: from 2. one gets 1. x Smart(x) and x Smart(x) are equivalent Nega(ng Quan(fied Expressions (2) 1. Consider x Smart(x) Some student is smart. Here Smart(x) is x smart and the domain is students 2. Negating the original statement gives It is not the case that some student is smart. This implies that Every student is not smart.! And conversely: from 2. one gets 1. x Smart(x) and x Smart(x) are equivalent De Morgan s Laws for Quan(fiers! The rules for negating quantifiers, according to Rosen are:! These are important. You will use these.! (One of the rules is redundant!!) Nega(ng Nested Quan(fiers Example 1: Consider the logical expression w a f (P(w,f ) Q(f,a)) Use De Morgan s Laws to move the negation as far inwards as possible. (on board) 1. w a f (P(w,f ) Q(f,a)) 2. w a f (P(w,f ) Q(f,a)) by De Morgan s for 3. w a f (P(w,f ) Q(f,a)) by De Morgan s for 4. w a f (P(w,f ) Q(f,a)) by De Morgan s for 5. w a f ( P(w,f ) Q(f,a)) by De Morgan s for.

5 Equivalences in First Order Logic The rules of equivalence for FOL consist of the rules of equivalence for propositional formulas + the 2 de Morgan rules for quantifiers Which rule you can apply to a (sub) formula depends on which connective is the upper-most connective:! in f (P(f ) Q(3)), the upper-most connective is! in f P(f ) Q(3), the upper-most connective is (remember that quantiziers have highest precedence so this formula was really ( f.p(f )) Q(3). When in doubt ask or parenthesize to disambiguate.)! in f.(p(f ) Q(3)) the upper-most-connective is Note that in all of these, you could have applied the equivalence Q(3) Q(3) inside the formulas, if you wanted, because equivalences can be applied to subformulas. [Remember that rules of inference, later, must match patterns against entire lines of a proof.] (Excercise for you: nega(ng English Part 1: Use quantifiers to express the statement that There does not exist a woman who has taken a flight on every airline in the world. w.{woman(w) a.[airline(a) [formula above ] f.(?light(f) P(w,f) Q(f,a))]} Part 2: Now use De Morgan s Laws to move the negation as far inwards as possible. [do this yourself, changing A B to A B ] Part 3: Translate the result back into English? For every woman there is an airline such that for all flights, this woman has not taken that flight or that flight is not on this airline

! Predicates! Variables! Quantifiers. ! Universal Quantifier! Existential Quantifier. ! Negating Quantifiers. ! De Morgan s Laws for Quantifiers

! Predicates! Variables! Quantifiers. ! Universal Quantifier! Existential Quantifier. ! Negating Quantifiers. ! De Morgan s Laws for Quantifiers Sec$on Summary (K. Rosen notes for Ch. 1.4, 1.5 corrected and extended by A.Borgida)! Predicates! Variables! Quantifiers! Universal Quantifier! Existential Quantifier! Negating Quantifiers! De Morgan s

More information

Thinking of Nested Quantification

Thinking of Nested Quantification Section 1.5 Section Summary Nested Quantifiers Order of Quantifiers Translating from Nested Quantifiers into English Translating Mathematical Statements into Statements involving Nested Quantifiers. Translating

More information

Proposi'onal Logic Not Enough

Proposi'onal Logic Not Enough Section 1.4 Proposi'onal Logic Not Enough If we have: All men are mortal. Socrates is a man. Socrates is mortal Compare to: If it is snowing, then I will study discrete math. It is snowing. I will study

More information

Section Summary. Section 1.5 9/9/2014

Section Summary. Section 1.5 9/9/2014 Section 1.5 Section Summary Nested Quantifiers Order of Quantifiers Translating from Nested Quantifiers into English Translating Mathematical Statements into Statements involving Nested Quantifiers Translated

More information

Chapter 1, Part II: Predicate Logic

Chapter 1, Part II: Predicate Logic Chapter 1, Part II: Predicate Logic With Question/Answer Animations Copyright McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill

More information

Section Summary. Predicate logic Quantifiers. Negating Quantifiers. Translating English to Logic. Universal Quantifier Existential Quantifier

Section Summary. Predicate logic Quantifiers. Negating Quantifiers. Translating English to Logic. Universal Quantifier Existential Quantifier Section 1.4 Section Summary Predicate logic Quantifiers Universal Quantifier Existential Quantifier Negating Quantifiers De Morgan s Laws for Quantifiers Translating English to Logic Propositional Logic

More information

Propositional Logic Not Enough

Propositional Logic Not Enough Section 1.4 Propositional Logic Not Enough If we have: All men are mortal. Socrates is a man. Does it follow that Socrates is mortal? Can t be represented in propositional logic. Need a language that talks

More information

Section Summary. Predicates Variables Quantifiers. Negating Quantifiers. Translating English to Logic Logic Programming (optional)

Section Summary. Predicates Variables Quantifiers. Negating Quantifiers. Translating English to Logic Logic Programming (optional) Predicate Logic 1 Section Summary Predicates Variables Quantifiers Universal Quantifier Existential Quantifier Negating Quantifiers De Morgan s Laws for Quantifiers Translating English to Logic Logic Programming

More information

Discrete Structures Lecture 5

Discrete Structures Lecture 5 Introduction EXAMPLE 1 Express xx yy(xx + yy = 0) without the existential quantifier. Solution: xx yy(xx + yy = 0) is the same as xxxx(xx) where QQ(xx) is yyyy(xx, yy) and PP(xx, yy) = xx + yy = 0 EXAMPLE

More information

Logical equivalences 12/8/2015. S T: Two statements S and T involving predicates and quantifiers are logically equivalent

Logical equivalences 12/8/2015. S T: Two statements S and T involving predicates and quantifiers are logically equivalent 1/8/015 Logical equivalences CSE03 Discrete Computational Structures Lecture 3 1 S T: Two statements S and T involving predicates and quantifiers are logically equivalent If and only if they have the same

More information

Logical Operators. Conjunction Disjunction Negation Exclusive Or Implication Biconditional

Logical Operators. Conjunction Disjunction Negation Exclusive Or Implication Biconditional Logical Operators Conjunction Disjunction Negation Exclusive Or Implication Biconditional 1 Statement meaning p q p implies q if p, then q if p, q when p, q whenever p, q q if p q when p q whenever p p

More information

Predicate Calculus lecture 1

Predicate Calculus lecture 1 Predicate Calculus lecture 1 Section 1.3 Limitation of Propositional Logic Consider the following reasoning All cats have tails Gouchi is a cat Therefore, Gouchi has tail. MSU/CSE 260 Fall 2009 1 MSU/CSE

More information

Section Summary. Predicate logic Quantifiers. Negating Quantifiers. Translating English to Logic. Universal Quantifier Existential Quantifier

Section Summary. Predicate logic Quantifiers. Negating Quantifiers. Translating English to Logic. Universal Quantifier Existential Quantifier Section 1.4 Section Summary Predicate logic Quantifiers Universal Quantifier Existential Quantifier Negating Quantifiers De Morgan s Laws for Quantifiers Translating English to Logic Propositional Logic

More information

ICS141: Discrete Mathematics for Computer Science I

ICS141: Discrete Mathematics for Computer Science I ICS141: Discrete Mathematics for Computer Science I Dept. Information & Computer Sci., Originals slides by Dr. Baek and Dr. Still, adapted by J. Stelovsky Based on slides Dr. M. P. Frank and Dr. J.L. Gross

More information

Discrete Mathematics and Its Applications

Discrete Mathematics and Its Applications Discrete Mathematics and Its Applications Lecture 1: The Foundations: Logic and Proofs (1.3-1.5) MING GAO DASE @ ECNU (for course related communications) mgao@dase.ecnu.edu.cn Sep. 19, 2017 Outline 1 Logical

More information

Predicate Logic. CSE 191, Class Note 02: Predicate Logic Computer Sci & Eng Dept SUNY Buffalo

Predicate Logic. CSE 191, Class Note 02: Predicate Logic Computer Sci & Eng Dept SUNY Buffalo Predicate Logic CSE 191, Class Note 02: Predicate Logic Computer Sci & Eng Dept SUNY Buffalo c Xin He (University at Buffalo) CSE 191 Discrete Structures 1 / 22 Outline 1 From Proposition to Predicate

More information

Introduction to Sets and Logic (MATH 1190)

Introduction to Sets and Logic (MATH 1190) Introduction to Sets Logic () Instructor: Email: shenlili@yorku.ca Department of Mathematics Statistics York University Sept 18, 2014 Outline 1 2 Tautologies Definition A tautology is a compound proposition

More information

Lecture 4. Predicate logic

Lecture 4. Predicate logic Lecture 4 Predicate logic Instructor: Kangil Kim (CSE) E-mail: kikim01@konkuk.ac.kr Tel. : 02-450-3493 Room : New Milenium Bldg. 1103 Lab : New Engineering Bldg. 1202 All slides are based on CS441 Discrete

More information

First order Logic ( Predicate Logic) and Methods of Proof

First order Logic ( Predicate Logic) and Methods of Proof First order Logic ( Predicate Logic) and Methods of Proof 1 Outline Introduction Terminology: Propositional functions; arguments; arity; universe of discourse Quantifiers Definition; using, mixing, negating

More information

W3203 Discrete Mathema1cs. Logic and Proofs. Spring 2015 Instructor: Ilia Vovsha. hcp://www.cs.columbia.edu/~vovsha/w3203

W3203 Discrete Mathema1cs. Logic and Proofs. Spring 2015 Instructor: Ilia Vovsha. hcp://www.cs.columbia.edu/~vovsha/w3203 W3203 Discrete Mathema1cs Logic and Proofs Spring 2015 Instructor: Ilia Vovsha hcp://www.cs.columbia.edu/~vovsha/w3203 1 Outline Proposi1onal Logic Operators Truth Tables Logical Equivalences Laws of Logic

More information

Logic, Sets, and Proofs

Logic, Sets, and Proofs Logic, Sets, and Proofs David A. Cox and Catherine C. McGeoch Amherst College 1 Logic Logical Operators. A logical statement is a mathematical statement that can be assigned a value either true or false.

More information

Recall that the expression x > 3 is not a proposition. Why?

Recall that the expression x > 3 is not a proposition. Why? Predicates and Quantifiers Predicates and Quantifiers 1 Recall that the expression x > 3 is not a proposition. Why? Notation: We will use the propositional function notation to denote the expression "

More information

Predicate Calculus - Syntax

Predicate Calculus - Syntax Predicate Calculus - Syntax Lila Kari University of Waterloo Predicate Calculus - Syntax CS245, Logic and Computation 1 / 26 The language L pred of Predicate Calculus - Syntax L pred, the formal language

More information

Discrete Structures for Computer Science

Discrete Structures for Computer Science Discrete Structures for Computer Science William Garrison bill@cs.pitt.edu 6311 Sennott Square Lecture #4: Predicates and Quantifiers Based on materials developed by Dr. Adam Lee Topics n Predicates n

More information

Transparencies to accompany Rosen, Discrete Mathematics and Its Applications Section 1.3. Section 1.3 Predicates and Quantifiers

Transparencies to accompany Rosen, Discrete Mathematics and Its Applications Section 1.3. Section 1.3 Predicates and Quantifiers Section 1.3 Predicates and Quantifiers A generalization of propositions - propositional functions or predicates.: propositions which contain variables Predicates become propositions once every variable

More information

Tutorial on Axiomatic Set Theory. Javier R. Movellan

Tutorial on Axiomatic Set Theory. Javier R. Movellan Tutorial on Axiomatic Set Theory Javier R. Movellan Intuitively we think of sets as collections of elements. The crucial part of this intuitive concept is that we are willing to treat sets as entities

More information

Announcements CompSci 102 Discrete Math for Computer Science

Announcements CompSci 102 Discrete Math for Computer Science Announcements CompSci 102 Discrete Math for Computer Science Read for next time Chap. 1.4-1.6 Recitation 1 is tomorrow Homework will be posted by Friday January 19, 2012 Today more logic Prof. Rodger Most

More information

3/29/2017. Logic. Propositions and logical operations. Main concepts: propositions truth values propositional variables logical operations

3/29/2017. Logic. Propositions and logical operations. Main concepts: propositions truth values propositional variables logical operations Logic Propositions and logical operations Main concepts: propositions truth values propositional variables logical operations 1 Propositions and logical operations A proposition is the most basic element

More information

Predicates, Quantifiers and Nested Quantifiers

Predicates, Quantifiers and Nested Quantifiers Predicates, Quantifiers and Nested Quantifiers Predicates Recall the example of a non-proposition in our first presentation: 2x=1. Let us call this expression P(x). P(x) is not a proposition because x

More information

Math.3336: Discrete Mathematics. Nested Quantifiers

Math.3336: Discrete Mathematics. Nested Quantifiers Math.3336: Discrete Mathematics Nested Quantifiers Instructor: Dr. Blerina Xhabli Department of Mathematics, University of Houston https://www.math.uh.edu/ blerina Email: blerina@math.uh.edu Fall 2018

More information

Section 1.1 Propositions

Section 1.1 Propositions Set Theory & Logic Section 1.1 Propositions Fall, 2009 Section 1.1 Propositions In Chapter 1, our main goals are to prove sentences about numbers, equations or functions and to write the proofs. Definition.

More information

Predicates and Quantifiers. Nested Quantifiers Discrete Mathematic. Chapter 1: Logic and Proof

Predicates and Quantifiers. Nested Quantifiers Discrete Mathematic. Chapter 1: Logic and Proof Discrete Mathematic Chapter 1: Logic and Proof 1.3 Predicates and Quantifiers 1.4 Nested Quantifiers Dr Patrick Chan School of Computer Science and Engineering South China University of Technology http://125.216.243.100/dm/

More information

Predicate Logic & Quantification

Predicate Logic & Quantification Predicate Logic & Quantification Things you should do Homework 1 due today at 3pm Via gradescope. Directions posted on the website. Group homework 1 posted, due Tuesday. Groups of 1-3. We suggest 3. In

More information

Solutions to Sample Problems for Midterm

Solutions to Sample Problems for Midterm Solutions to Sample Problems for Midterm Problem 1. The dual of a proposition is defined for which contains only,,. It is For a compound proposition that only uses,, as operators, we obtained the dual

More information

Discrete Structures Lecture Predicates and Quantifiers

Discrete Structures Lecture Predicates and Quantifiers Introduction In this section we will introduce a more powerful type of logic called predicate logic. Predicates Consider the statement: xx > 3. The statement has two parts: 1. the variable, xx and 2. the

More information

Math.3336: Discrete Mathematics. Nested Quantifiers/Rules of Inference

Math.3336: Discrete Mathematics. Nested Quantifiers/Rules of Inference Math.3336: Discrete Mathematics Nested Quantifiers/Rules of Inference Instructor: Dr. Blerina Xhabli Department of Mathematics, University of Houston https://www.math.uh.edu/ blerina Email: blerina@math.uh.edu

More information

Review. Propositional Logic. Propositions atomic and compound. Operators: negation, and, or, xor, implies, biconditional.

Review. Propositional Logic. Propositions atomic and compound. Operators: negation, and, or, xor, implies, biconditional. Review Propositional Logic Propositions atomic and compound Operators: negation, and, or, xor, implies, biconditional Truth tables A closer look at implies Translating from/ to English Converse, inverse,

More information

LING 501, Fall 2004: Quantification

LING 501, Fall 2004: Quantification LING 501, Fall 2004: Quantification The universal quantifier Ax is conjunctive and the existential quantifier Ex is disjunctive Suppose the domain of quantification (DQ) is {a, b}. Then: (1) Ax Px Pa &

More information

Predicate Logic Thursday, January 17, 2013 Chittu Tripathy Lecture 04

Predicate Logic Thursday, January 17, 2013 Chittu Tripathy Lecture 04 Predicate Logic Today s Menu Predicate Logic Quantifiers: Universal and Existential Nesting of Quantifiers Applications Limitations of Propositional Logic Suppose we have: All human beings are mortal.

More information

Introduction to Decision Sciences Lecture 2

Introduction to Decision Sciences Lecture 2 Introduction to Decision Sciences Lecture 2 Andrew Nobel August 24, 2017 Compound Proposition A compound proposition is a combination of propositions using the basic operations. For example (p q) ( p)

More information

Chapter 2: The Logic of Quantified Statements. January 22, 2010

Chapter 2: The Logic of Quantified Statements. January 22, 2010 Chapter 2: The Logic of Quantified Statements January 22, 2010 Outline 1 2.1- Introduction to Predicates and Quantified Statements I 2 2.2 - Introduction to Predicates and Quantified Statements II 3 2.3

More information

Supplementary exercises in propositional logic

Supplementary exercises in propositional logic Supplementary exercises in propositional logic The purpose of these exercises is to train your ability to manipulate and analyze logical formulas. Familiarize yourself with chapter 7.3-7.5 in the course

More information

CPSC 121: Models of Computation

CPSC 121: Models of Computation CPSC 121: Models of Computation Unit 6 Rewriting Predicate Logic Statements Based on slides by Patrice Belleville and Steve Wolfman Coming Up Pre-class quiz #7 is due Wednesday October 25th at 9:00 pm.

More information

2/2/2018. CS 103 Discrete Structures. Chapter 1. Propositional Logic. Chapter 1.1. Propositional Logic

2/2/2018. CS 103 Discrete Structures. Chapter 1. Propositional Logic. Chapter 1.1. Propositional Logic CS 103 Discrete Structures Chapter 1 Propositional Logic Chapter 1.1 Propositional Logic 1 1.1 Propositional Logic Definition: A proposition :is a declarative sentence (that is, a sentence that declares

More information

CSI30. Chapter 1. The Foundations: Logic and Proofs Nested Quantifiers

CSI30. Chapter 1. The Foundations: Logic and Proofs Nested Quantifiers Chapter 1. The Foundations: Logic and Proofs 1.9-1.10 Nested Quantifiers 1 Two quantifiers are nested if one is within the scope of the other. Recall one of the examples from the previous class: x ( P(x)

More information

Introduction to first-order logic:

Introduction to first-order logic: Introduction to first-order logic: First-order structures and languages. Terms and formulae in first-order logic. Interpretations, truth, validity, and satisfaction. Valentin Goranko DTU Informatics September

More information

Mat 243 Exam 1 Review

Mat 243 Exam 1 Review OBJECTIVES (Review problems: on next page) 1.1 Distinguish between propositions and non-propositions. Know the truth tables (i.e., the definitions) of the logical operators,,,, and Write truth tables for

More information

Packet #2: Set Theory & Predicate Calculus. Applied Discrete Mathematics

Packet #2: Set Theory & Predicate Calculus. Applied Discrete Mathematics CSC 224/226 Notes Packet #2: Set Theory & Predicate Calculus Barnes Packet #2: Set Theory & Predicate Calculus Applied Discrete Mathematics Table of Contents Full Adder Information Page 1 Predicate Calculus

More information

Rosen, Discrete Mathematics and Its Applications, 6th edition Extra Examples

Rosen, Discrete Mathematics and Its Applications, 6th edition Extra Examples Rosen, Discrete Mathematics and Its Applications, 6th edition Extra Examples Section 1.4 Nested Quantifiers Page references correspond to locations of Extra Examples icons in the textbook. #1. Write the

More information

n Empty Set:, or { }, subset of all sets n Cardinality: V = {a, e, i, o, u}, so V = 5 n Subset: A B, all elements in A are in B

n Empty Set:, or { }, subset of all sets n Cardinality: V = {a, e, i, o, u}, so V = 5 n Subset: A B, all elements in A are in B Discrete Math Review Discrete Math Review (Rosen, Chapter 1.1 1.7, 5.5) TOPICS Sets and Functions Propositional and Predicate Logic Logical Operators and Truth Tables Logical Equivalences and Inference

More information

1.1 Language and Logic

1.1 Language and Logic c Oksana Shatalov, Fall 2017 1 1.1 Language and Logic Mathematical Statements DEFINITION 1. A proposition is any declarative sentence (i.e. it has both a subject and a verb) that is either true or false,

More information

Conjunction: p q is true if both p, q are true, and false if at least one of p, q is false. The truth table for conjunction is as follows.

Conjunction: p q is true if both p, q are true, and false if at least one of p, q is false. The truth table for conjunction is as follows. Chapter 1 Logic 1.1 Introduction and Definitions Definitions. A sentence (statement, proposition) is an utterance (that is, a string of characters) which is either true (T) or false (F). A predicate is

More information

n logical not (negation) n logical or (disjunction) n logical and (conjunction) n logical exclusive or n logical implication (conditional)

n logical not (negation) n logical or (disjunction) n logical and (conjunction) n logical exclusive or n logical implication (conditional) Discrete Math Review Discrete Math Review (Rosen, Chapter 1.1 1.6) TOPICS Propositional Logic Logical Operators Truth Tables Implication Logical Equivalence Inference Rules What you should know about propositional

More information

CS 220: Discrete Structures and their Applications. Predicate Logic Section in zybooks

CS 220: Discrete Structures and their Applications. Predicate Logic Section in zybooks CS 220: Discrete Structures and their Applications Predicate Logic Section 1.6-1.10 in zybooks From propositional to predicate logic Let s consider the statement x is an odd number Its truth value depends

More information

CS Module 1. Ben Harsha Apr 12, 2017

CS Module 1. Ben Harsha Apr 12, 2017 CS 50010 Module 1 Ben Harsha Apr 12, 2017 Course details Course is split into 2 modules Module 1 (this one): Covers basic data structures and algorithms, along with math review. Module 2: Probability,

More information

Predicates and Quantifiers. CS 231 Dianna Xu

Predicates and Quantifiers. CS 231 Dianna Xu Predicates and Quantifiers CS 231 Dianna Xu 1 Predicates Consider P(x) = x < 5 P(x) has no truth values (x is not given a value) P(1) is true 1< 5 is true P(10) is false 10 < 5 is false Thus, P(x) will

More information

Quantifiers Here is a (true) statement about real numbers: Every real number is either rational or irrational.

Quantifiers Here is a (true) statement about real numbers: Every real number is either rational or irrational. Quantifiers 1-17-2008 Here is a (true) statement about real numbers: Every real number is either rational or irrational. I could try to translate the statement as follows: Let P = x is a real number Q

More information

LECTURE NOTES DISCRETE MATHEMATICS. Eusebius Doedel

LECTURE NOTES DISCRETE MATHEMATICS. Eusebius Doedel LECTURE NOTES on DISCRETE MATHEMATICS Eusebius Doedel 1 LOGIC Introduction. First we introduce some basic concepts needed in our discussion of logic. These will be covered in more detail later. A set is

More information

2/18/14. What is logic? Proposi0onal Logic. Logic? Propositional Logic, Truth Tables, and Predicate Logic (Rosen, Sections 1.1, 1.2, 1.

2/18/14. What is logic? Proposi0onal Logic. Logic? Propositional Logic, Truth Tables, and Predicate Logic (Rosen, Sections 1.1, 1.2, 1. Logic? Propositional Logic, Truth Tables, and Predicate Logic (Rosen, Sections 1.1, 1.2, 1.3) TOPICS Propositional Logic Logical Operations Equivalences Predicate Logic CS160 - Spring Semester 2014 2 What

More information

Lecture Predicates and Quantifiers 1.5 Nested Quantifiers

Lecture Predicates and Quantifiers 1.5 Nested Quantifiers Lecture 4 1.4 Predicates and Quantifiers 1.5 Nested Quantifiers Predicates The statement "x is greater than 3" has two parts. The first part, "x", is the subject of the statement. The second part, "is

More information

Automated Reasoning Lecture 5: First-Order Logic

Automated Reasoning Lecture 5: First-Order Logic Automated Reasoning Lecture 5: First-Order Logic Jacques Fleuriot jdf@inf.ac.uk Recap Over the last three lectures, we have looked at: Propositional logic, semantics and proof systems Doing propositional

More information

Logic and Proof. Aiichiro Nakano

Logic and Proof. Aiichiro Nakano Logic and Proof Aiichiro Nakano Collaboratory for Advanced Computing & Simulations Department of Computer Science Department of Physics & Astronomy Department of Chemical Engineering & Materials Science

More information

3. Only sequences that were formed by using finitely many applications of rules 1 and 2, are propositional formulas.

3. Only sequences that were formed by using finitely many applications of rules 1 and 2, are propositional formulas. 1 Chapter 1 Propositional Logic Mathematical logic studies correct thinking, correct deductions of statements from other statements. Let us make it more precise. A fundamental property of a statement is

More information

Tools for reasoning: Logic. Ch. 1: Introduction to Propositional Logic Truth values, truth tables Boolean logic: Implications:

Tools for reasoning: Logic. Ch. 1: Introduction to Propositional Logic Truth values, truth tables Boolean logic: Implications: Tools for reasoning: Logic Ch. 1: Introduction to Propositional Logic Truth values, truth tables Boolean logic: Implications: 1 Why study propositional logic? A formal mathematical language for precise

More information

CS156: The Calculus of Computation Zohar Manna Winter 2010

CS156: The Calculus of Computation Zohar Manna Winter 2010 Page 3 of 35 Page 4 of 35 quantifiers CS156: The Calculus of Computation Zohar Manna Winter 2010 Chapter 2: First-Order Logic (FOL) existential quantifier x. F [x] there exists an x such that F [x] Note:

More information

A statement is a sentence that is definitely either true or false but not both.

A statement is a sentence that is definitely either true or false but not both. 5 Logic In this part of the course we consider logic. Logic is used in many places in computer science including digital circuit design, relational databases, automata theory and computability, and artificial

More information

COMP 182 Algorithmic Thinking. Proofs. Luay Nakhleh Computer Science Rice University

COMP 182 Algorithmic Thinking. Proofs. Luay Nakhleh Computer Science Rice University COMP 182 Algorithmic Thinking Proofs Luay Nakhleh Computer Science Rice University 1 Reading Material Chapter 1, Section 3, 6, 7, 8 Propositional Equivalences The compound propositions p and q are called

More information

Mathematical Preliminaries. Sipser pages 1-28

Mathematical Preliminaries. Sipser pages 1-28 Mathematical Preliminaries Sipser pages 1-28 Mathematical Preliminaries This course is about the fundamental capabilities and limitations of computers. It has 3 parts 1. Automata Models of computation

More information

EECS 1028 M: Discrete Mathematics for Engineers

EECS 1028 M: Discrete Mathematics for Engineers EECS 1028 M: Discrete Mathematics for Engineers Suprakash Datta Office: LAS 3043 Course page: http://www.eecs.yorku.ca/course/1028 Also on Moodle S. Datta (York Univ.) EECS 1028 W 18 1 / 21 Predicate Logic

More information

Why Learning Logic? Logic. Propositional Logic. Compound Propositions

Why Learning Logic? Logic. Propositional Logic. Compound Propositions Logic Objectives Propositions and compound propositions Negation, conjunction, disjunction, and exclusive or Implication and biconditional Logic equivalence and satisfiability Application of propositional

More information

1.1 Language and Logic

1.1 Language and Logic c Oksana Shatalov, Spring 2018 1 1.1 Language and Logic Mathematical Statements DEFINITION 1. A proposition is any declarative sentence (i.e. it has both a subject and a verb) that is either true or false,

More information

3 The Semantics of the Propositional Calculus

3 The Semantics of the Propositional Calculus 3 The Semantics of the Propositional Calculus 1. Interpretations Formulas of the propositional calculus express statement forms. In chapter two, we gave informal descriptions of the meanings of the logical

More information

Today s Lecture. ICS 6B Boolean Algebra & Logic. Predicates. Chapter 1: Section 1.3. Propositions. For Example. Socrates is Mortal

Today s Lecture. ICS 6B Boolean Algebra & Logic. Predicates. Chapter 1: Section 1.3. Propositions. For Example. Socrates is Mortal ICS 6B Boolean Algebra & Logic Today s Lecture Chapter 1 Sections 1.3 & 1.4 Predicates & Quantifiers 1.3 Nested Quantifiers 1.4 Lecture Notes for Summer Quarter, 2008 Michele Rousseau Set 2 Ch. 1.3, 1.4

More information

cse 311: foundations of computing Fall 2015 Lecture 6: Predicate Logic, Logical Inference

cse 311: foundations of computing Fall 2015 Lecture 6: Predicate Logic, Logical Inference cse 311: foundations of computing Fall 2015 Lecture 6: Predicate Logic, Logical Inference quantifiers x P(x) P(x) is true for every x in the domain read as for all x, P of x x P x There is an x in the

More information

Predicate Logic. Andreas Klappenecker

Predicate Logic. Andreas Klappenecker Predicate Logic Andreas Klappenecker Predicates A function P from a set D to the set Prop of propositions is called a predicate. The set D is called the domain of P. Example Let D=Z be the set of integers.

More information

Lecture 3 : Predicates and Sets DRAFT

Lecture 3 : Predicates and Sets DRAFT CS/Math 240: Introduction to Discrete Mathematics 1/25/2010 Lecture 3 : Predicates and Sets Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený DRAFT Last time we discussed propositions, which are

More information

CPSC 121: Models of Computation. Module 6: Rewriting predicate logic statements

CPSC 121: Models of Computation. Module 6: Rewriting predicate logic statements CPSC 121: Models of Computation Pre-class quiz #7 is due Wednesday October 16th at 17:00. Assigned reading for the quiz: Epp, 4th edition: 4.1, 4.6, Theorem 4.4.1 Epp, 3rd edition: 3.1, 3.6, Theorem 3.4.1.

More information

Supplementary Logic Notes CSE 321 Winter 2009

Supplementary Logic Notes CSE 321 Winter 2009 1 Propositional Logic Supplementary Logic Notes CSE 321 Winter 2009 1.1 More efficient truth table methods The method of using truth tables to prove facts about propositional formulas can be a very tedious

More information

Logical Structures in Natural Language: First order Logic (FoL)

Logical Structures in Natural Language: First order Logic (FoL) Logical Structures in Natural Language: First order Logic (FoL) Raffaella Bernardi Università degli Studi di Trento e-mail: bernardi@disi.unitn.it Contents 1 How far can we go with PL?................................

More information

PREDICATE LOGIC. Schaum's outline chapter 4 Rosen chapter 1. September 11, ioc.pdf

PREDICATE LOGIC. Schaum's outline chapter 4 Rosen chapter 1. September 11, ioc.pdf PREDICATE LOGIC Schaum's outline chapter 4 Rosen chapter 1 September 11, 2018 margarita.spitsakova@ttu.ee ICY0001: Lecture 2 September 11, 2018 1 / 25 Contents 1 Predicates and quantiers 2 Logical equivalences

More information

With Question/Answer Animations. Chapter 2

With Question/Answer Animations. Chapter 2 With Question/Answer Animations Chapter 2 Chapter Summary Sets The Language of Sets Set Operations Set Identities Functions Types of Functions Operations on Functions Sequences and Summations Types of

More information

Propositional and First-Order Logic

Propositional and First-Order Logic Propositional and irst-order Logic 1 Propositional Logic 2 Propositional logic Proposition : A proposition is classified as a declarative sentence which is either true or false. eg: 1) It rained yesterday.

More information

1.3 Predicates and Quantifiers

1.3 Predicates and Quantifiers 1.3 Predicates and Quantifiers INTRODUCTION Statements x>3, x=y+3 and x + y=z are not propositions, if the variables are not specified. In this section we discuss the ways of producing propositions from

More information

Predicate Logic. Example. Statements in Predicate Logic. Some statements cannot be expressed in propositional logic, such as: Predicate Logic

Predicate Logic. Example. Statements in Predicate Logic. Some statements cannot be expressed in propositional logic, such as: Predicate Logic Predicate Logic Predicate Logic (Rosen, Chapter 1.4-1.6) TOPICS Predicate Logic Quantifiers Logical Equivalence Predicate Proofs Some statements cannot be expressed in propositional logic, such as: All

More information

HOW TO CREATE A PROOF. Writing proofs is typically not a straightforward, algorithmic process such as calculating

HOW TO CREATE A PROOF. Writing proofs is typically not a straightforward, algorithmic process such as calculating HOW TO CREATE A PROOF ALLAN YASHINSKI Abstract We discuss how to structure a proof based on the statement being proved Writing proofs is typically not a straightforward, algorithmic process such as calculating

More information

First Order Logic (FOL) 1 znj/dm2017

First Order Logic (FOL) 1   znj/dm2017 First Order Logic (FOL) 1 http://lcs.ios.ac.cn/ znj/dm2017 Naijun Zhan March 19, 2017 1 Special thanks to Profs Hanpin Wang (PKU) and Lijun Zhang (ISCAS) for their courtesy of the slides on this course.

More information

MAT 243 Test 1 SOLUTIONS, FORM A

MAT 243 Test 1 SOLUTIONS, FORM A t MAT 243 Test 1 SOLUTIONS, FORM A 1. [10 points] Rewrite the statement below in positive form (i.e., so that all negation symbols immediately precede a predicate). ( x IR)( y IR)((T (x, y) Q(x, y)) R(x,

More information

MATH 22 INFERENCE & QUANTIFICATION. Lecture F: 9/18/2003

MATH 22 INFERENCE & QUANTIFICATION. Lecture F: 9/18/2003 MATH 22 Lecture F: 9/18/2003 INFERENCE & QUANTIFICATION Sixty men can do a piece of work sixty times as quickly as one man. One man can dig a post-hole in sixty seconds. Therefore, sixty men can dig a

More information

Discrete Mathematical Structures. Chapter 1 The Foundation: Logic

Discrete Mathematical Structures. Chapter 1 The Foundation: Logic Discrete Mathematical Structures Chapter 1 he oundation: Logic 1 Lecture Overview 1.1 Propositional Logic 1.2 Propositional Equivalences 1.3 Quantifiers l l l l l Statement Logical Connectives Conjunction

More information

CA320 - Computability & Complexity

CA320 - Computability & Complexity CA320 - Computability & Complexity David Sinclair Overview In this module we are going to answer 2 important questions: Can all problems be solved by a computer? What problems be efficiently solved by

More information

Logic and Modelling. Introduction to Predicate Logic. Jörg Endrullis. VU University Amsterdam

Logic and Modelling. Introduction to Predicate Logic. Jörg Endrullis. VU University Amsterdam Logic and Modelling Introduction to Predicate Logic Jörg Endrullis VU University Amsterdam Predicate Logic In propositional logic there are: propositional variables p, q, r,... that can be T or F In predicate

More information

Introduction to Predicate Logic Part 1. Professor Anita Wasilewska Lecture Notes (1)

Introduction to Predicate Logic Part 1. Professor Anita Wasilewska Lecture Notes (1) Introduction to Predicate Logic Part 1 Professor Anita Wasilewska Lecture Notes (1) Introduction Lecture Notes (1) and (2) provide an OVERVIEW of a standard intuitive formalization and introduction to

More information

Predicate in English. Predicates and Quantifiers. Predicate in Logic. Propositional Functions: Prelude. Propositional Function

Predicate in English. Predicates and Quantifiers. Predicate in Logic. Propositional Functions: Prelude. Propositional Function Predicates and Quantifiers Chuck Cusack Predicate in English In English, a sentence has 2 parts: the subject and the predicate. The predicate is the part of the sentence that states something about the

More information

First-Order Logic (FOL)

First-Order Logic (FOL) First-Order Logic (FOL) Also called Predicate Logic or Predicate Calculus 2. First-Order Logic (FOL) FOL Syntax variables x, y, z, constants a, b, c, functions f, g, h, terms variables, constants or n-ary

More information

Chapter 1 Elementary Logic

Chapter 1 Elementary Logic 2017-2018 Chapter 1 Elementary Logic The study of logic is the study of the principles and methods used in distinguishing valid arguments from those that are not valid. The aim of this chapter is to help

More information

Predicate Logic. Predicates. Math 173 February 9, 2010

Predicate Logic. Predicates. Math 173 February 9, 2010 Math 173 February 9, 2010 Predicate Logic We have now seen two ways to translate English sentences into mathematical symbols. We can capture the logical form of a sentence using propositional logic: variables

More information

THE LOGIC OF QUANTIFIED STATEMENTS. Predicates and Quantified Statements I. Predicates and Quantified Statements I CHAPTER 3 SECTION 3.

THE LOGIC OF QUANTIFIED STATEMENTS. Predicates and Quantified Statements I. Predicates and Quantified Statements I CHAPTER 3 SECTION 3. CHAPTER 3 THE LOGIC OF QUANTIFIED STATEMENTS SECTION 3.1 Predicates and Quantified Statements I Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. Predicates

More information

Part I: Propositional Calculus

Part I: Propositional Calculus Logic Part I: Propositional Calculus Statements Undefined Terms True, T, #t, 1 False, F, #f, 0 Statement, Proposition Statement/Proposition -- Informal Definition Statement = anything that can meaningfully

More information

Today. Proof using contrapositive. Compound Propositions. Manipulating Propositions. Tautology

Today. Proof using contrapositive. Compound Propositions. Manipulating Propositions. Tautology 1 Math/CSE 1019N: Discrete Mathematics for Computer Science Winter 2007 Suprakash Datta datta@cs.yorku.ca Office: CSEB 3043 Phone: 416-736-2100 ext 77875 Course page: http://www.cs.yorku.ca/course/1019

More information

Comp487/587 - Boolean Formulas

Comp487/587 - Boolean Formulas Comp487/587 - Boolean Formulas 1 Logic and SAT 1.1 What is a Boolean Formula Logic is a way through which we can analyze and reason about simple or complicated events. In particular, we are interested

More information