Lecture 9: Markov Switching Models

Size: px
Start display at page:

Download "Lecture 9: Markov Switching Models"

Transcription

1 Lecture 9: Markov Switching Models Prof. Massimo Guidolin Financial Econometrics Winter/Spring 2018

2 Overview Defining a Markov Switching VAR model Structure and mechanics of Markov Switching: from univariate to multivariate models Understanding MS models through simulations MS models as normal mixtures The properties of Markov chain in MS models Filtered, smoothed, and predicted state probabilities 2

3 Motivation and Introduction One of the worst problems often plaguing econometric models regressions, ARMA, VAR, GARCH, etc. is their instability, the fact that the estimated parametric relations suddenly change over time o Famous to damage effectiveness of economic policy o Also worrisome in financial forecasting and risk management o D Four approaches/reactions: 1 Happy go lucky, ignore it and hope for the best (dashed red lines) 2 Test for breaks and shifts and just use data after most recent break 3

4 Definition of a Markov Switching VAR Model 3 Use rolling window estimation schemes o However, although popular, RW schemes are optimal only under specific assumptions on how instability occurs o RW scheme is optimal only when every period there is a break odd! 4 Model and forecast instability, when recurrent in the form of regimes In regime switching models (RSM), state variables govern how part or all parameters of a time series framework may change over time In a specific type of RSM Markov switching models (MSM) the state is latent and follows a simple (finite state) Markov chain o MC process = N-branch tree in which the probs. depend on finite history 4

5 Structure of Markov Switching VAR Models o When M = 1 (first-order MC) and we call the KxK matrix collecting the probabilities Prob. of switching from state i to state j the transition matrix of the K-state Markov process Regimes are unobservable (latent) even with unlimited time series information, estimation never reveal the actual, true state S t+1 o The same sample data concerning the N variables in y t are used also to produce inferences on the sample path followed by S t o Although intuition will be sought after, no attempt is made to provide a formal model of either the reason that regime changes occur or to explain the timing of such changes o Assume the absence of roots outside the unit circle in all regimes o In the definition, the Nx1 vector μ St+1 collects the N regime-dependent intercepts, while the p alternative NxN A j,st+1 (j = 1,, p) vector autoregressive matrices capture regime-dependent VAR effects o With p VAR lags and K regimes, there are a total of pk matrices to deal with, each potentially containing (unless restrictions) N 2 parameters 5

6 Structure of Markov Switching VAR Models o The (lower triangular) matrix represents the factor applicable to latent state S t+1 in a state-dependent Cholesky factorization of Conditioning information set o Conditionally on the state, MSIVARH(K, p) defines a standard Gaussian reduced form VAR(p); this is the case when we take S t+1 is treated as given and observable (we shall not of course) o In applications, K = 2 tends to be common, although not compelling o Especially with daily/weekly series common to support MSIH(K) (to be precise, MSIH(K,0)): o p = 0 may work at all frequencies because when K 2, possible that need of p 1 in single-state VARs arises from omission of regimes o The general model simplifies in univariate applications, when N = 1: o For instance, consider monthly international excess stock returns for the sample 1986: :12) of US and Japanese excess equity returns (denominated in US dollars) and rate of change in the VXO index, N = 3 6

7 One Application to International Equity Returns o Analyze for each series what type of first-order MSIARH(K, p) Constant Expected Returns Model ARMA Models The table for Japanese excess return is in Appendix A 7

8 One Application to International Equity Returns o The precise model favored by each information criterion in the case of each series may differ; in the end, simple heteroskedastic MSIH(2,0) model with no AR components always picked, for all three series, by BIC P-values Nonpersistent o For the transition probs, p-values possibile but trickier o Stock markets feature typical bull (== high-risk premia and low volatility) and bear (low or even 0, in the sense of not statistically significantly, risk premia and high volatility) phases o Both regimes are persistent for both US and Japan, Pr S t = bull S t-1 = bull is btw and 0.98, and Pr S t = bear S t-1 = bear btw and

9 One Application to International Equity Returns o In the case of VXO, state-dependent means are never precisely estimated; in the second regime, the volatility of implicit volatility is almost double than in the former state o When VIX-like volatility falls, it does so slowly and following a low variability path, while when it increases, it does so in an erratic way o Given that all the individual series contain regimes how many Markov states should we expect when the series are jointly modeled? o Naïve to expect K = 2, because the univariate state probability series above are not sufficiently synchronized o Their sample Spearman rank correlations are 0.46, 0.05, and

10 One Application to International Equity Returns o AIC and Hannan-Quinn (H-Q) converge on the choice of a rather richly parameterized MSIVARH(3,1) saturation ratio just above threshold o Unsurprisingly, the number of regimes equals three, an attempt to accommodate the different features of the state processes 10

11 One Application to International Equity Returns 11

12 Simulating from MS Models o While from any of the 3 regimes it is possible to switch to any other, this admits one exception as Pr S t = 1 S t-1 = 2 is estimated to be 0 For large N, MSVAR models are often richly parameterized, with a total number of parameters of: o K(K 1) is the elements that can be estimated from the transition matrix, when by-row summing up constraints are taken into account o For instance, for K = 2, N = 8, and p = 1 (not such an extreme case, see e.g., Guidolin and Ono, 2006), this implies the estimation of 218 parameters less than recommendable saturation ratios are possible o ML estimation may pose serious numerical as well as statistical problems: (i) the log-likelihood may present flat regions so that convergence of standard algorithms becomes impossible; (ii) identification issues may appear numerical algorithms may get confused Consider the simple case of We use sets of 1000 identical simulated shocks to better understand what a MSIARH model can do in terms of plausibility of the resulting time series o When possible, calibrate the selected parameters to US monthly data 12

13 Simulating from MS Models K = 1 K = 2 Simulated regimes o Simulated MSI(2) yields an unconditional mean of 6% and volatility of 19% per year as Gaussian IID o Most observers would detect the presence of more structure in the rightmost vs. leftmost plot, but could not exactly detect an MSI(2) o Some additional variability would be guessed, but this would be incorrect, as the 2 series are generated to have identical variance o Key driver of the appearance of simulations is persistence of Markov chain 13

14 Simulating from MS Models Leverage o On the right, appearance that may remind some readers of the occurrence of frequent (negative) jumps in returns 14

15 Simulating from MS Models o In the rightmost plot, eventually unit root is bent to stationarity by the mixing provided by the ergodic Markov chain o Leftmost plot shows highly visible intercept switches, around which we then find the typical no structure patterns of a white noise o In the rightmost plot, same nonlinear persistence (low), the presence of near-unit roots in each of the two regimes becomes visible and tends to cloud the fact that there are frequent regime shifts 15

16 MS Models Are Normal Mixtures A mixture of normal densities is a weighted sum of normal densities, in which the weights are themselves random variables and may change over time o In the case of MS, weights are random state probabilities over time o Mixtures of normal distributions provide a flexible family that can be used to approximate many distributions, capturing skewness and excess kurtosis as sources of non-normality (even multi-modality) o E.g., in an MS model, variance is not simply the average of the variances across the two regimes: differences in means also impart an effect because the switch to a new regime contributes to volatility Skewness > 0 Skewness < 0 Excess kurtosis >0 16

17 MS Regressions Useful to generalize framework, when specialized to N = 1, to reflect a more general form that also includes exogenous, fixed predictors and predictors whose coefficient does not follow an MS process: This is a MS regression o Let s forecast monthly Japanese excess aggregate stock returns using one lag of the same, one lag of US excess stock returns, and one lag of S&P 100 implied volatility 17

18 MS Regressions: One Example o All criteria unanimously select a MS regression in which all coefficients are time invariant but the standard error of regression is MS o Extensions to 3 regimes are rejected by the information criteria Standard regression 2-state MS regression o What makes the MS regression superior to a simple regression is the regime shifts in standard errors that as we expect when heteroskedasticity is dealt with allow us to obtain more precise estimates MS models are defined as driven by a hidden, discrete Markov state that is also latent, ergodic, and irreducible Although they can be generalized, most MS models are estimated assuming a homogeneous, first-order Markov chain 18

19 Markov Chain Processes in MS Models 1 Homogeneous, as, the prob. of transition to state j does not depend on past values of y 2 First-order, meaning that, or that all the memory of the past of series is retained by just one lag of S t o S t is latent because it cannot be extracted from the data with perfect precision, but at most the time series of the states may be inferred from the observed, available data o Ergodicity existence of a stationary Kx1 vector of probs satisfying called ergodic or long-run unconditional probabilities o All information needed to compute is in transposed transition matrix o If you start the system from a configuration of state probabilities equal to, then your prediction for the probabilities of the regimes oneperiod forward is identical MS model had reached a steady-state o It is the entire matrix P that matters to compute the ergodic probabilities and not only the values on its main diagonal o Given estimates of the stayer probs, the average estimated duration is: 19

20 Markov Chain Processes in MS Models o can also be interpreted as the average, long-run time of occupation of the different regimes by the MC: o Irreducibility of an MC implies that > 0, meaning that all regimes are possible and remain possible over time and no absorbing states or cycles among states exist o When K = 3, the transition matrix o implies that it is impossible to reach state 3 from the other two states o As soon as one leaves regime 3, which will occur almost surely if p 33 < 1, it becomes impossible to ever return again to state 3 o The third element of will have to be 0 as o The lecture notes show that is the eigenvector of P associated with the unit eigenvalue; there is always a unit eigenvalue as P rows sum to 1 o For instance, in the case of this P, the eigenvalues are 1, 0.87, and 0.74 and the first eigenvector is [ ] j-th element of 20

21 o As one would have expected from its persistence, the tri-variate system spends on average almost 60% of the time in the second regime o However, in spite of their very low persistence, regimes 1 and 3 also occur on average 16% and 25% of the time; these positive rates at which they are visited are helped by the fact that regimes 1 and 3 also communicate with each other o The average durations of the three regimes are 1.7, 6.3, and 1.4 months 21 Markov Chain Processes in MS Models o This eigenvector is not yet because it fails to have unit length o Now sufficient to scale the eigenvector to have unit length simply divide its entries by their sum , resulting in = [ ] o In the special case of K = 2, one obtains explicit solutions for the ergodic probabilities: o In our earlier international equity return application, the estimated transition matrix is:

22 Inference on the State Process in MS Models Several types of inferences on the state S t can be derived from MS o The fact that one needs to use and to extract inferences concerning the dynamics of regimes over time (technically, concerning ) derives from the latent nature of regimes in a MS model o The following notion is instead useful in forecasting problems 22

23 Inference on the State Process in MS Models o The filtered probs are the product of a limited information recursion o Once has been calculated, the lecture notes describe an algorithm by Kim to recover the sequence of smoothed probs o The difference btw. filtered and smoothed probs. is similar to asking (i) Given what I know about the weather in the past few weeks, what is chance of recording a high temperature today (also given observed conditions today)? This requires a real-time, recursive assessment, vs. (ii) Given the information on the weather in the past 12 months and up to today, what was the chance of a high temperature being recorded 4 months ago? This requires a full-information, but backward-looking assessment 23

24 Filtered and smoothed probs. The State Process in MS Models: One Example o In finance, we operate in real time and focus on forecasting so that we tend to care more for filtered probabilities than for smoothed ones o The two concepts coincide by construction at the end of the sample o In our example concerning monthly Japanese excess stock returns: Predicted probs. 24

25 Appendix A: Model Selection for Japanese Data 25

Lecture 6: Univariate Volatility Modelling: ARCH and GARCH Models

Lecture 6: Univariate Volatility Modelling: ARCH and GARCH Models Lecture 6: Univariate Volatility Modelling: ARCH and GARCH Models Prof. Massimo Guidolin 019 Financial Econometrics Winter/Spring 018 Overview ARCH models and their limitations Generalized ARCH models

More information

Lecture 8: Multivariate GARCH and Conditional Correlation Models

Lecture 8: Multivariate GARCH and Conditional Correlation Models Lecture 8: Multivariate GARCH and Conditional Correlation Models Prof. Massimo Guidolin 20192 Financial Econometrics Winter/Spring 2018 Overview Three issues in multivariate modelling of CH covariances

More information

Lecture 2: Univariate Time Series

Lecture 2: Univariate Time Series Lecture 2: Univariate Time Series Analysis: Conditional and Unconditional Densities, Stationarity, ARMA Processes Prof. Massimo Guidolin 20192 Financial Econometrics Spring/Winter 2017 Overview Motivation:

More information

Econometría 2: Análisis de series de Tiempo

Econometría 2: Análisis de series de Tiempo Econometría 2: Análisis de series de Tiempo Karoll GOMEZ kgomezp@unal.edu.co http://karollgomez.wordpress.com Segundo semestre 2016 IX. Vector Time Series Models VARMA Models A. 1. Motivation: The vector

More information

Lecture 5: Unit Roots, Cointegration and Error Correction Models The Spurious Regression Problem

Lecture 5: Unit Roots, Cointegration and Error Correction Models The Spurious Regression Problem Lecture 5: Unit Roots, Cointegration and Error Correction Models The Spurious Regression Problem Prof. Massimo Guidolin 20192 Financial Econometrics Winter/Spring 2018 Overview Stochastic vs. deterministic

More information

Lecture 5: Unit Roots, Cointegration and Error Correction Models The Spurious Regression Problem

Lecture 5: Unit Roots, Cointegration and Error Correction Models The Spurious Regression Problem Lecture 5: Unit Roots, Cointegration and Error Correction Models The Spurious Regression Problem Prof. Massimo Guidolin 20192 Financial Econometrics Winter/Spring 2018 Overview Defining cointegration Vector

More information

Multivariate Time Series Analysis and Its Applications [Tsay (2005), chapter 8]

Multivariate Time Series Analysis and Its Applications [Tsay (2005), chapter 8] 1 Multivariate Time Series Analysis and Its Applications [Tsay (2005), chapter 8] Insights: Price movements in one market can spread easily and instantly to another market [economic globalization and internet

More information

Econ 423 Lecture Notes: Additional Topics in Time Series 1

Econ 423 Lecture Notes: Additional Topics in Time Series 1 Econ 423 Lecture Notes: Additional Topics in Time Series 1 John C. Chao April 25, 2017 1 These notes are based in large part on Chapter 16 of Stock and Watson (2011). They are for instructional purposes

More information

Multivariate GARCH models.

Multivariate GARCH models. Multivariate GARCH models. Financial market volatility moves together over time across assets and markets. Recognizing this commonality through a multivariate modeling framework leads to obvious gains

More information

Do Markov-Switching Models Capture Nonlinearities in the Data? Tests using Nonparametric Methods

Do Markov-Switching Models Capture Nonlinearities in the Data? Tests using Nonparametric Methods Do Markov-Switching Models Capture Nonlinearities in the Data? Tests using Nonparametric Methods Robert V. Breunig Centre for Economic Policy Research, Research School of Social Sciences and School of

More information

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY Time Series Analysis James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY PREFACE xiii 1 Difference Equations 1.1. First-Order Difference Equations 1 1.2. pth-order Difference Equations 7

More information

The Instability of Correlations: Measurement and the Implications for Market Risk

The Instability of Correlations: Measurement and the Implications for Market Risk The Instability of Correlations: Measurement and the Implications for Market Risk Prof. Massimo Guidolin 20254 Advanced Quantitative Methods for Asset Pricing and Structuring Winter/Spring 2018 Threshold

More information

Volatility. Gerald P. Dwyer. February Clemson University

Volatility. Gerald P. Dwyer. February Clemson University Volatility Gerald P. Dwyer Clemson University February 2016 Outline 1 Volatility Characteristics of Time Series Heteroskedasticity Simpler Estimation Strategies Exponentially Weighted Moving Average Use

More information

ECON3327: Financial Econometrics, Spring 2016

ECON3327: Financial Econometrics, Spring 2016 ECON3327: Financial Econometrics, Spring 2016 Wooldridge, Introductory Econometrics (5th ed, 2012) Chapter 11: OLS with time series data Stationary and weakly dependent time series The notion of a stationary

More information

International Symposium on Mathematical Sciences & Computing Research (ismsc) 2015 (ismsc 15)

International Symposium on Mathematical Sciences & Computing Research (ismsc) 2015 (ismsc 15) Model Performance Between Linear Vector Autoregressive and Markov Switching Vector Autoregressive Models on Modelling Structural Change in Time Series Data Phoong Seuk Wai Department of Economics Facultyof

More information

A Guide to Modern Econometric:

A Guide to Modern Econometric: A Guide to Modern Econometric: 4th edition Marno Verbeek Rotterdam School of Management, Erasmus University, Rotterdam B 379887 )WILEY A John Wiley & Sons, Ltd., Publication Contents Preface xiii 1 Introduction

More information

TIME SERIES ANALYSIS. Forecasting and Control. Wiley. Fifth Edition GWILYM M. JENKINS GEORGE E. P. BOX GREGORY C. REINSEL GRETA M.

TIME SERIES ANALYSIS. Forecasting and Control. Wiley. Fifth Edition GWILYM M. JENKINS GEORGE E. P. BOX GREGORY C. REINSEL GRETA M. TIME SERIES ANALYSIS Forecasting and Control Fifth Edition GEORGE E. P. BOX GWILYM M. JENKINS GREGORY C. REINSEL GRETA M. LJUNG Wiley CONTENTS PREFACE TO THE FIFTH EDITION PREFACE TO THE FOURTH EDITION

More information

ECONOMICS 7200 MODERN TIME SERIES ANALYSIS Econometric Theory and Applications

ECONOMICS 7200 MODERN TIME SERIES ANALYSIS Econometric Theory and Applications ECONOMICS 7200 MODERN TIME SERIES ANALYSIS Econometric Theory and Applications Yongmiao Hong Department of Economics & Department of Statistical Sciences Cornell University Spring 2019 Time and uncertainty

More information

Stochastic Processes

Stochastic Processes Stochastic Processes Stochastic Process Non Formal Definition: Non formal: A stochastic process (random process) is the opposite of a deterministic process such as one defined by a differential equation.

More information

ARIMA Modelling and Forecasting

ARIMA Modelling and Forecasting ARIMA Modelling and Forecasting Economic time series often appear nonstationary, because of trends, seasonal patterns, cycles, etc. However, the differences may appear stationary. Δx t x t x t 1 (first

More information

Regression: Ordinary Least Squares

Regression: Ordinary Least Squares Regression: Ordinary Least Squares Mark Hendricks Autumn 2017 FINM Intro: Regression Outline Regression OLS Mathematics Linear Projection Hendricks, Autumn 2017 FINM Intro: Regression: Lecture 2/32 Regression

More information

Introduction to Regression Analysis. Dr. Devlina Chatterjee 11 th August, 2017

Introduction to Regression Analysis. Dr. Devlina Chatterjee 11 th August, 2017 Introduction to Regression Analysis Dr. Devlina Chatterjee 11 th August, 2017 What is regression analysis? Regression analysis is a statistical technique for studying linear relationships. One dependent

More information

Lecture 3: Autoregressive Moving Average (ARMA) Models and their Practical Applications

Lecture 3: Autoregressive Moving Average (ARMA) Models and their Practical Applications Lecture 3: Autoregressive Moving Average (ARMA) Models and their Practical Applications Prof. Massimo Guidolin 20192 Financial Econometrics Winter/Spring 2018 Overview Moving average processes Autoregressive

More information

Long memory in the R$/US$ exchange rate: A robust analysis

Long memory in the R$/US$ exchange rate: A robust analysis Long memory in the R$/US$ exchange rate: A robust analysis Márcio Poletti Laurini 1 Marcelo Savino Portugal 2 Abstract This article shows that the evidence of long memory for the daily R$/US$ exchange

More information

Lecture 3: Autoregressive Moving Average (ARMA) Models and their Practical Applications

Lecture 3: Autoregressive Moving Average (ARMA) Models and their Practical Applications Lecture 3: Autoregressive Moving Average (ARMA) Models and their Practical Applications Prof. Massimo Guidolin 20192 Financial Econometrics Winter/Spring 2018 Overview Moving average processes Autoregressive

More information

Financial Econometrics

Financial Econometrics Financial Econometrics Multivariate Time Series Analysis: VAR Gerald P. Dwyer Trinity College, Dublin January 2013 GPD (TCD) VAR 01/13 1 / 25 Structural equations Suppose have simultaneous system for supply

More information

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY Time Series Analysis James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY & Contents PREFACE xiii 1 1.1. 1.2. Difference Equations First-Order Difference Equations 1 /?th-order Difference

More information

ECO 513 Fall 2009 C. Sims HIDDEN MARKOV CHAIN MODELS

ECO 513 Fall 2009 C. Sims HIDDEN MARKOV CHAIN MODELS ECO 513 Fall 2009 C. Sims HIDDEN MARKOV CHAIN MODELS 1. THE CLASS OF MODELS y t {y s, s < t} p(y t θ t, {y s, s < t}) θ t = θ(s t ) P[S t = i S t 1 = j] = h ij. 2. WHAT S HANDY ABOUT IT Evaluating the

More information

TAKEHOME FINAL EXAM e iω e 2iω e iω e 2iω

TAKEHOME FINAL EXAM e iω e 2iω e iω e 2iω ECO 513 Spring 2015 TAKEHOME FINAL EXAM (1) Suppose the univariate stochastic process y is ARMA(2,2) of the following form: y t = 1.6974y t 1.9604y t 2 + ε t 1.6628ε t 1 +.9216ε t 2, (1) where ε is i.i.d.

More information

Vector autoregressions, VAR

Vector autoregressions, VAR 1 / 45 Vector autoregressions, VAR Chapter 2 Financial Econometrics Michael Hauser WS17/18 2 / 45 Content Cross-correlations VAR model in standard/reduced form Properties of VAR(1), VAR(p) Structural VAR,

More information

EEG- Signal Processing

EEG- Signal Processing Fatemeh Hadaeghi EEG- Signal Processing Lecture Notes for BSP, Chapter 5 Master Program Data Engineering 1 5 Introduction The complex patterns of neural activity, both in presence and absence of external

More information

A Non-Parametric Approach of Heteroskedasticity Robust Estimation of Vector-Autoregressive (VAR) Models

A Non-Parametric Approach of Heteroskedasticity Robust Estimation of Vector-Autoregressive (VAR) Models Journal of Finance and Investment Analysis, vol.1, no.1, 2012, 55-67 ISSN: 2241-0988 (print version), 2241-0996 (online) International Scientific Press, 2012 A Non-Parametric Approach of Heteroskedasticity

More information

Financial Times Series. Lecture 12

Financial Times Series. Lecture 12 Financial Times Series Lecture 12 Multivariate Volatility Models Here our aim is to generalize the previously presented univariate volatility models to their multivariate counterparts We assume that returns

More information

Elements of Multivariate Time Series Analysis

Elements of Multivariate Time Series Analysis Gregory C. Reinsel Elements of Multivariate Time Series Analysis Second Edition With 14 Figures Springer Contents Preface to the Second Edition Preface to the First Edition vii ix 1. Vector Time Series

More information

Forecasting exchange rate volatility using conditional variance models selected by information criteria

Forecasting exchange rate volatility using conditional variance models selected by information criteria Forecasting exchange rate volatility using conditional variance models selected by information criteria Article Accepted Version Brooks, C. and Burke, S. (1998) Forecasting exchange rate volatility using

More information

New Introduction to Multiple Time Series Analysis

New Introduction to Multiple Time Series Analysis Helmut Lütkepohl New Introduction to Multiple Time Series Analysis With 49 Figures and 36 Tables Springer Contents 1 Introduction 1 1.1 Objectives of Analyzing Multiple Time Series 1 1.2 Some Basics 2

More information

Econometric Forecasting

Econometric Forecasting Robert M. Kunst robert.kunst@univie.ac.at University of Vienna and Institute for Advanced Studies Vienna October 1, 2014 Outline Introduction Model-free extrapolation Univariate time-series models Trend

More information

at least 50 and preferably 100 observations should be available to build a proper model

at least 50 and preferably 100 observations should be available to build a proper model III Box-Jenkins Methods 1. Pros and Cons of ARIMA Forecasting a) need for data at least 50 and preferably 100 observations should be available to build a proper model used most frequently for hourly or

More information

ISSN Article. Selection Criteria in Regime Switching Conditional Volatility Models

ISSN Article. Selection Criteria in Regime Switching Conditional Volatility Models Econometrics 2015, 3, 289-316; doi:10.3390/econometrics3020289 OPEN ACCESS econometrics ISSN 2225-1146 www.mdpi.com/journal/econometrics Article Selection Criteria in Regime Switching Conditional Volatility

More information

Linear Dynamical Systems

Linear Dynamical Systems Linear Dynamical Systems Sargur N. srihari@cedar.buffalo.edu Machine Learning Course: http://www.cedar.buffalo.edu/~srihari/cse574/index.html Two Models Described by Same Graph Latent variables Observations

More information

Multivariate forecasting with VAR models

Multivariate forecasting with VAR models Multivariate forecasting with VAR models Franz Eigner University of Vienna UK Econometric Forecasting Prof. Robert Kunst 16th June 2009 Overview Vector autoregressive model univariate forecasting multivariate

More information

1. Introduction. Hang Qian 1 Iowa State University

1. Introduction. Hang Qian 1 Iowa State University Users Guide to the VARDAS Package Hang Qian 1 Iowa State University 1. Introduction The Vector Autoregression (VAR) model is widely used in macroeconomics. However, macroeconomic data are not always observed

More information

University of Pretoria Department of Economics Working Paper Series

University of Pretoria Department of Economics Working Paper Series University of Pretoria Department of Economics Working Paper Series Predicting Stock Returns and Volatility Using Consumption-Aggregate Wealth Ratios: A Nonlinear Approach Stelios Bekiros IPAG Business

More information

Time Series Models and Inference. James L. Powell Department of Economics University of California, Berkeley

Time Series Models and Inference. James L. Powell Department of Economics University of California, Berkeley Time Series Models and Inference James L. Powell Department of Economics University of California, Berkeley Overview In contrast to the classical linear regression model, in which the components of the

More information

Generalized Autoregressive Score Models

Generalized Autoregressive Score Models Generalized Autoregressive Score Models by: Drew Creal, Siem Jan Koopman, André Lucas To capture the dynamic behavior of univariate and multivariate time series processes, we can allow parameters to be

More information

GARCH Models. Eduardo Rossi University of Pavia. December Rossi GARCH Financial Econometrics / 50

GARCH Models. Eduardo Rossi University of Pavia. December Rossi GARCH Financial Econometrics / 50 GARCH Models Eduardo Rossi University of Pavia December 013 Rossi GARCH Financial Econometrics - 013 1 / 50 Outline 1 Stylized Facts ARCH model: definition 3 GARCH model 4 EGARCH 5 Asymmetric Models 6

More information

Heteroskedasticity in Time Series

Heteroskedasticity in Time Series Heteroskedasticity in Time Series Figure: Time Series of Daily NYSE Returns. 206 / 285 Key Fact 1: Stock Returns are Approximately Serially Uncorrelated Figure: Correlogram of Daily Stock Market Returns.

More information

Review Session: Econometrics - CLEFIN (20192)

Review Session: Econometrics - CLEFIN (20192) Review Session: Econometrics - CLEFIN (20192) Part II: Univariate time series analysis Daniele Bianchi March 20, 2013 Fundamentals Stationarity A time series is a sequence of random variables x t, t =

More information

Warwick Business School Forecasting System. Summary. Ana Galvao, Anthony Garratt and James Mitchell November, 2014

Warwick Business School Forecasting System. Summary. Ana Galvao, Anthony Garratt and James Mitchell November, 2014 Warwick Business School Forecasting System Summary Ana Galvao, Anthony Garratt and James Mitchell November, 21 The main objective of the Warwick Business School Forecasting System is to provide competitive

More information

Financial Econometrics

Financial Econometrics Financial Econometrics Nonlinear time series analysis Gerald P. Dwyer Trinity College, Dublin January 2016 Outline 1 Nonlinearity Does nonlinearity matter? Nonlinear models Tests for nonlinearity Forecasting

More information

Vector Auto-Regressive Models

Vector Auto-Regressive Models Vector Auto-Regressive Models Laurent Ferrara 1 1 University of Paris Nanterre M2 Oct. 2018 Overview of the presentation 1. Vector Auto-Regressions Definition Estimation Testing 2. Impulse responses functions

More information

Switching Regime Estimation

Switching Regime Estimation Switching Regime Estimation Series de Tiempo BIrkbeck March 2013 Martin Sola (FE) Markov Switching models 01/13 1 / 52 The economy (the time series) often behaves very different in periods such as booms

More information

VAR Models and Applications

VAR Models and Applications VAR Models and Applications Laurent Ferrara 1 1 University of Paris West M2 EIPMC Oct. 2016 Overview of the presentation 1. Vector Auto-Regressions Definition Estimation Testing 2. Impulse responses functions

More information

Online appendix to On the stability of the excess sensitivity of aggregate consumption growth in the US

Online appendix to On the stability of the excess sensitivity of aggregate consumption growth in the US Online appendix to On the stability of the excess sensitivity of aggregate consumption growth in the US Gerdie Everaert 1, Lorenzo Pozzi 2, and Ruben Schoonackers 3 1 Ghent University & SHERPPA 2 Erasmus

More information

STA 414/2104: Machine Learning

STA 414/2104: Machine Learning STA 414/2104: Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistics! rsalakhu@cs.toronto.edu! http://www.cs.toronto.edu/~rsalakhu/ Lecture 9 Sequential Data So far

More information

The GARCH Analysis of YU EBAO Annual Yields Weiwei Guo1,a

The GARCH Analysis of YU EBAO Annual Yields Weiwei Guo1,a 2nd Workshop on Advanced Research and Technology in Industry Applications (WARTIA 2016) The GARCH Analysis of YU EBAO Annual Yields Weiwei Guo1,a 1 Longdong University,Qingyang,Gansu province,745000 a

More information

Outline. Overview of Issues. Spatial Regression. Luc Anselin

Outline. Overview of Issues. Spatial Regression. Luc Anselin Spatial Regression Luc Anselin University of Illinois, Urbana-Champaign http://www.spacestat.com Outline Overview of Issues Spatial Regression Specifications Space-Time Models Spatial Latent Variable Models

More information

Markov Chains Handout for Stat 110

Markov Chains Handout for Stat 110 Markov Chains Handout for Stat 0 Prof. Joe Blitzstein (Harvard Statistics Department) Introduction Markov chains were first introduced in 906 by Andrey Markov, with the goal of showing that the Law of

More information

CONJUGATE DUMMY OBSERVATION PRIORS FOR VAR S

CONJUGATE DUMMY OBSERVATION PRIORS FOR VAR S ECO 513 Fall 25 C. Sims CONJUGATE DUMMY OBSERVATION PRIORS FOR VAR S 1. THE GENERAL IDEA As is documented elsewhere Sims (revised 1996, 2), there is a strong tendency for estimated time series models,

More information

Inference in VARs with Conditional Heteroskedasticity of Unknown Form

Inference in VARs with Conditional Heteroskedasticity of Unknown Form Inference in VARs with Conditional Heteroskedasticity of Unknown Form Ralf Brüggemann a Carsten Jentsch b Carsten Trenkler c University of Konstanz University of Mannheim University of Mannheim IAB Nuremberg

More information

STATISTICS/ECONOMETRICS PREP COURSE PROF. MASSIMO GUIDOLIN

STATISTICS/ECONOMETRICS PREP COURSE PROF. MASSIMO GUIDOLIN Massimo Guidolin Massimo.Guidolin@unibocconi.it Dept. of Finance STATISTICS/ECONOMETRICS PREP COURSE PROF. MASSIMO GUIDOLIN SECOND PART, LECTURE 2: MODES OF CONVERGENCE AND POINT ESTIMATION Lecture 2:

More information

Chapter 5. Analysis of Multiple Time Series. 5.1 Vector Autoregressions

Chapter 5. Analysis of Multiple Time Series. 5.1 Vector Autoregressions Chapter 5 Analysis of Multiple Time Series Note: The primary references for these notes are chapters 5 and 6 in Enders (2004). An alternative, but more technical treatment can be found in chapters 10-11

More information

Multivariate Time Series: VAR(p) Processes and Models

Multivariate Time Series: VAR(p) Processes and Models Multivariate Time Series: VAR(p) Processes and Models A VAR(p) model, for p > 0 is X t = φ 0 + Φ 1 X t 1 + + Φ p X t p + A t, where X t, φ 0, and X t i are k-vectors, Φ 1,..., Φ p are k k matrices, with

More information

FINANCIAL ECONOMETRICS AND EMPIRICAL FINANCE -MODULE2 Midterm Exam Solutions - March 2015

FINANCIAL ECONOMETRICS AND EMPIRICAL FINANCE -MODULE2 Midterm Exam Solutions - March 2015 FINANCIAL ECONOMETRICS AND EMPIRICAL FINANCE -MODULE2 Midterm Exam Solutions - March 205 Time Allowed: 60 minutes Family Name (Surname) First Name Student Number (Matr.) Please answer all questions by

More information

Introduction to Econometrics

Introduction to Econometrics Introduction to Econometrics T H I R D E D I T I O N Global Edition James H. Stock Harvard University Mark W. Watson Princeton University Boston Columbus Indianapolis New York San Francisco Upper Saddle

More information

10. Time series regression and forecasting

10. Time series regression and forecasting 10. Time series regression and forecasting Key feature of this section: Analysis of data on a single entity observed at multiple points in time (time series data) Typical research questions: What is the

More information

Final Exam Financial Data Analysis at the University of Freiburg (Winter Semester 2008/2009) Friday, November 14, 2008,

Final Exam Financial Data Analysis at the University of Freiburg (Winter Semester 2008/2009) Friday, November 14, 2008, Professor Dr. Roman Liesenfeld Final Exam Financial Data Analysis at the University of Freiburg (Winter Semester 2008/2009) Friday, November 14, 2008, 10.00 11.30am 1 Part 1 (38 Points) Consider the following

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 11 Project

More information

ECONOMETRIC REVIEWS, 5(1), (1986) MODELING THE PERSISTENCE OF CONDITIONAL VARIANCES: A COMMENT

ECONOMETRIC REVIEWS, 5(1), (1986) MODELING THE PERSISTENCE OF CONDITIONAL VARIANCES: A COMMENT ECONOMETRIC REVIEWS, 5(1), 51-56 (1986) MODELING THE PERSISTENCE OF CONDITIONAL VARIANCES: A COMMENT Professors Engle and Bollerslev have delivered an excellent blend of "forest" and "trees"; their important

More information

Sequential Monte Carlo methods for filtering of unobservable components of multidimensional diffusion Markov processes

Sequential Monte Carlo methods for filtering of unobservable components of multidimensional diffusion Markov processes Sequential Monte Carlo methods for filtering of unobservable components of multidimensional diffusion Markov processes Ellida M. Khazen * 13395 Coppermine Rd. Apartment 410 Herndon VA 20171 USA Abstract

More information

Gaussian Copula Regression Application

Gaussian Copula Regression Application International Mathematical Forum, Vol. 11, 2016, no. 22, 1053-1065 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/imf.2016.68118 Gaussian Copula Regression Application Samia A. Adham Department

More information

End-Semester Examination MA 373 : Statistical Analysis on Financial Data

End-Semester Examination MA 373 : Statistical Analysis on Financial Data End-Semester Examination MA 373 : Statistical Analysis on Financial Data Instructor: Dr. Arabin Kumar Dey, Department of Mathematics, IIT Guwahati Note: Use the results in Section- III: Data Analysis using

More information

Testing for Regime Switching in Singaporean Business Cycles

Testing for Regime Switching in Singaporean Business Cycles Testing for Regime Switching in Singaporean Business Cycles Robert Breunig School of Economics Faculty of Economics and Commerce Australian National University and Alison Stegman Research School of Pacific

More information

Impulse-Response Analysis in Markov Switching Vector Autoregressive Models

Impulse-Response Analysis in Markov Switching Vector Autoregressive Models Impulse-Response Analysis in Markov Switching Vector Autoregressive Models Hans-Martin Krolzig Economics Department, University of Kent, Keynes College, Canterbury CT2 7NP October 16, 2006 Abstract By

More information

Discussion of Bootstrap prediction intervals for linear, nonlinear, and nonparametric autoregressions, by Li Pan and Dimitris Politis

Discussion of Bootstrap prediction intervals for linear, nonlinear, and nonparametric autoregressions, by Li Pan and Dimitris Politis Discussion of Bootstrap prediction intervals for linear, nonlinear, and nonparametric autoregressions, by Li Pan and Dimitris Politis Sílvia Gonçalves and Benoit Perron Département de sciences économiques,

More information

Lectures 5 & 6: Hypothesis Testing

Lectures 5 & 6: Hypothesis Testing Lectures 5 & 6: Hypothesis Testing in which you learn to apply the concept of statistical significance to OLS estimates, learn the concept of t values, how to use them in regression work and come across

More information

ECON 4160, Spring term Lecture 12

ECON 4160, Spring term Lecture 12 ECON 4160, Spring term 2013. Lecture 12 Non-stationarity and co-integration 2/2 Ragnar Nymoen Department of Economics 13 Nov 2013 1 / 53 Introduction I So far we have considered: Stationary VAR, with deterministic

More information

Autoregressive Moving Average (ARMA) Models and their Practical Applications

Autoregressive Moving Average (ARMA) Models and their Practical Applications Autoregressive Moving Average (ARMA) Models and their Practical Applications Massimo Guidolin February 2018 1 Essential Concepts in Time Series Analysis 1.1 Time Series and Their Properties Time series:

More information

High-dimensional Markov Chain Models for Categorical Data Sequences with Applications Wai-Ki CHING AMACL, Department of Mathematics HKU 19 March 2013

High-dimensional Markov Chain Models for Categorical Data Sequences with Applications Wai-Ki CHING AMACL, Department of Mathematics HKU 19 March 2013 High-dimensional Markov Chain Models for Categorical Data Sequences with Applications Wai-Ki CHING AMACL, Department of Mathematics HKU 19 March 2013 Abstract: Markov chains are popular models for a modelling

More information

A nonparametric test for seasonal unit roots

A nonparametric test for seasonal unit roots Robert M. Kunst robert.kunst@univie.ac.at University of Vienna and Institute for Advanced Studies Vienna To be presented in Innsbruck November 7, 2007 Abstract We consider a nonparametric test for the

More information

DSGE-Models. Limited Information Estimation General Method of Moments and Indirect Inference

DSGE-Models. Limited Information Estimation General Method of Moments and Indirect Inference DSGE-Models General Method of Moments and Indirect Inference Dr. Andrea Beccarini Willi Mutschler, M.Sc. Institute of Econometrics and Economic Statistics University of Münster willi.mutschler@uni-muenster.de

More information

A Comparison of Business Cycle Regime Nowcasting Performance between Real-time and Revised Data. By Arabinda Basistha (West Virginia University)

A Comparison of Business Cycle Regime Nowcasting Performance between Real-time and Revised Data. By Arabinda Basistha (West Virginia University) A Comparison of Business Cycle Regime Nowcasting Performance between Real-time and Revised Data By Arabinda Basistha (West Virginia University) This version: 2.7.8 Markov-switching models used for nowcasting

More information

MCMC analysis of classical time series algorithms.

MCMC analysis of classical time series algorithms. MCMC analysis of classical time series algorithms. mbalawata@yahoo.com Lappeenranta University of Technology Lappeenranta, 19.03.2009 Outline Introduction 1 Introduction 2 3 Series generation Box-Jenkins

More information

APPLIED TIME SERIES ECONOMETRICS

APPLIED TIME SERIES ECONOMETRICS APPLIED TIME SERIES ECONOMETRICS Edited by HELMUT LÜTKEPOHL European University Institute, Florence MARKUS KRÄTZIG Humboldt University, Berlin CAMBRIDGE UNIVERSITY PRESS Contents Preface Notation and Abbreviations

More information

Regime switching models

Regime switching models Regime switching models Structural change and nonlinearities Matthieu Stigler Matthieu.Stigler at gmail.com April 30, 2009 Version 1.1 This document is released under the Creative Commons Attribution-Noncommercial

More information

Residuals in Time Series Models

Residuals in Time Series Models Residuals in Time Series Models José Alberto Mauricio Universidad Complutense de Madrid, Facultad de Económicas, Campus de Somosaguas, 83 Madrid, Spain. (E-mail: jamauri@ccee.ucm.es.) Summary: Three types

More information

1 Teaching notes on structural VARs.

1 Teaching notes on structural VARs. Bent E. Sørensen November 8, 2016 1 Teaching notes on structural VARs. 1.1 Vector MA models: 1.1.1 Probability theory The simplest to analyze, estimation is a different matter time series models are the

More information

The Particle Filter. PD Dr. Rudolph Triebel Computer Vision Group. Machine Learning for Computer Vision

The Particle Filter. PD Dr. Rudolph Triebel Computer Vision Group. Machine Learning for Computer Vision The Particle Filter Non-parametric implementation of Bayes filter Represents the belief (posterior) random state samples. by a set of This representation is approximate. Can represent distributions that

More information

Markov Switching Regular Vine Copulas

Markov Switching Regular Vine Copulas Int. Statistical Inst.: Proc. 58th World Statistical Congress, 2011, Dublin (Session CPS057) p.5304 Markov Switching Regular Vine Copulas Stöber, Jakob and Czado, Claudia Lehrstuhl für Mathematische Statistik,

More information

Chapter 16 focused on decision making in the face of uncertainty about one future

Chapter 16 focused on decision making in the face of uncertainty about one future 9 C H A P T E R Markov Chains Chapter 6 focused on decision making in the face of uncertainty about one future event (learning the true state of nature). However, some decisions need to take into account

More information

Revisiting linear and non-linear methodologies for time series prediction - application to ESTSP 08 competition data

Revisiting linear and non-linear methodologies for time series prediction - application to ESTSP 08 competition data Revisiting linear and non-linear methodologies for time series - application to ESTSP 08 competition data Madalina Olteanu Universite Paris 1 - SAMOS CES 90 Rue de Tolbiac, 75013 Paris - France Abstract.

More information

Arma-Arch Modeling Of The Returns Of First Bank Of Nigeria

Arma-Arch Modeling Of The Returns Of First Bank Of Nigeria Arma-Arch Modeling Of The Returns Of First Bank Of Nigeria Emmanuel Alphonsus Akpan Imoh Udo Moffat Department of Mathematics and Statistics University of Uyo, Nigeria Ntiedo Bassey Ekpo Department of

More information

Diagnostic Test for GARCH Models Based on Absolute Residual Autocorrelations

Diagnostic Test for GARCH Models Based on Absolute Residual Autocorrelations Diagnostic Test for GARCH Models Based on Absolute Residual Autocorrelations Farhat Iqbal Department of Statistics, University of Balochistan Quetta-Pakistan farhatiqb@gmail.com Abstract In this paper

More information

State-space Model. Eduardo Rossi University of Pavia. November Rossi State-space Model Fin. Econometrics / 53

State-space Model. Eduardo Rossi University of Pavia. November Rossi State-space Model Fin. Econometrics / 53 State-space Model Eduardo Rossi University of Pavia November 2014 Rossi State-space Model Fin. Econometrics - 2014 1 / 53 Outline 1 Motivation 2 Introduction 3 The Kalman filter 4 Forecast errors 5 State

More information

Inflation Revisited: New Evidence from Modified Unit Root Tests

Inflation Revisited: New Evidence from Modified Unit Root Tests 1 Inflation Revisited: New Evidence from Modified Unit Root Tests Walter Enders and Yu Liu * University of Alabama in Tuscaloosa and University of Texas at El Paso Abstract: We propose a simple modification

More information

Cointegrated VAR s. Eduardo Rossi University of Pavia. November Rossi Cointegrated VAR s Financial Econometrics / 56

Cointegrated VAR s. Eduardo Rossi University of Pavia. November Rossi Cointegrated VAR s Financial Econometrics / 56 Cointegrated VAR s Eduardo Rossi University of Pavia November 2013 Rossi Cointegrated VAR s Financial Econometrics - 2013 1 / 56 VAR y t = (y 1t,..., y nt ) is (n 1) vector. y t VAR(p): Φ(L)y t = ɛ t The

More information

ISyE 691 Data mining and analytics

ISyE 691 Data mining and analytics ISyE 691 Data mining and analytics Regression Instructor: Prof. Kaibo Liu Department of Industrial and Systems Engineering UW-Madison Email: kliu8@wisc.edu Office: Room 3017 (Mechanical Engineering Building)

More information

1 Phelix spot and futures returns: descriptive statistics

1 Phelix spot and futures returns: descriptive statistics MULTIVARIATE VOLATILITY MODELING OF ELECTRICITY FUTURES: ONLINE APPENDIX Luc Bauwens 1, Christian Hafner 2, and Diane Pierret 3 October 13, 2011 1 Phelix spot and futures returns: descriptive statistics

More information

Program. The. provide the. coefficientss. (b) References. y Watson. probability (1991), "A. Stock. Arouba, Diebold conditions" based on monthly

Program. The. provide the. coefficientss. (b) References. y Watson. probability (1991), A. Stock. Arouba, Diebold conditions based on monthly Macroeconomic Forecasting Topics October 6 th to 10 th, 2014 Banco Central de Venezuela Caracas, Venezuela Program Professor: Pablo Lavado The aim of this course is to provide the basis for short term

More information

Performance of Autoregressive Order Selection Criteria: A Simulation Study

Performance of Autoregressive Order Selection Criteria: A Simulation Study Pertanika J. Sci. & Technol. 6 (2): 7-76 (2008) ISSN: 028-7680 Universiti Putra Malaysia Press Performance of Autoregressive Order Selection Criteria: A Simulation Study Venus Khim-Sen Liew, Mahendran

More information