Lecture 6 Special Subgroups

Size: px
Start display at page:

Download "Lecture 6 Special Subgroups"

Transcription

1 Lecture 6 Special Subgroups

2 Review: Recall, for any homomorphism ϕ : G H, the kernel of ϕ is and the image of ϕ is ker(ϕ) = {g G ϕ(g) = e H } G img(ϕ) = {h H ϕ(g) = h for some g G} H. (They are subgroups of G and H respectively). Subgroup criterion: A non-empty subset H G is a subgroups if and only if xy 1 H for all x, y H.

3 From last time: A group action of a group G on a set A is a map from G A (g, a) A g a which satisfies g (h a) = (gh) a and 1 a = a for all g, h G, a A. We say G acts on A.

4 From last time: A group action of a group G on a set A is a map from G A (g, a) A g a which satisfies g (h a) = (gh) a and 1 a = a for all g, h G, a A. We say G acts on A. Any group action is equivalent to a homomorphism ρ : G S A g σ g defined by ρ(g)(a) = σ g (a) = g a.

5 Group action: g (h a) = (gh) a and 1 a = a. Homomorphism: ρ : G S A, where ρ(g)(a) = σ g (a) = g a. Example: D 8 (1) on single vertices, and (2) on unordered pairs of opposite vertices.

6 Group action: g (h a) = (gh) a and 1 a = a. Homomorphism: ρ : G S A, where ρ(g)(a) = σ g (a) = g a. Definition Let a be a fixed element of A. The stabilizer of a in G (with respect to a given action) is G a = {g G g a = a} G. Example: D 8 (1) on single vertices, and (2) on unordered pairs of opposite vertices.

7 Group action: g (h a) = (gh) a and 1 a = a. Homomorphism: ρ : G S A, where ρ(g)(a) = σ g (a) = g a. Definition Let a be a fixed element of A. The stabilizer of a in G (with respect to a given action) is If S A, then G a = {g G g a = a} G. G S = {g G g s = s for all s S} G. The kernel of the group action is G A. Example: D 8 (1) on single vertices, and (2) on unordered pairs of opposite vertices.

8 Group action: g (h a) = (gh) a and 1 a = a. Homomorphism: ρ : G S A, where ρ(g)(a) = σ g (a) = g a. Definition Let a be a fixed element of A. The stabilizer of a in G (with respect to a given action) is If S A, then G a = {g G g a = a} G. G S = {g G g s = s for all s S} G. The kernel of the group action is G A. Theorem For any non-empty S A, G S is a subgroup of G. Example: D 8 (1) on single vertices, and (2) on unordered pairs of opposite vertices.

9 A group acts on itself in several ways (A = G). Two important ways are 1. by left multiplication: g a = ga, and 2. by conjugation: g a = gag 1.

10 A group acts on itself in several ways (A = G). Two important ways are 1. by left multiplication: g a = ga, and 2. by conjugation: g a = gag 1. Example: Let D 8 act on itself by conjugation (g a = gag 1 ). Fill out the following table: act by 1 r r 2 r 3 s sr sr 2 sr 3 act on 1 r r 2 r 3 s sr sr 2 sr 3 What subset of G fixes r? fixes s? fixes both s and r? fixes everything?

11 A group acts on itself in several ways (A = G). Two important ways are 1. by left multiplication: g a = ga, and 2. by conjugation: g a = gag 1. Example: Let D 8 act on itself by conjugation (g a = gag 1 ). Fill out the following table: act by act on 1 r r 2 r 3 s sr sr 2 sr r r 2 r 3 s sr sr 2 sr 3 r 1 r r 2 r 3 sr 2 sr 3 s sr r 2 1 r r 2 r 3 s sr sr 2 sr 3 r 3 1 r r 2 r 3 sr 2 sr 3 s sr s 1 r 3 r 2 r s sr 3 sr 2 sr sr 1 r 3 r 2 r sr 2 sr s sr 3 sr 2 1 r 3 r 2 r s sr 3 sr 2 sr sr 3 1 r 3 r 2 r sr 2 sr s sr 3 What subset of G fixes r? fixes s? fixes both s and r? fixes everything?

12 More special subgroups

13 More special subgroups Definition Let A be a non-empty subset of G (not nec. subgroup). The centralizer of A in G is Since C G (A) = {g G gag 1 = a for all a A}. gag 1 = a ga = ag this is the set of elements which commute with all a in A. If A = {a}, we write C G ({a}) = C G (a).

14 More on the centeralizers C G (A) = {g G gag 1 = a for all a A}.

15 More on the centeralizers C G (A) = {g G gag 1 = a for all a A}. Theorem For any non-empty A G, C A (G) is a subgroup of G.

16 More on the centeralizers C G (A) = {g G gag 1 = a for all a A}. Theorem For any non-empty A G, C A (G) is a subgroup of G. Definition The center of a group G, denoted Z(G), is the set of elements which commute with everything in G, i.e. Z(G) = C G (G).

17 More on the centeralizers C G (A) = {g G gag 1 = a for all a A}. Theorem For any non-empty A G, C A (G) is a subgroup of G. Definition The center of a group G, denoted Z(G), is the set of elements which commute with everything in G, i.e. Z(G) = C G (G). Corollary The center Z(G) is a subgroup of G of C G (A) for all A G.

18 And one more... Again, let A G be a subset of G, and fix an element g G. Let gag 1 = {h G h = gag 1 for some a A} G be the set of all elements one can arrive at by conjugating elements of A by g.

19 And one more... Again, let A G be a subset of G, and fix an element g G. Let gag 1 = {h G h = gag 1 for some a A} G be the set of all elements one can arrive at by conjugating elements of A by g. Definition The normalizer of A in G is the set N G (A) = {g G gag 1 = A} G of all the elements of G which setwise fix A (individual elements don t have to be fixed!)

20 And one more... Again, let A G be a subset of G, and fix an element g G. Let gag 1 = {h G h = gag 1 for some a A} G be the set of all elements one can arrive at by conjugating elements of A by g. Definition The normalizer of A in G is the set N G (A) = {g G gag 1 = A} G of all the elements of G which setwise fix A (individual elements don t have to be fixed!) Theorem For any A G, the normalizer N G (A) is a subgroup of G. Moreover, Z(G) C G (A) N G (A) G.

(Think: three copies of C) i j = k = j i, j k = i = k j, k i = j = i k.

(Think: three copies of C) i j = k = j i, j k = i = k j, k i = j = i k. Warm-up: The quaternion group, denoted Q 8, is the set {1, 1, i, i, j, j, k, k} with product given by 1 a = a 1 = a a Q 8, ( 1) ( 1) = 1, i 2 = j 2 = k 2 = 1, ( 1) a = a ( 1) = a a Q 8, (Think: three copies

More information

Lecture 3. Theorem 1: D 6

Lecture 3. Theorem 1: D 6 Lecture 3 This week we have a longer section on homomorphisms and isomorphisms and start formally working with subgroups even though we have been using them in Chapter 1. First, let s finish what was claimed

More information

MATH 101: ALGEBRA I WORKSHEET, DAY #3. Fill in the blanks as we finish our first pass on prerequisites of group theory.

MATH 101: ALGEBRA I WORKSHEET, DAY #3. Fill in the blanks as we finish our first pass on prerequisites of group theory. MATH 101: ALGEBRA I WORKSHEET, DAY #3 Fill in the blanks as we finish our first pass on prerequisites of group theory 1 Subgroups, cosets Let G be a group Recall that a subgroup H G is a subset that is

More information

Lecture 7 Cyclic groups and subgroups

Lecture 7 Cyclic groups and subgroups Lecture 7 Cyclic groups and subgroups Review Types of groups we know Numbers: Z, Q, R, C, Q, R, C Matrices: (M n (F ), +), GL n (F ), where F = Q, R, or C. Modular groups: Z/nZ and (Z/nZ) Dihedral groups:

More information

Review: Review: 'pgq imgp'q th P H h 'pgq for some g P Gu H; kerp'q tg P G 'pgq 1 H u G.

Review: Review: 'pgq imgp'q th P H h 'pgq for some g P Gu H; kerp'q tg P G 'pgq 1 H u G. Review: A homomorphism is a map ' : G Ñ H between groups satisfying 'pg 1 g 2 q 'pg 1 q'pg 2 q for all g 1,g 2 P G. Anisomorphism is homomorphism that is also a bijection. We showed that for any homomorphism

More information

Fall /29/18 Time Limit: 75 Minutes

Fall /29/18 Time Limit: 75 Minutes Math 411: Abstract Algebra Fall 2018 Midterm 10/29/18 Time Limit: 75 Minutes Name (Print): Solutions JHU-ID: This exam contains 8 pages (including this cover page) and 6 problems. Check to see if any pages

More information

MATH 28A MIDTERM 2 INSTRUCTOR: HAROLD SULTAN

MATH 28A MIDTERM 2 INSTRUCTOR: HAROLD SULTAN NAME: MATH 28A MIDTERM 2 INSTRUCTOR: HAROLD SULTAN 1. INSTRUCTIONS (1) Timing: You have 80 minutes for this midterm. (2) Partial Credit will be awarded. Please show your work and provide full solutions,

More information

MATH 436 Notes: Cyclic groups and Invariant Subgroups.

MATH 436 Notes: Cyclic groups and Invariant Subgroups. MATH 436 Notes: Cyclic groups and Invariant Subgroups. Jonathan Pakianathan September 30, 2003 1 Cyclic Groups Now that we have enough basic tools, let us go back and study the structure of cyclic groups.

More information

Elements of solution for Homework 5

Elements of solution for Homework 5 Elements of solution for Homework 5 General remarks How to use the First Isomorphism Theorem A standard way to prove statements of the form G/H is isomorphic to Γ is to construct a homomorphism ϕ : G Γ

More information

A. (Groups of order 8.) (a) Which of the five groups G (as specified in the question) have the following property: G has a normal subgroup N such that

A. (Groups of order 8.) (a) Which of the five groups G (as specified in the question) have the following property: G has a normal subgroup N such that MATH 402A - Solutions for the suggested problems. A. (Groups of order 8. (a Which of the five groups G (as specified in the question have the following property: G has a normal subgroup N such that N =

More information

3.8 Cosets, Normal Subgroups, and Factor Groups

3.8 Cosets, Normal Subgroups, and Factor Groups 3.8 J.A.Beachy 1 3.8 Cosets, Normal Subgroups, and Factor Groups from A Study Guide for Beginner s by J.A.Beachy, a supplement to Abstract Algebra by Beachy / Blair 29. Define φ : C R by φ(z) = z, for

More information

Your Name MATH 435, EXAM #1

Your Name MATH 435, EXAM #1 MATH 435, EXAM #1 Your Name You have 50 minutes to do this exam. No calculators! No notes! For proofs/justifications, please use complete sentences and make sure to explain any steps which are questionable.

More information

Cosets, factor groups, direct products, homomorphisms, isomorphisms

Cosets, factor groups, direct products, homomorphisms, isomorphisms Cosets, factor groups, direct products, homomorphisms, isomorphisms Sergei Silvestrov Spring term 2011, Lecture 11 Contents of the lecture Cosets and the theorem of Lagrange. Direct products and finitely

More information

Recall: Properties of Homomorphisms

Recall: Properties of Homomorphisms Recall: Properties of Homomorphisms Let φ : G Ḡ be a homomorphism, let g G, and let H G. Properties of elements Properties of subgroups 1. φ(e G ) = eḡ 1. φ(h) Ḡ. 2. φ(g n ) = (φ(g)) n for all n Z. 2.

More information

Section III.15. Factor-Group Computations and Simple Groups

Section III.15. Factor-Group Computations and Simple Groups III.15 Factor-Group Computations 1 Section III.15. Factor-Group Computations and Simple Groups Note. In this section, we try to extract information about a group G by considering properties of the factor

More information

Algebra homework 6 Homomorphisms, isomorphisms

Algebra homework 6 Homomorphisms, isomorphisms MATH-UA.343.005 T.A. Louis Guigo Algebra homework 6 Homomorphisms, isomorphisms Exercise 1. Show that the following maps are group homomorphisms and compute their kernels. (a f : (R, (GL 2 (R, given by

More information

Johns Hopkins University, Department of Mathematics Abstract Algebra - Spring 2009 Midterm

Johns Hopkins University, Department of Mathematics Abstract Algebra - Spring 2009 Midterm Johns Hopkins University, Department of Mathematics 110.401 Abstract Algebra - Spring 2009 Midterm Instructions: This exam has 8 pages. No calculators, books or notes allowed. You must answer the first

More information

MTHSC 3190 Section 2.9 Sets a first look

MTHSC 3190 Section 2.9 Sets a first look MTHSC 3190 Section 2.9 Sets a first look Definition A set is a repetition free unordered collection of objects called elements. Definition A set is a repetition free unordered collection of objects called

More information

1 2 3 style total. Circle the correct answer; no explanation is required. Each problem in this section counts 5 points.

1 2 3 style total. Circle the correct answer; no explanation is required. Each problem in this section counts 5 points. 1 2 3 style total Math 415 Examination 3 Please print your name: Answer Key 1 True/false Circle the correct answer; no explanation is required. Each problem in this section counts 5 points. 1. The rings

More information

Lecture 7.3: Ring homomorphisms

Lecture 7.3: Ring homomorphisms Lecture 7.3: Ring homomorphisms Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 4120, Modern Algebra M. Macauley (Clemson) Lecture 7.3:

More information

Kevin James. Quotient Groups and Homomorphisms: Definitions and Examp

Kevin James. Quotient Groups and Homomorphisms: Definitions and Examp Quotient Groups and Homomorphisms: Definitions and Examples Definition If φ : G H is a homomorphism of groups, the kernel of φ is the set ker(φ){g G φ(g) = 1 H }. Definition If φ : G H is a homomorphism

More information

Section 15 Factor-group computation and simple groups

Section 15 Factor-group computation and simple groups Section 15 Factor-group computation and simple groups Instructor: Yifan Yang Fall 2006 Outline Factor-group computation Simple groups The problem Problem Given a factor group G/H, find an isomorphic group

More information

Group Theory pt 2. PHYS Southern Illinois University. November 16, 2016

Group Theory pt 2. PHYS Southern Illinois University. November 16, 2016 Group Theory pt 2 PHYS 500 - Southern Illinois University November 16, 2016 PHYS 500 - Southern Illinois University Group Theory pt 2 November 16, 2016 1 / 6 SO(3) Fact: Every R SO(3) has at least one

More information

MA441: Algebraic Structures I. Lecture 26

MA441: Algebraic Structures I. Lecture 26 MA441: Algebraic Structures I Lecture 26 10 December 2003 1 (page 179) Example 13: A 4 has no subgroup of order 6. BWOC, suppose H < A 4 has order 6. Then H A 4, since it has index 2. Thus A 4 /H has order

More information

Solutions to Assignment 4

Solutions to Assignment 4 1. Let G be a finite, abelian group written additively. Let x = g G g, and let G 2 be the subgroup of G defined by G 2 = {g G 2g = 0}. (a) Show that x = g G 2 g. (b) Show that x = 0 if G 2 = 2. If G 2

More information

MATH 4107 (Prof. Heil) PRACTICE PROBLEMS WITH SOLUTIONS Spring 2018

MATH 4107 (Prof. Heil) PRACTICE PROBLEMS WITH SOLUTIONS Spring 2018 MATH 4107 (Prof. Heil) PRACTICE PROBLEMS WITH SOLUTIONS Spring 2018 Here are a few practice problems on groups. You should first work through these WITHOUT LOOKING at the solutions! After you write your

More information

Math 547, Exam 1 Information.

Math 547, Exam 1 Information. Math 547, Exam 1 Information. 2/10/10, LC 303B, 10:10-11:00. Exam 1 will be based on: Sections 5.1, 5.2, 5.3, 9.1; The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/547sp10/547.html)

More information

Equivalence Relations and Partitions, Normal Subgroups, Quotient Groups, and Homomorphisms

Equivalence Relations and Partitions, Normal Subgroups, Quotient Groups, and Homomorphisms Equivalence Relations and Partitions, Normal Subgroups, Quotient Groups, and Homomorphisms Math 356 Abstract We sum up the main features of our last three class sessions, which list of topics are given

More information

Modern Algebra I. Circle the correct answer; no explanation is required. Each problem in this section counts 5 points.

Modern Algebra I. Circle the correct answer; no explanation is required. Each problem in this section counts 5 points. 1 2 3 style total Math 415 Please print your name: Answer Key 1 True/false Circle the correct answer; no explanation is required. Each problem in this section counts 5 points. 1. Every group of order 6

More information

Homework 10 M 373K by Mark Lindberg (mal4549)

Homework 10 M 373K by Mark Lindberg (mal4549) Homework 10 M 373K by Mark Lindberg (mal4549) 1. Artin, Chapter 11, Exercise 1.1. Prove that 7 + 3 2 and 3 + 5 are algebraic numbers. To do this, we must provide a polynomial with integer coefficients

More information

Assigment 1. 1 a b. 0 1 c A B = (A B) (B A). 3. In each case, determine whether G is a group with the given operation.

Assigment 1. 1 a b. 0 1 c A B = (A B) (B A). 3. In each case, determine whether G is a group with the given operation. 1. Show that the set G = multiplication. Assigment 1 1 a b 0 1 c a, b, c R 0 0 1 is a group under matrix 2. Let U be a set and G = {A A U}. Show that G ia an abelian group under the operation defined by

More information

Modern Algebra Homework 9b Chapter 9 Read Complete 9.21, 9.22, 9.23 Proofs

Modern Algebra Homework 9b Chapter 9 Read Complete 9.21, 9.22, 9.23 Proofs Modern Algebra Homework 9b Chapter 9 Read 9.1-9.3 Complete 9.21, 9.22, 9.23 Proofs Megan Bryant November 20, 2013 First Sylow Theorem If G is a group and p n is the highest power of p dividing G, then

More information

Groups and Symmetries

Groups and Symmetries Groups and Symmetries Definition: Symmetry A symmetry of a shape is a rigid motion that takes vertices to vertices, edges to edges. Note: A rigid motion preserves angles and distances. Definition: Group

More information

Lecture 3.7: Conjugacy classes

Lecture 3.7: Conjugacy classes Lecture 3.7: Conjugacy classes Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 4120, Modern Algebra M. Macauley (Clemson) Lecture 3.7:

More information

2MA105 Algebraic Structures I

2MA105 Algebraic Structures I 2MA105 Algebraic Structures I Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/2ma105.html Lecture 7 Cosets once again Factor Groups Some Properties of Factor Groups Homomorphisms November 28, 2011

More information

S10MTH 3175 Group Theory (Prof.Todorov) Quiz 6 (Practice) Name: Some of the problems are very easy, some are harder.

S10MTH 3175 Group Theory (Prof.Todorov) Quiz 6 (Practice) Name: Some of the problems are very easy, some are harder. Some of the problems are very easy, some are harder. 1. Let F : Z Z be a function defined as F (x) = 10x. (a) Prove that F is a group homomorphism. (b) Find Ker(F ) Solution: Ker(F ) = {0}. Proof: Let

More information

Chapter 25 Finite Simple Groups. Chapter 25 Finite Simple Groups

Chapter 25 Finite Simple Groups. Chapter 25 Finite Simple Groups Historical Background Definition A group is simple if it has no nontrivial proper normal subgroup. The definition was proposed by Galois; he showed that A n is simple for n 5 in 1831. It is an important

More information

Selected exercises from Abstract Algebra by Dummit and Foote (3rd edition).

Selected exercises from Abstract Algebra by Dummit and Foote (3rd edition). Selected exercises from Abstract Algebra by Dummit Foote (3rd edition). Bryan Félix Abril 12, 2017 Section 4.1 Exercise 1. Let G act on the set A. Prove that if a, b A b = ga for some g G, then G b = gg

More information

1 Chapter 6 - Exercise 1.8.cf

1 Chapter 6 - Exercise 1.8.cf 1 CHAPTER 6 - EXERCISE 1.8.CF 1 1 Chapter 6 - Exercise 1.8.cf Determine 1 The Class Equation of the dihedral group D 5. Note first that D 5 = 10 = 5 2. Hence every conjugacy class will have order 1, 2

More information

Kevin James. p-groups, Nilpotent groups and Solvable groups

Kevin James. p-groups, Nilpotent groups and Solvable groups p-groups, Nilpotent groups and Solvable groups Definition A maximal subgroup of a group G is a proper subgroup M G such that there are no subgroups H with M < H < G. Definition A maximal subgroup of a

More information

book 2005/1/23 20:41 page 132 #146

book 2005/1/23 20:41 page 132 #146 book 2005/1/23 20:41 page 132 #146 132 2. BASIC THEORY OF GROUPS Definition 2.6.16. Let a and b be elements of a group G. We say that b is conjugate to a if there is a g G such that b = gag 1. You are

More information

Solutions for Homework Assignment 5

Solutions for Homework Assignment 5 Solutions for Homework Assignment 5 Page 154, Problem 2. Every element of C can be written uniquely in the form a + bi, where a,b R, not both equal to 0. The fact that a and b are not both 0 is equivalent

More information

Lecture 24 Properties of deals

Lecture 24 Properties of deals Lecture 24 Properties of deals Aside: Representation theory of finite groups Let G be a finite group, and let R C, R, or Q (any commutative ring). Aside: Representation theory of finite groups Let G be

More information

INTRODUCTION TO THE GROUP THEORY

INTRODUCTION TO THE GROUP THEORY Lecture Notes on Structure of Algebra INTRODUCTION TO THE GROUP THEORY By : Drs. Antonius Cahya Prihandoko, M.App.Sc e-mail: antoniuscp.fkip@unej.ac.id Mathematics Education Study Program Faculty of Teacher

More information

Group Theory

Group Theory Group Theory 2014 2015 Solutions to the exam of 4 November 2014 13 November 2014 Question 1 (a) For every number n in the set {1, 2,..., 2013} there is exactly one transposition (n n + 1) in σ, so σ is

More information

Solutions of Assignment 10 Basic Algebra I

Solutions of Assignment 10 Basic Algebra I Solutions of Assignment 10 Basic Algebra I November 25, 2004 Solution of the problem 1. Let a = m, bab 1 = n. Since (bab 1 ) m = (bab 1 )(bab 1 ) (bab 1 ) = ba m b 1 = b1b 1 = 1, we have n m. Conversely,

More information

Section 13 Homomorphisms

Section 13 Homomorphisms Section 13 Homomorphisms Instructor: Yifan Yang Fall 2006 Homomorphisms Definition A map φ of a group G into a group G is a homomorphism if for all a, b G. φ(ab) = φ(a)φ(b) Examples 1. Let φ : G G be defined

More information

5 Group theory. 5.1 Binary operations

5 Group theory. 5.1 Binary operations 5 Group theory This section is an introduction to abstract algebra. This is a very useful and important subject for those of you who will continue to study pure mathematics. 5.1 Binary operations 5.1.1

More information

Introduction to Groups

Introduction to Groups Introduction to Groups Hong-Jian Lai August 2000 1. Basic Concepts and Facts (1.1) A semigroup is an ordered pair (G, ) where G is a nonempty set and is a binary operation on G satisfying: (G1) a (b c)

More information

MTH Abstract Algebra II S17. Review for the Final Exam. Part I

MTH Abstract Algebra II S17. Review for the Final Exam. Part I MTH 411-1 Abstract Algebra II S17 Review for the Final Exam Part I You will be allowed to use the textbook (Hungerford) and a print-out of my online lecture notes during the exam. Nevertheless, I recommend

More information

ABSTRACT ALGEBRA 1, LECTURE NOTES 5: HOMOMORPHISMS, ISOMORPHISMS, SUBGROUPS, QUOTIENT ( FACTOR ) GROUPS. ANDREW SALCH

ABSTRACT ALGEBRA 1, LECTURE NOTES 5: HOMOMORPHISMS, ISOMORPHISMS, SUBGROUPS, QUOTIENT ( FACTOR ) GROUPS. ANDREW SALCH ABSTRACT ALGEBRA 1, LECTURE NOTES 5: HOMOMORPHISMS, ISOMORPHISMS, SUBGROUPS, QUOTIENT ( FACTOR ) GROUPS. ANDREW SALCH 1. Homomorphisms and isomorphisms between groups. Definition 1.1. Let G, H be groups.

More information

Geometric Transformations and Wallpaper Groups

Geometric Transformations and Wallpaper Groups Geometric Transformations and Wallpaper Groups Lance Drager Texas Tech University Geometric Transformations III p.1/25 Introduction to Groups of Isometrics Geometric Transformations III p.2/25 Symmetries

More information

Math 210A: Algebra, Homework 6

Math 210A: Algebra, Homework 6 Math 210A: Algebra, Homework 6 Ian Coley November 13, 2013 Problem 1 For every two nonzero integers n and m construct an exact sequence For which n and m is the sequence split? 0 Z/nZ Z/mnZ Z/mZ 0 Let

More information

MODEL ANSWERS TO HWK #4. ϕ(ab) = [ab] = [a][b]

MODEL ANSWERS TO HWK #4. ϕ(ab) = [ab] = [a][b] MODEL ANSWERS TO HWK #4 1. (i) Yes. Given a and b Z, ϕ(ab) = [ab] = [a][b] = ϕ(a)ϕ(b). This map is clearly surjective but not injective. Indeed the kernel is easily seen to be nz. (ii) No. Suppose that

More information

MODEL ANSWERS TO THE FIFTH HOMEWORK

MODEL ANSWERS TO THE FIFTH HOMEWORK MODEL ANSWERS TO THE FIFTH HOMEWORK 1. Chapter 3, Section 5: 1 (a) Yes. Given a and b Z, φ(ab) = [ab] = [a][b] = φ(a)φ(b). This map is clearly surjective but not injective. Indeed the kernel is easily

More information

Math 4/541 Day 25. Some observations:

Math 4/541 Day 25. Some observations: Math 4/541 Day 25 1. Previously we showed that given a homomorphism, ϕ, the set of (left) cosets, G/K of the kernel formed a group under the operation akbk = abk. Some observations: We could have just

More information

Name: Solutions - AI FINAL EXAM

Name: Solutions - AI FINAL EXAM 1 2 3 4 5 6 7 8 9 10 11 12 13 total Name: Solutions - AI FINAL EXAM The first 7 problems will each count 10 points. The best 3 of # 8-13 will count 10 points each. Total is 100 points. A 4th problem from

More information

Name: Solutions Final Exam

Name: Solutions Final Exam Instructions. Answer each of the questions on your own paper. Be sure to show your work so that partial credit can be adequately assessed. Put your name on each page of your paper. 1. [10 Points] All of

More information

Presentation 1

Presentation 1 18.704 Presentation 1 Jesse Selover March 5, 2015 We re going to try to cover a pretty strange result. It might seem unmotivated if I do a bad job, so I m going to try to do my best. The overarching theme

More information

The Class Equation X = Gx. x X/G

The Class Equation X = Gx. x X/G The Class Equation 9-9-2012 If X is a G-set, X is partitioned by the G-orbits. So if X is finite, X = x X/G ( x X/G means you should take one representative x from each orbit, and sum over the set of representatives.

More information

Mathematics 331 Solutions to Some Review Problems for Exam a = c = 3 2 1

Mathematics 331 Solutions to Some Review Problems for Exam a = c = 3 2 1 Mathematics 331 Solutions to Some Review Problems for Exam 2 1. Write out all the even permutations in S 3. Solution. The six elements of S 3 are a =, b = 1 3 2 2 1 3 c =, d = 3 2 1 2 3 1 e =, f = 3 1

More information

Finite Subgroups of Gl 2 (C) and Universal Deformation Rings

Finite Subgroups of Gl 2 (C) and Universal Deformation Rings Finite Subgroups of Gl 2 (C) and Universal Deformation Rings University of Missouri Conference on Geometric Methods in Representation Theory November 21, 2016 Goal Goal : Find connections between fusion

More information

Last time: Recall that the fibers of a map ϕ : X Ñ Y are the sets in ϕ 1 pyq Ď X which all map to the same element y P Y.

Last time: Recall that the fibers of a map ϕ : X Ñ Y are the sets in ϕ 1 pyq Ď X which all map to the same element y P Y. Last time: Recall that the fibers of a map ϕ : X Ñ Y are the sets in ϕ 1 pyq Ď X which all map to the same element y P Y. Last time: Recall that the fibers of a map ϕ : X Ñ Y are the sets in ϕ 1 pyq Ď

More information

AM 106/206: Applied Algebra Madhu Sudan 1. Lecture Notes 11

AM 106/206: Applied Algebra Madhu Sudan 1. Lecture Notes 11 AM 106/206: Applied Algebra Madhu Sudan 1 Lecture Notes 11 October 17, 2016 Reading: Gallian Chapters 9 & 10 1 Normal Subgroups Motivation: Recall that the cosets of nz in Z (a+nz) are the same as the

More information

Homomorphisms. The kernel of the homomorphism ϕ:g G, denoted Ker(ϕ), is the set of elements in G that are mapped to the identity in G.

Homomorphisms. The kernel of the homomorphism ϕ:g G, denoted Ker(ϕ), is the set of elements in G that are mapped to the identity in G. 10. Homomorphisms 1 Homomorphisms Isomorphisms are important in the study of groups because, being bijections, they ensure that the domain and codomain groups are of the same order, and being operation-preserving,

More information

Solution Outlines for Chapter 6

Solution Outlines for Chapter 6 Solution Outlines for Chapter 6 # 1: Find an isomorphism from the group of integers under addition to the group of even integers under addition. Let φ : Z 2Z be defined by x x + x 2x. Then φ(x + y) 2(x

More information

FINAL EXAM MATH 150A FALL 2016

FINAL EXAM MATH 150A FALL 2016 FINAL EXAM MATH 150A FALL 2016 The final exam consists of eight questions, each worth 10 or 15 points. The maximum score is 100. You are not allowed to use books, calculators, mobile phones or anything

More information

Maximal non-commuting subsets of groups

Maximal non-commuting subsets of groups Maximal non-commuting subsets of groups Umut Işık March 29, 2005 Abstract Given a finite group G, we consider the problem of finding the maximal size nc(g) of subsets of G that have the property that no

More information

Problem 1. Let I and J be ideals in a ring commutative ring R with 1 R. Recall

Problem 1. Let I and J be ideals in a ring commutative ring R with 1 R. Recall I. Take-Home Portion: Math 350 Final Exam Due by 5:00pm on Tues. 5/12/15 No resources/devices other than our class textbook and class notes/handouts may be used. You must work alone. Choose any 5 problems

More information

1.1 Definition. A monoid is a set M together with a map. 1.3 Definition. A monoid is commutative if x y = y x for all x, y M.

1.1 Definition. A monoid is a set M together with a map. 1.3 Definition. A monoid is commutative if x y = y x for all x, y M. 1 Monoids and groups 1.1 Definition. A monoid is a set M together with a map M M M, (x, y) x y such that (i) (x y) z = x (y z) x, y, z M (associativity); (ii) e M such that x e = e x = x for all x M (e

More information

Notes on Group Theory. by Avinash Sathaye, Professor of Mathematics November 5, 2013

Notes on Group Theory. by Avinash Sathaye, Professor of Mathematics November 5, 2013 Notes on Group Theory by Avinash Sathaye, Professor of Mathematics November 5, 2013 Contents 1 Preparation. 2 2 Group axioms and definitions. 2 Shortcuts................................. 2 2.1 Cyclic groups............................

More information

Math 4400, Spring 08, Sample problems Final Exam.

Math 4400, Spring 08, Sample problems Final Exam. Math 4400, Spring 08, Sample problems Final Exam. 1. Groups (1) (a) Let a be an element of a group G. Define the notions of exponent of a and period of a. (b) Suppose a has a finite period. Prove that

More information

Solutions to Some Review Problems for Exam 3. by properties of determinants and exponents. Therefore, ϕ is a group homomorphism.

Solutions to Some Review Problems for Exam 3. by properties of determinants and exponents. Therefore, ϕ is a group homomorphism. Solutions to Some Review Problems for Exam 3 Recall that R, the set of nonzero real numbers, is a group under multiplication, as is the set R + of all positive real numbers. 1. Prove that the set N of

More information

SF2729 GROUPS AND RINGS LECTURE NOTES

SF2729 GROUPS AND RINGS LECTURE NOTES SF2729 GROUPS AND RINGS LECTURE NOTES 2011-03-01 MATS BOIJ 6. THE SIXTH LECTURE - GROUP ACTIONS In the sixth lecture we study what happens when groups acts on sets. 1 Recall that we have already when looking

More information

Solutions for Assignment 4 Math 402

Solutions for Assignment 4 Math 402 Solutions for Assignment 4 Math 402 Page 74, problem 6. Assume that φ : G G is a group homomorphism. Let H = φ(g). We will prove that H is a subgroup of G. Let e and e denote the identity elements of G

More information

Normal Subgroups and Quotient Groups

Normal Subgroups and Quotient Groups Normal Subgroups and Quotient Groups 3-20-2014 A subgroup H < G is normal if ghg 1 H for all g G. Notation: H G. Every subgroup of an abelian group is normal. Every subgroup of index 2 is normal. If H

More information

Homework 2 /Solutions

Homework 2 /Solutions MTH 912 Group Theory 1 F18 Homework 2 /Solutions #1. Let G be a Frobenius group with complement H and kernel K. Then K is a subgroup of G if and only if each coset of H in G contains at most one element

More information

Algebra SEP Solutions

Algebra SEP Solutions Algebra SEP Solutions 17 July 2017 1. (January 2017 problem 1) For example: (a) G = Z/4Z, N = Z/2Z. More generally, G = Z/p n Z, N = Z/pZ, p any prime number, n 2. Also G = Z, N = nz for any n 2, since

More information

Extra exercises for algebra

Extra exercises for algebra Extra exercises for algebra These are extra exercises for the course algebra. They are meant for those students who tend to have already solved all the exercises at the beginning of the exercise session

More information

(5.11) (Second Isomorphism Theorem) If K G and N G, then K/(N K) = NK/N. PF: Verify N HK. Find a homomorphism f : K HK/N with ker(f) = (N K).

(5.11) (Second Isomorphism Theorem) If K G and N G, then K/(N K) = NK/N. PF: Verify N HK. Find a homomorphism f : K HK/N with ker(f) = (N K). Lecture Note of Week 3 6. Normality, Quotients and Homomorphisms (5.7) A subgroup N satisfying any one properties of (5.6) is called a normal subgroup of G. Denote this fact by N G. The homomorphism π

More information

Abstract Algebra II Groups ( )

Abstract Algebra II Groups ( ) Abstract Algebra II Groups ( ) Melchior Grützmann / melchiorgfreehostingcom/algebra October 15, 2012 Outline Group homomorphisms Free groups, free products, and presentations Free products ( ) Definition

More information

ALGEBRA I (LECTURE NOTES 2017/2018) LECTURE 9 - CYCLIC GROUPS AND EULER S FUNCTION

ALGEBRA I (LECTURE NOTES 2017/2018) LECTURE 9 - CYCLIC GROUPS AND EULER S FUNCTION ALGEBRA I (LECTURE NOTES 2017/2018) LECTURE 9 - CYCLIC GROUPS AND EULER S FUNCTION PAVEL RŮŽIČKA 9.1. Congruence modulo n. Let us have a closer look at a particular example of a congruence relation on

More information

CS 468: Computational Topology Group Theory Fall b c b a b a c b a c b c c b a

CS 468: Computational Topology Group Theory Fall b c b a b a c b a c b c c b a Q: What s purple and commutes? A: An abelian grape! Anonymous Group Theory Last lecture, we learned about a combinatorial method for characterizing spaces: using simplicial complexes as triangulations

More information

Math 4320 Final Exam

Math 4320 Final Exam Math 4320 Final Exam 2:00pm 4:30pm, Friday 18th May 2012 Symmetry, as wide or as narrow as you may define its meaning, is one idea by which man through the ages has tried to comprehend and create order,

More information

Math 120: Homework 6 Solutions

Math 120: Homework 6 Solutions Math 120: Homewor 6 Solutions November 18, 2018 Problem 4.4 # 2. Prove that if G is an abelian group of order pq, where p and q are distinct primes then G is cyclic. Solution. By Cauchy s theorem, G has

More information

ABSTRACT ALGEBRA 1, LECTURES NOTES 5: SUBGROUPS, CONJUGACY, NORMALITY, QUOTIENT GROUPS, AND EXTENSIONS.

ABSTRACT ALGEBRA 1, LECTURES NOTES 5: SUBGROUPS, CONJUGACY, NORMALITY, QUOTIENT GROUPS, AND EXTENSIONS. ABSTRACT ALGEBRA 1, LECTURES NOTES 5: SUBGROUPS, CONJUGACY, NORMALITY, QUOTIENT GROUPS, AND EXTENSIONS. ANDREW SALCH 1. Subgroups, conjugacy, normality. I think you already know what a subgroup is: Definition

More information

Derived Functors and Explicit Projective Resolutions

Derived Functors and Explicit Projective Resolutions LECTURE 12 Derived Functors and Explicit Projective Resolutions A Let X and Y be complexes of A-modules. Recall that in the last lecture we defined Hom A (X, Y ), as well as Hom der A (X, Y ) := Hom A

More information

Math 3140 Fall 2012 Assignment #4

Math 3140 Fall 2012 Assignment #4 Math 3140 Fall 2012 Assignment #4 Due Fri., Sept. 28. Remember to cite your sources, including the people you talk to. In this problem set, we use the notation gcd {a, b} for the greatest common divisor

More information

Frank Moore Algebra 901 Notes Professor: Tom Marley Direct Products of Groups:

Frank Moore Algebra 901 Notes Professor: Tom Marley Direct Products of Groups: Frank Moore Algebra 901 Notes Professor: Tom Marley Direct Products of Groups: Definition: The external direct product is defined to be the following: Let H 1,..., H n be groups. H 1 H 2 H n := {(h 1,...,

More information

A basic note on group representations and Schur s lemma

A basic note on group representations and Schur s lemma A basic note on group representations and Schur s lemma Alen Alexanderian Abstract Here we look at some basic results from group representation theory. Moreover, we discuss Schur s Lemma in the context

More information

Math 210A: Algebra, Homework 5

Math 210A: Algebra, Homework 5 Math 210A: Algebra, Homework 5 Ian Coley November 5, 2013 Problem 1. Prove that two elements σ and τ in S n are conjugate if and only if type σ = type τ. Suppose first that σ and τ are cycles. Suppose

More information

Topics in Representation Theory: SU(n), Weyl Chambers and the Diagram of a Group

Topics in Representation Theory: SU(n), Weyl Chambers and the Diagram of a Group Topics in Representation Theory: SU(n), Weyl hambers and the Diagram of a Group 1 Another Example: G = SU(n) Last time we began analyzing how the maximal torus T of G acts on the adjoint representation,

More information

School of Mathematics and Statistics. MT5824 Topics in Groups. Problem Sheet I: Revision and Re-Activation

School of Mathematics and Statistics. MT5824 Topics in Groups. Problem Sheet I: Revision and Re-Activation MRQ 2009 School of Mathematics and Statistics MT5824 Topics in Groups Problem Sheet I: Revision and Re-Activation 1. Let H and K be subgroups of a group G. Define HK = {hk h H, k K }. (a) Show that HK

More information

Automorphism Groups Definition. An automorphism of a group G is an isomorphism G G. The set of automorphisms of G is denoted Aut G.

Automorphism Groups Definition. An automorphism of a group G is an isomorphism G G. The set of automorphisms of G is denoted Aut G. Automorphism Groups 9-9-2012 Definition. An automorphism of a group G is an isomorphism G G. The set of automorphisms of G is denoted Aut G. Example. The identity map id : G G is an automorphism. Example.

More information

HOMEWORK Graduate Abstract Algebra I May 2, 2004

HOMEWORK Graduate Abstract Algebra I May 2, 2004 Math 5331 Sec 121 Spring 2004, UT Arlington HOMEWORK Graduate Abstract Algebra I May 2, 2004 The required text is Algebra, by Thomas W. Hungerford, Graduate Texts in Mathematics, Vol 73, Springer. (it

More information

6 More on simple groups Lecture 20: Group actions and simplicity Lecture 21: Simplicity of some group actions...

6 More on simple groups Lecture 20: Group actions and simplicity Lecture 21: Simplicity of some group actions... 510A Lecture Notes 2 Contents I Group theory 5 1 Groups 7 1.1 Lecture 1: Basic notions............................................... 8 1.2 Lecture 2: Symmetries and group actions......................................

More information

Math Introduction to Modern Algebra

Math Introduction to Modern Algebra Math 343 - Introduction to Modern Algebra Notes Field Theory Basics Let R be a ring. M is called a maximal ideal of R if M is a proper ideal of R and there is no proper ideal of R that properly contains

More information

SUMMARY ALGEBRA I LOUIS-PHILIPPE THIBAULT

SUMMARY ALGEBRA I LOUIS-PHILIPPE THIBAULT SUMMARY ALGEBRA I LOUIS-PHILIPPE THIBAULT Contents 1. Group Theory 1 1.1. Basic Notions 1 1.2. Isomorphism Theorems 2 1.3. Jordan- Holder Theorem 2 1.4. Symmetric Group 3 1.5. Group action on Sets 3 1.6.

More information

xy xyy 1 = ey 1 = y 1 i.e.

xy xyy 1 = ey 1 = y 1 i.e. Homework 2 solutions. Problem 4.4. Let g be an element of the group G. Keep g fixed and let x vary through G. Prove that the products gx are all distinct and fill out G. Do the same for the products xg.

More information

Solutions to odd-numbered exercises Peter J. Cameron, Introduction to Algebra, Chapter 3

Solutions to odd-numbered exercises Peter J. Cameron, Introduction to Algebra, Chapter 3 Solutions to odd-numbered exercises Peter J. Cameron, Introduction to Algebra, Chapter 3 3. (a) Yes; (b) No; (c) No; (d) No; (e) Yes; (f) Yes; (g) Yes; (h) No; (i) Yes. Comments: (a) is the additive group

More information