Dark Radiation from Particle Decay

Size: px
Start display at page:

Download "Dark Radiation from Particle Decay"

Transcription

1 Dark Radiation from Particle Decay Jörn Kersten University of Hamburg Based on Jasper Hasenkamp, JK, JCAP 08 (2013), 024 [arxiv: ] Jörn Kersten (Uni Hamburg) Dark Radiation from Particle Decay 1 / 19

2 Outline 1 Introduction 2 Dark Radiation from Late Decays 3 Constraints for Model Building Jörn Kersten (Uni Hamburg) Dark Radiation from Particle Decay 2 / 19

3 1 Introduction 2 Dark Radiation from Late Decays 3 Constraints for Model Building Jörn Kersten (Uni Hamburg) Dark Radiation from Particle Decay 3 / 19

4 Dark Radiation Radiation = relativistic particles Dark radiation: relativistic particles γ, ν SM Energy density (after e + e annihilation at T 0.5 MeV) [ ( ) ] 7 4 Tν ρ rad 1 + N eff ρ γ 8 T T T γ ρ γ = π2 15 T 4 N eff : effective number of neutrino species Standard Model: N eff = Existence of dark radiation N eff N eff > 0 ρ DR = 0.13 N eff ρ SM rad Jörn Kersten (Uni Hamburg) Dark Radiation from Particle Decay 4 / 19

5 Observable Effects Big Bang Nucleosynthesis (BBN) ρ rad faster expansion more n available for D fusion more 4 He N eff = at 95% CL 0.7 Izotov, Thuan, arxiv: N eff 1 at 95% CL Mangano, Serpico, arxiv: Jörn Kersten (Uni Hamburg) Dark Radiation from Particle Decay 5 / 19

6 Observable Effects Big Bang Nucleosynthesis (BBN) ρ rad faster expansion more n available for D fusion more 4 He N eff = at 95% CL 0.7 Izotov, Thuan, arxiv: N eff 1 at 95% CL Mangano, Serpico, arxiv: Cosmic Microwave Background (CMB) Increased Silk damping reduced power on small scales Hou et al., arxiv: Jörn Kersten (Uni Hamburg) Dark Radiation from Particle Decay 5 / 19

7 Results from the CMB N eff = 1.51 ± 0.75 at 68% CL ACT, arxiv: N eff = 0.81 ± 0.42 at 68% CL SPT, arxiv: N eff = at 95% CL Planck, arxiv: N eff = at 95% CL using H 0 from HST Planck, arxiv: N eff < 0.71 at 95% CL Hojjati et al., arxiv: N eff = 0.61 ± 0.30 at 68% CL Hamann, Hasenkamp, arxiv: Jörn Kersten (Uni Hamburg) Dark Radiation from Particle Decay 6 / 19

8 1 Introduction 2 Dark Radiation from Late Decays 3 Constraints for Model Building Jörn Kersten (Uni Hamburg) Dark Radiation from Particle Decay 7 / 19

9 New Physics in the Later Early Universe Late decays: after BBN, before recombination affect only CMB Mother 2 light, weakly interacting daughters Masses m, m 1 < m 2 δ m m 2 m 2 Daughters form dark radiation while relativistic Heavier daughter could form dark matter Jörn Kersten (Uni Hamburg) Dark Radiation from Particle Decay 8 / 19

10 New Physics in the Later Early Universe Late decays: after BBN, before recombination affect only CMB Mother 2 light, weakly interacting daughters Masses m, m 1 < m 2 δ m m 2 m 2 Daughters form dark radiation while relativistic Heavier daughter could form dark matter Examples: Gravitino axion + axino (Γ m 3 3/2 /M2 Pl ) Sneutrino gravitino + neutrino Modulino sneutrino + neutrino, axion + axino,... Jörn Kersten (Uni Hamburg) Dark Radiation from Particle Decay 8 / 19

11 Connecting N eff and Particle Physics N eff measured know ρ DR = 0.13 N eff ρ SM rad Goal: Constrain model parameters Ω: Energy density of the mother Lifetime τ (equivalently, temperature at decay T d ) δ: Mass hierarchy between mother and heavier daughter Jörn Kersten (Uni Hamburg) Dark Radiation from Particle Decay 9 / 19

12 Connecting N eff and Particle Physics N eff measured know ρ DR = 0.13 N eff ρ SM rad Goal: Constrain model parameters Ω: Energy density of the mother Lifetime τ (equivalently, temperature at decay T d ) δ: Mass hierarchy between mother and heavier daughter Two-body decay kinematics for m 1 m 2 : ρ DR (T d ) = N DR 2 (δ + 1) 2 1 (δ + 1) 2 ρ(t d ) Ω = Ω( N eff, τ, δ) N DR = 1, 2: number of relativistic dark particles during CMB times Free parameters in the following: τ, δ Jörn Kersten (Uni Hamburg) Dark Radiation from Particle Decay 9 / 19

13 Constraints from Dark Matter Density Today s density of heavier daughter Ω 2 Ω DM lower limits Decay before matter-radiation equality at t eq : δ 0.3 N eff ( teq τ ) 1 2 Decay after matter-radiation equality (now also Ω < Ω DM ): δ 0.15 N eff ( teq τ ) 2 3 Jörn Kersten (Uni Hamburg) Dark Radiation from Particle Decay 10 / 19

14 Constraints from Dark Matter Density min Τ from different requirements 10 7 t 2 nr min t eq tcmb 10 5 t Γ dpl 10 3 min t bbn t e e end t bbn Τ s Jörn Kersten (Uni Hamburg) Dark Radiation from Particle Decay 10 / 19

15 Free Streaming of Heavier Daughter Heavier daughter emitted with finite velocity washes out structure on scales smaller than free-streaming scale λ fs 2 = t0 τ v 2 a dt Limit from Lyman-α forest: λ fs 2 1 Mpc Abazajian, arxiv:astro-ph/ ; Viel et al., arxiv: ; Boyarsky et al., arxiv: Jörn Kersten (Uni Hamburg) Dark Radiation from Particle Decay 11 / 19

16 Free Streaming of Heavier Daughter Heavier daughter emitted with finite velocity washes out structure on scales smaller than free-streaming scale λ fs 2 = t0 τ v 2 a dt 50 Limit from Lyman-α forest: λ fs 2 1 Mpc Abazajian, arxiv:astro-ph/ ; Viel et al., arxiv: ; Boyarsky et al., arxiv: Λ 2 fs min Mpc tcmb teq dpl t Γ 1 t nr 2 min Heavier daughter too hot to form dark matter (or N eff 1) Jörn Kersten (Uni Hamburg) Dark Radiation from Particle Decay 11 / 19

17 Hot Dark Matter Constraint Maximum amount of hot dark matter Ω Ω DM (corresponding to m ν < 0.44 ev Hamann et al., arxiv: ) lower limits on δ rise by factor 25 Decay before matter-radiation equality at t eq : δ 7 N eff ( teq τ Decay after matter-radiation equality: δ 3.5 N eff ( teq τ ) 1 2 ) 2 3 Jörn Kersten (Uni Hamburg) Dark Radiation from Particle Decay 12 / 19

18 Hot Dark Matter Constraint min Τ from different requirements 10 7 t 2 nr min t eq tcmb 10 5 t Γ dpl 10 3 min t bbn t e e end t bbn Τ s Jörn Kersten (Uni Hamburg) Dark Radiation from Particle Decay 12 / 19

19 Hot Dark Matter Opportunities 1 Imagine conflict between future measurements: Cosmology ( m ν ) cosmo > 0 observed Laboratory upper limit < ( m ν ) cosmo Indication for hot dark matter ν from decay 2 Heavier daughter may become non-relativistic during CMB times observable consequences for CMB likely Jörn Kersten (Uni Hamburg) Dark Radiation from Particle Decay 13 / 19

20 Two Decay Modes 1 Mother φ + φ, branching ratio B 1 2 Mother ψ + ψ, branching ratio B 2 Daughter masses m 1 < m 2 x 2 m 2 m Lighter daughter forms dark radiation Jörn Kersten (Uni Hamburg) Dark Radiation from Particle Decay 14 / 19

21 Two Decay Modes 1 Mother φ + φ, branching ratio B 1 2 Mother ψ + ψ, branching ratio B 2 Daughter masses m 1 < m 2 x 2 m 2 m Lighter daughter forms dark radiation Examples: Saxion axion + axion, axino + axino Modulus gravitino + gravitino, axion + axion Jörn Kersten (Uni Hamburg) Dark Radiation from Particle Decay 14 / 19

22 Adjustable Free Streaming B 2 allows to adjust Ω 2 no dark matter density constraint on x 2 λ fs 2 arbitrary x ( B ( ) Mpc ( τ λ fs s ) λ fs Mpc Heavier daughter may form dark matter Can be cold or warm ) 0.5 N 1 eff ( ΩDM h 2 ) Jörn Kersten (Uni Hamburg) Dark Radiation from Particle Decay 15 / 19

23 Adjustable Free Streaming 10 3 end t bbn s t cmb x t e e Jörn Kersten (Uni Hamburg) Dark Radiation from Particle Decay 15 / 19

24 Solution of the Missing Satellites Problem Simulations of structure formation more galactic satellites than observed Problem may well be solved by astrophysics... or by warm dark matter with 0.2 Mpc λ fs 1 Mpc Colín et al., arxiv:astro-ph/ ; Lin et al., arxiv:astro-ph/ possible in two-decay-mode scenario Jörn Kersten (Uni Hamburg) Dark Radiation from Particle Decay 16 / 19

25 1 Introduction 2 Dark Radiation from Late Decays 3 Constraints for Model Building Jörn Kersten (Uni Hamburg) Dark Radiation from Particle Decay 17 / 19

26 Constraints on Decays into Standard Model Particles Br(Mother SM + SM) 0 Change of primordial abundances from BBN Jedamzik, arxiv:hep-ph/ Spectral distortions of the CMB Hu, Silk, PRL 70 (1993); Chluba, Sunyaev, arxiv: Change of ionization history Slatyer, arxiv: strict upper limits on branching ratio Jörn Kersten (Uni Hamburg) Dark Radiation from Particle Decay 18 / 19

27 Constraints on Decays into Standard Model Particles 10 0 Direct B em max Τ from BBN constraints B em max t cmb t Γ dpl 10 8 t bbn end t bbn t eq Τ s Jörn Kersten (Uni Hamburg) Dark Radiation from Particle Decay 18 / 19

28 Constraints on Decays into Standard Model Particles Direct B max vis Τ from CMB constraints t Γ dpl max B vis t bbn end t bbn t cmb t eq Τ s Jörn Kersten (Uni Hamburg) Dark Radiation from Particle Decay 18 / 19

29 Constraints on Decays into Standard Model Particles Br(Mother SM + SM) 0 Change of primordial abundances from BBN Jedamzik, arxiv:hep-ph/ Spectral distortions of the CMB Hu, Silk, PRL 70 (1993); Chluba, Sunyaev, arxiv: Change of ionization history Slatyer, arxiv: strict upper limits on branching ratio... even if only suppressed decay possible (loop, 3- or 4-body decay) Jörn Kersten (Uni Hamburg) Dark Radiation from Particle Decay 18 / 19

30 Constraints on Decays into Standard Model Particles B max had Τ from BBN constraints in considered scenarios end t bbn max B had t cmb t Γ dpl 10 8 t bbn t eq Τ s Jörn Kersten (Uni Hamburg) Dark Radiation from Particle Decay 18 / 19

31 Conclusions Dark universe may contain dark radiation Production in late decays different impact on BBN and CMB Energy density of mother determined by N eff, τ, δ Single dark decay mode: heavier daughter too hot for dark matter Two dark decay modes: heavier daughter may form dark matter and solve missing satellites problem Severe constraints on branching ratio into Standard Model particles input for construction of concrete models Jörn Kersten (Uni Hamburg) Dark Radiation from Particle Decay 19 / 19

32 Effects on the Cosmic Microwave Background (CMB) ρ rad later matter-radiation equality 1 st /3 rd peak ratio no change ρ m t eq unchanged ρ rad sound horizon r s 1/H Peak positions no change of angular size θ s = rs D A D A 1/H (by ρ Λ ) Remaining effect: increased Silk damping reduced power on small scales Hou et al., arxiv: Jörn Kersten (Uni Hamburg) Dark Radiation from Particle Decay 20 / 19

Dark Matter from Decays

Dark Matter from Decays Dark Matter from Decays Manoj Kaplinghat Center for Cosmology University of California, Irvine Collaborators James Bullock, Arvind Rajaraman, Louie Strigari Cold Dark Matter: Theory Most favored candidate

More information

ASTROPHYSICAL PROPERTIES OF MIRROR DARK MATTER

ASTROPHYSICAL PROPERTIES OF MIRROR DARK MATTER 16 December 2011 ASTROPHYSICAL PROPERTIES OF MIRROR DARK MATTER Paolo Ciarcelluti Motivation of this research We are now in the ERA OF PRECISION COSMOLOGY and... Motivation of this research We are now

More information

Concordance Cosmology and Particle Physics. Richard Easther (Yale University)

Concordance Cosmology and Particle Physics. Richard Easther (Yale University) Concordance Cosmology and Particle Physics Richard Easther (Yale University) Concordance Cosmology The standard model for cosmology Simplest model that fits the data Smallest number of free parameters

More information

Neutrino Mass Limits from Cosmology

Neutrino Mass Limits from Cosmology Neutrino Physics and Beyond 2012 Shenzhen, September 24th, 2012 This review contains limits obtained in collaboration with: Emilio Ciuffoli, Hong Li and Xinmin Zhang Goal of the talk Cosmology provides

More information

Cosmological observables and the nature of dark matter

Cosmological observables and the nature of dark matter Cosmological observables and the nature of dark matter Shiv Sethi Raman Research Institute March 18, 2018 SDSS results: power... SDSS results: BAO at... Planck results:... Planck-SDSS comparison Summary

More information

The cosmic background radiation II: The WMAP results. Alexander Schmah

The cosmic background radiation II: The WMAP results. Alexander Schmah The cosmic background radiation II: The WMAP results Alexander Schmah 27.01.05 General Aspects - WMAP measures temperatue fluctuations of the CMB around 2.726 K - Reason for the temperature fluctuations

More information

Big Bang Nucleosynthesis and Particle Physics

Big Bang Nucleosynthesis and Particle Physics New Generation Quantum Theory -Particle Physics, Cosmology and Chemistry- Kyoto University Mar.7-9 2016 Big Bang Nucleosynthesis and Particle Physics Masahiro Kawasaki (ICRR & Kavli IPMU, University of

More information

CMB & Light Degrees of Freedom

CMB & Light Degrees of Freedom CMB & Light Degrees of Freedom Joel Meyers Canadian Institute for Theoretical Astrophysics SLAC Summer Institute 2017 Cosmic Opportunities August 21, 2017 Image Credits: Planck, ANL Light Relics What and

More information

Determining neutrino masses from cosmology

Determining neutrino masses from cosmology Determining neutrino masses from cosmology Yvonne Y. Y. Wong The University of New South Wales Sydney, Australia NuFact 2013, Beijing, August 19 24, 2013 The cosmic neutrino background... Embedding the

More information

Astronomy 182: Origin and Evolution of the Universe

Astronomy 182: Origin and Evolution of the Universe Astronomy 182: Origin and Evolution of the Universe Prof. Josh Frieman Lecture 12 Nov. 18, 2015 Today Big Bang Nucleosynthesis and Neutrinos Particle Physics & the Early Universe Standard Model of Particle

More information

Really, really, what universe do we live in?

Really, really, what universe do we live in? Really, really, what universe do we live in? Fluctuations in cosmic microwave background Origin Amplitude Spectrum Cosmic variance CMB observations and cosmological parameters COBE, balloons WMAP Parameters

More information

Thermalisation of Sterile Neutrinos. Thomas Tram LPPC/ITP EPFL

Thermalisation of Sterile Neutrinos. Thomas Tram LPPC/ITP EPFL Thermalisation of Sterile Neutrinos Thomas Tram LPPC/ITP EPFL Outline Introduction to ev sterile neutrinos. Bounds from Cosmology. Standard sterile neutrino thermalisation. Thermalisation suppression by

More information

How many neutrino species are there?

How many neutrino species are there? How many neutrino species are there? Jan Hamann 6. Kosmologietag, Bielefeld 5-6 May 2011 Radiation content of the Universe Microwave background Neutrino background standard model expectation: [Mangano

More information

NEUTRINO COSMOLOGY. ν e ν µ. ν τ STEEN HANNESTAD UNIVERSITY OF AARHUS PARIS, 27 OCTOBER 2006

NEUTRINO COSMOLOGY. ν e ν µ. ν τ STEEN HANNESTAD UNIVERSITY OF AARHUS PARIS, 27 OCTOBER 2006 NEUTRINO COSMOLOGY ν e ν µ ν τ STEEN HANNESTAD UNIVERSITY OF AARHUS PARIS, 27 OCTOBER 2006 OUTLINE A BRIEF REVIEW OF PRESENT COSMOLOGICAL DATA BOUNDS ON THE NEUTRINO MASS STERILE NEUTRINOS WHAT IS TO COME

More information

Neutrinos in Cosmology (II)

Neutrinos in Cosmology (II) Neutrinos in Cosmology (II) Sergio Pastor (IFIC Valencia) Cinvestav 8-12 June 2015 Outline Prologue: the physics of (massive) neutrinos IntroducAon: neutrinos and the history of the Universe Basics of

More information

The Influence of DE on the Expansion Rate of the Universe and its Effects on DM Relic Abundance

The Influence of DE on the Expansion Rate of the Universe and its Effects on DM Relic Abundance The Influence of DE on the Expansion Rate of the Universe and its Effects on DM Relic Abundance Esteban Jimenez Texas A&M University XI International Conference on Interconnections Between Particle Physics

More information

Dark Matter in Particle Physics

Dark Matter in Particle Physics High Energy Theory Group, Northwestern University July, 2006 Outline Framework - General Relativity and Particle Physics Observed Universe and Inference Dark Energy, (DM) DM DM Direct Detection DM at Colliders

More information

Possible sources of very energetic neutrinos. Active Galactic Nuclei

Possible sources of very energetic neutrinos. Active Galactic Nuclei Possible sources of very energetic neutrinos Active Galactic Nuclei 1 What might we learn from astrophysical neutrinos? Neutrinos not attenuated/absorbed Information about central engines of astrophysical

More information

Learning from WIMPs. Manuel Drees. Bonn University. Learning from WIMPs p. 1/29

Learning from WIMPs. Manuel Drees. Bonn University. Learning from WIMPs p. 1/29 Learning from WIMPs Manuel Drees Bonn University Learning from WIMPs p. 1/29 Contents 1 Introduction Learning from WIMPs p. 2/29 Contents 1 Introduction 2 Learning about the early Universe Learning from

More information

Astro-2: History of the Universe

Astro-2: History of the Universe Astro-2: History of the Universe Lecture 8; May 7 2013 Previously on astro-2 Wherever we look in the sky there is a background of microwaves, the CMB. The CMB is very close to isotropic better than 0.001%

More information

Cosmological Constraints on high energy neutrino injection. KEKPH07 March 1-3, 2007

Cosmological Constraints on high energy neutrino injection. KEKPH07 March 1-3, 2007 Cosmological Constraints on high energy neutrino injection KEKPH07 March 1-3, 2007 Toru Kanzaki, Masahiro Kawasaki, Kazunori Kohri and Takeo Moroi Institute for Cosmic Ray Research Introduction physics

More information

Making Dark Matter. Manuel Drees. Bonn University & Bethe Center for Theoretical Physics. Making Dark Matter p. 1/35

Making Dark Matter. Manuel Drees. Bonn University & Bethe Center for Theoretical Physics. Making Dark Matter p. 1/35 Making Dark Matter Manuel Drees Bonn University & Bethe Center for Theoretical Physics Making Dark Matter p. 1/35 Contents 1 Introduction: The need for DM Making Dark Matter p. 2/35 Contents 1 Introduction:

More information

Thermal Dark Matter Below an MeV

Thermal Dark Matter Below an MeV Thermal Dark Matter Below an MeV ASHER BERLIN TeVPA, Ohio State University August 9, 2017 Collaboration with Nikita Blinov, arxiv: 1706.07046 Dark Matter Mass dwarf galaxies MACHO 10-31 GeV 10 58 GeV Dark

More information

Project Paper May 13, A Selection of Dark Matter Candidates

Project Paper May 13, A Selection of Dark Matter Candidates A688R Holly Sheets Project Paper May 13, 2008 A Selection of Dark Matter Candidates Dark matter was first introduced as a solution to the unexpected shape of our galactic rotation curve; instead of showing

More information

Astr 2320 Thurs. May 7, 2015 Today s Topics Chapter 24: New Cosmology Problems with the Standard Model Cosmic Nucleosynthesis Particle Physics Cosmic

Astr 2320 Thurs. May 7, 2015 Today s Topics Chapter 24: New Cosmology Problems with the Standard Model Cosmic Nucleosynthesis Particle Physics Cosmic Astr 2320 Thurs. May 7, 2015 Today s Topics Chapter 24: New Cosmology Problems with the Standard Model Cosmic Nucleosynthesis Particle Physics Cosmic Inflation Galaxy Formation 1 Chapter 24: #3 Chapter

More information

Cosmology. Thermal history of the universe Primordial nucleosynthesis WIMPs as dark matter Recombination Horizon problem Flatness problem Inflation

Cosmology. Thermal history of the universe Primordial nucleosynthesis WIMPs as dark matter Recombination Horizon problem Flatness problem Inflation Cosmology Thermal history of the universe Primordial nucleosynthesis WIMPs as dark matter Recombination Horizon problem Flatness problem Inflation Energy density versus scale factor z=1/a-1 Early times,

More information

Dark Radiation and Inflationary Freedom

Dark Radiation and Inflationary Freedom Dark Radiation and Inflationary Freedom Based on [SG et al., JCAP 1504 (2015) 023] [Di Valentino et al., PRD 91 (2015) 123505] Stefano Gariazzo University of Torino, INFN of Torino http://personalpages.to.infn.it/~gariazzo/

More information

Gravitino LSP as Dark Matter in the Constrained MSSM

Gravitino LSP as Dark Matter in the Constrained MSSM Gravitino LSP as Dark Matter in the Constrained MSSM Ki Young Choi The Dark Side of the Universe, Madrid, 20-24 June 2006 Astro-Particle Theory and Cosmology Group The University of Sheffield, UK In collaboration

More information

Cosmological Signatures of a Mirror Twin Higgs

Cosmological Signatures of a Mirror Twin Higgs Cosmological Signatures of a Mirror Twin Higgs Zackaria Chacko University of Maryland, College Park Curtin, Geller & Tsai Introduction The Twin Higgs framework is a promising approach to the naturalness

More information

Cosmology with Planck: Nucleosynthesis and neutron life-time constraints

Cosmology with Planck: Nucleosynthesis and neutron life-time constraints Cosmology with Planck: Nucleosynthesis and neutron life-time constraints Luca Pagano Sapienza University of Rome Torino 07-09-2015 Outline Big Bang Nucleosynthesis as cosmological probe Big Bang Nucleosynthesis

More information

Neutrino properties from cosmology

Neutrino properties from cosmology Neutrino properties from cosmology Yvonne Y. Y. Wong The University of New South Wales Sydney, Australia Rencontres de Moriond EW 2014, La Thuile, March 15 22, 2014 The concordance flat ΛCDM model... The

More information

Structures in the early Universe. Particle Astrophysics chapter 8 Lecture 4

Structures in the early Universe. Particle Astrophysics chapter 8 Lecture 4 Structures in the early Universe Particle Astrophysics chapter 8 Lecture 4 overview Part 1: problems in Standard Model of Cosmology: horizon and flatness problems presence of structures Part : Need for

More information

Dark Matter Halos in Warm Dark Matter Models

Dark Matter Halos in Warm Dark Matter Models Dark Matter Halos in Warm Dark Matter Models 5. June @ Workshop CIAS Meudon 2013 Ayuki Kamada (Kavli IPMU, Univ. of Tokyo) in collaboration with Naoki Yoshida (Kavli IPMU, Univ. of Tokyo) Kazunori Kohri

More information

Decaying Dark Matter, Bulk Viscosity, and Dark Energy

Decaying Dark Matter, Bulk Viscosity, and Dark Energy Decaying Dark Matter, Bulk Viscosity, and Dark Energy Dallas, SMU; April 5, 2010 Outline Outline Standard Views Dark Matter Standard Views of Dark Energy Alternative Views of Dark Energy/Dark Matter Dark

More information

Astronomy 182: Origin and Evolution of the Universe

Astronomy 182: Origin and Evolution of the Universe Astronomy 182: Origin and Evolution of the Universe Prof. Josh Frieman Lecture 11 Nov. 13, 2015 Today Cosmic Microwave Background Big Bang Nucleosynthesis Assignments This week: read Hawley and Holcomb,

More information

Making Light from the Dark Universe

Making Light from the Dark Universe Oxford University Physics Society, 1st May 2014 Talk Structure 1. Prelude: What is Dark Radiation? 2. Experimental motivation for dark radiation: CMB and BBN 3. Theoretical motivation for dark radiation:

More information

Neutrinos secretly converting to lighter particles to please both KATRIN and Cosmos. Yasaman Farzan IPM, Tehran

Neutrinos secretly converting to lighter particles to please both KATRIN and Cosmos. Yasaman Farzan IPM, Tehran Neutrinos secretly converting to lighter particles to please both KATRIN and Cosmos Yasaman Farzan IPM, Tehran Outline Motivation for the KATRIN experiment Effect of neutrinos on cosmological scales and

More information

Planck constraints on neutrinos. Massimiliano Lattanzi Università di Ferrara on behalf of the Planck Collaboration

Planck constraints on neutrinos. Massimiliano Lattanzi Università di Ferrara on behalf of the Planck Collaboration Planck constraints on neutrinos Massimiliano Lattanzi Università di Ferrara on behalf of the Planck Collaboration The Cosmic Neutrino Background (CnB) The presence of a background of relic neutrinos is

More information

4. Nucleosynthesis. I. Aretxaga

4. Nucleosynthesis. I. Aretxaga 4. Nucleosynthesis I. Aretxaga 2017 Radiation era We have that ρ M R -3 ρ rad R -4 There must be a z at which ρ M = ρ rad Taking into account that nucleosynthesis predicts n ν =0.68 n γ, then Ω rad =4.2

More information

Dark Matter and Dark Energy components chapter 7

Dark Matter and Dark Energy components chapter 7 Dark Matter and Dark Energy components chapter 7 Lecture 3 See also Dark Matter awareness week December 2010 http://www.sissa.it/ap/dmg/index.html The early universe chapters 5 to 8 Particle Astrophysics,

More information

Particle Cosmology. V.A. Rubakov. Institute for Nuclear Research of the Russian Academy of Sciences, Moscow and Moscow State University

Particle Cosmology. V.A. Rubakov. Institute for Nuclear Research of the Russian Academy of Sciences, Moscow and Moscow State University Particle Cosmology V.A. Rubakov Institute for Nuclear Research of the Russian Academy of Sciences, Moscow and Moscow State University Topics Basics of Hot Big Bang cosmology Dark matter: WIMPs Axions Warm

More information

Absolute Neutrino Mass from Cosmology. Manoj Kaplinghat UC Davis

Absolute Neutrino Mass from Cosmology. Manoj Kaplinghat UC Davis Absolute Neutrino Mass from Cosmology Manoj Kaplinghat UC Davis Kinematic Constraints on Neutrino Mass Tritium decay (Mainz Collaboration, Bloom et al, Nucl. Phys. B91, 273, 2001) p and t decay Future

More information

Implications of cosmological observations on neutrino and axion properties

Implications of cosmological observations on neutrino and axion properties Implications of cosmological observations on neutrino and axion properties Elena Giusarma Elba XIII Workshop Based on works in collabora6on with: E. Di Valen6no, M. La?anzi, A. Melchiorri, O. Mena arxiv:1403.4852

More information

Nucleosíntesis primordial

Nucleosíntesis primordial Tema 5 Nucleosíntesis primordial Asignatura de Física Nuclear Curso académico 2009/2010 Universidad de Santiago de Compostela Big Bang cosmology 1.1 The Universe today The present state of the Universe

More information

TESTING GRAVITY WITH COSMOLOGY

TESTING GRAVITY WITH COSMOLOGY 21 IV. TESTING GRAVITY WITH COSMOLOGY We now turn to the different ways with which cosmological observations can constrain modified gravity models. We have already seen that Solar System tests provide

More information

NEUTRINO COSMOLOGY. n m. n e. n t STEEN HANNESTAD UNIVERSITY OF AARHUS PLANCK 06, 31 MAY 2006

NEUTRINO COSMOLOGY. n m. n e. n t STEEN HANNESTAD UNIVERSITY OF AARHUS PLANCK 06, 31 MAY 2006 NEUTRINO COSMOLOGY n e n m n t STEEN HANNESTAD UNIVERSITY OF AARHUS PLANCK 06, 31 MAY 2006 LIMITS ON THE PROPERTIES OF LIGHT NEUTRINOS FROM COSMOLOGICAL DATA THE MASS OF THE ACTIVE SPECIES BOUNDS ON OTHER

More information

Cosmology: The Origin and Evolution of the Universe Chapter Twenty-Eight. Guiding Questions

Cosmology: The Origin and Evolution of the Universe Chapter Twenty-Eight. Guiding Questions Cosmology: The Origin and Evolution of the Universe Chapter Twenty-Eight Guiding Questions 1. What does the darkness of the night sky tell us about the nature of the universe? 2. As the universe expands,

More information

Primordial (Big Bang) Nucleosynthesis

Primordial (Big Bang) Nucleosynthesis Primordial (Big Bang) Nucleosynthesis H Li Be Which elements? He METALS - 1942: Gamow suggests a Big Bang origin of the elements. - 1948: Alpher, Bethe & Gamow: all elements are synthesized minutes after

More information

What if dark matter suddenly disappeared?

What if dark matter suddenly disappeared? Felix Kahlhoefer Particle and Astroparticle Theory Seminar MPIK Heidelberg 23 July 2018 Based on arxiv:1803.03644 in collaboration with Torsten Bringmann, Kai Schmidt-Hoberg and Parampreet Walia Outline

More information

Constraints on primordial abundances and neutron life-time from CMB

Constraints on primordial abundances and neutron life-time from CMB Constraints on primordial abundances and neutron life-time from CMB PhD Astronomy, Astrophysics and Space Science University of Sapienza and Tor Vergata Advisor: Alessandro Melchiorri Introduction Comparison

More information

Neutrino Mass & the Lyman-α Forest. Kevork Abazajian University of Maryland

Neutrino Mass & the Lyman-α Forest. Kevork Abazajian University of Maryland Neutrino Mass & the Lyman-α Forest Kevork Abazajian University of Maryland INT Workshop: The Future of Neutrino Mass Measurements February 9, 2010 Dynamics: the cosmological density perturbation spectrum

More information

Modeling the Universe A Summary

Modeling the Universe A Summary Modeling the Universe A Summary Questions to Consider 1. What does the darkness of the night sky tell us about the nature of the universe? 2. As the universe expands, what, if anything, is it expanding

More information

Dark matter Andreas Goudelis. Journée Théorie CPTGA 2017, Grenoble. LPTHE - Jussieu

Dark matter Andreas Goudelis. Journée Théorie CPTGA 2017, Grenoble. LPTHE - Jussieu Dark matter 2017 Journée Théorie, Grenoble LPTHE - Jussieu Wednesday 24/5/2017 What I ll try to summarise Why we need dark matter and what we know about it The most popular ways to look for it What we

More information

IMPLICATIONS OF PARTICLE PHYSICS FOR COSMOLOGY

IMPLICATIONS OF PARTICLE PHYSICS FOR COSMOLOGY IMPLICATIONS OF PARTICLE PHYSICS FOR COSMOLOGY Jonathan Feng University of California, Irvine 28-29 July 2005 PiTP, IAS, Princeton 28-29 July 05 Feng 1 Graphic: N. Graf OVERVIEW This Program anticipates

More information

DARK MATTER. Martti Raidal NICPB & University of Helsinki Tvärminne summer school 1

DARK MATTER. Martti Raidal NICPB & University of Helsinki Tvärminne summer school 1 DARK MATTER Martti Raidal NICPB & University of Helsinki 28.05.2010 Tvärminne summer school 1 Energy budget of the Universe 73,4% - Dark Energy WMAP fits to the ΛCDM model Distant supernova 23% - Dark

More information

Origin of the Universe - 2 ASTR 2120 Sarazin. What does it all mean?

Origin of the Universe - 2 ASTR 2120 Sarazin. What does it all mean? Origin of the Universe - 2 ASTR 2120 Sarazin What does it all mean? Fundamental Questions in Cosmology 1. Why did the Big Bang occur? 2. Why is the Universe old? 3. Why is the Universe made of matter?

More information

Supersymmetric dark matter with low reheating temperature of the Universe

Supersymmetric dark matter with low reheating temperature of the Universe Supersymmetric dark matter with low reheating temperature of the Universe Sebastian Trojanowski National Center for Nuclear Research, Warsaw COSMO 204 Chicago, August 29, 204 L. Roszkowski, ST, K. Turzyński

More information

Theory of galaxy formation

Theory of galaxy formation Theory of galaxy formation Bibliography: Galaxy Formation and Evolution (Mo, van den Bosch, White 2011) Lectures given by Frank van den Bosch in Yale http://www.astro.yale.edu/vdbosch/teaching.html Theory

More information

Cosmology: Building the Universe.

Cosmology: Building the Universe. Cosmology: Building the Universe. The term has several different meanings. We are interested in physical cosmology - the study of the origin and development of the physical universe, and all the structure

More information

Neutrinos And Big Bang Nucleosynthesis

Neutrinos And Big Bang Nucleosynthesis Neutrinos And Big Bang Nucleosynthesis Gary Steigman 0.1 Introduction In the early, hot, dense Universe neutrinos (known and hypothesized) contribute to the total energy density, which regulates the early

More information

Cosmological Constraints! on! Very Dark Photons

Cosmological Constraints! on! Very Dark Photons Cosmological Constraints on Very Dark Photons Anthony Fradette work presented in AF, Maxim Pospelov, Josef Pradler, Adam Ritz : PRD Aug 204 (arxiv:407.0993) Cosmo 204 - Chicago, IL Plan Dark Photon review

More information

NEUTRINO PROPERTIES FROM COSMOLOGY

NEUTRINO PROPERTIES FROM COSMOLOGY NEUTRINO PROPERTIES FROM COSMOLOGY Cosmology 2018 in Dubrovnik 26 October 2018 OKC, Stockholm University Neutrino cosmology BOOKS: Lesgourgues, Mangano, Miele, Pastor, Neutrino Cosmology, Cambridge U.Press,

More information

Brief Introduction to Cosmology

Brief Introduction to Cosmology Brief Introduction to Cosmology Matias Zaldarriaga Harvard University August 2006 Basic Questions in Cosmology: How does the Universe evolve? What is the universe made off? How is matter distributed? How

More information

Physics 463, Spring 07. Formation and Evolution of Structure: Growth of Inhomogenieties & the Linear Power Spectrum

Physics 463, Spring 07. Formation and Evolution of Structure: Growth of Inhomogenieties & the Linear Power Spectrum Physics 463, Spring 07 Lecture 3 Formation and Evolution of Structure: Growth of Inhomogenieties & the Linear Power Spectrum last time: how fluctuations are generated and how the smooth Universe grows

More information

Lecture 19 Big Bang Nucleosynthesis

Lecture 19 Big Bang Nucleosynthesis Lecture 19 Big Bang Nucleosynthesis As with all course material (including homework, exams), these lecture notes are not be reproduced, redistributed, or sold in any form. The CMB as seen by the WMAP satellite.!2

More information

the astrophysical formation of the elements

the astrophysical formation of the elements the astrophysical formation of the elements Rebecca Surman Union College Second Uio-MSU-ORNL-UT School on Topics in Nuclear Physics 3-7 January 2011 the astrophysical formation of the elements lecture

More information

3.5 kev X-ray line and Supersymmetry

3.5 kev X-ray line and Supersymmetry Miami-2014, Fort Lauderdale, Florida Bartol Research Institute Department Physics and Astronomy University of Delaware, USA in collaboration with Bhaskar Dutta, Rizwan Khalid and Qaisar Shafi, JHEP 1411,

More information

Implications of cosmological observables for particle physics: an overview

Implications of cosmological observables for particle physics: an overview Implications of cosmological observables for particle physics: an overview Yvonne Y. Y. Wong The University of New South Wales Sydney, Australia TAUP 2015, Torino, September 7 11, 2015 The concordance

More information

Lecture 3: Big Bang Nucleosynthesis

Lecture 3: Big Bang Nucleosynthesis Lecture 3: Big Bang Nucleosynthesis Last time: particle anti-particle soup --> quark soup --> neutron-proton soup. Today: Form 2 D and 4 He Form heavier nuclei? Discuss primordial abundances X p, Y p,

More information

Production mechanisms for kev sterile neutrino dark matter in the Early Universe

Production mechanisms for kev sterile neutrino dark matter in the Early Universe Production mechanisms for kev sterile neutrino dark matter in the Early Universe based on JCAP06 (2015) 011, JCAP04 (2016) 003 & 1509.01289 in collaboration with J. König, A. Merle and A. Schneider Maximilian

More information

Steen Hannestad Department of Physics and Astronomy, Aarhus University, Ny Munkegade, DK-8000 Aarhus C, Denmark

Steen Hannestad Department of Physics and Astronomy, Aarhus University, Ny Munkegade, DK-8000 Aarhus C, Denmark Department of Physics and Astronomy, Aarhus University, Ny Munkegade, DK-8000 Aarhus C, Denmark E-mail: sth@phys.au.dk In recent years precision cosmology has become an increasingly powerful probe of particle

More information

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. MATHEMATICAL TRIPOS Part III Friday 8 June 2001 1.30 to 4.30 PAPER 41 PHYSICAL COSMOLOGY Answer any THREE questions. The questions carry equal weight. You may not start to read the questions printed on

More information

kev sterile Neutrino Dark Matter in Extensions of the Standard Model

kev sterile Neutrino Dark Matter in Extensions of the Standard Model kev sterile Neutrino Dark Matter in Extensions of the Standard Model Manfred Lindner Max-Planck-Institut für Kernphysik, Heidelberg F. Bezrukov, H. Hettmannsperger, ML, arxiv:0912.4415, PRD81,085032 The

More information

Galaxies 626. Lecture 3: From the CMBR to the first star

Galaxies 626. Lecture 3: From the CMBR to the first star Galaxies 626 Lecture 3: From the CMBR to the first star Galaxies 626 Firstly, some very brief cosmology for background and notation: Summary: Foundations of Cosmology 1. Universe is homogenous and isotropic

More information

Cosmology II: The thermal history of the Universe

Cosmology II: The thermal history of the Universe .. Cosmology II: The thermal history of the Universe Ruth Durrer Département de Physique Théorique et CAP Université de Genève Suisse August 6, 2014 Ruth Durrer (Université de Genève) Cosmology II August

More information

Cosmological Structure Formation Dr. Asa Bluck

Cosmological Structure Formation Dr. Asa Bluck Cosmological Structure Formation Dr. Asa Bluck Week 6 Structure Formation in the Linear Regime II CMB as Rosetta Stone for Structure Formation Week 7 Observed Scale of the Universe in Space & Time Week

More information

Cosmological constraints on (elastic) Dark Matter self-interactions

Cosmological constraints on (elastic) Dark Matter self-interactions Cosmological constraints on (elastic Dark Matter self-interactions Rainer Stiele Work done together with J. Schaffner-Bielich & T. Boeckel (University Heidelberg Institut für Theoretische Physik Goethe-Universität

More information

Direct Search for Dark Matter

Direct Search for Dark Matter Direct Search for Dark Matter Herbstschule für Hochenergiephysik Maria Laach 2013, September 2013 Institut für Kernphysik, Westfälische Wilhelms-Universität Münster weinheimer@uni-muenster.de - Astrophysical

More information

n=0 l (cos θ) (3) C l a lm 2 (4)

n=0 l (cos θ) (3) C l a lm 2 (4) Cosmic Concordance What does the power spectrum of the CMB tell us about the universe? For that matter, what is a power spectrum? In this lecture we will examine the current data and show that we now have

More information

Dark radiation from particle decays during big bang nucleosynthesis

Dark radiation from particle decays during big bang nucleosynthesis Dark radiation from particle decays during big bang nucleosynthesis by Justin L. Menestrina Advisor: Dr. Robert Scherrer Senior Honors Thesis Spring 2012 Menestrina 1 Table of Contents Abstract... 2 Introduction...

More information

Theory Group. Masahiro Kawasaki

Theory Group. Masahiro Kawasaki Theory Group Masahiro Kawasaki Current members of theory group Staffs Masahiro Kawasaki (2004~) cosmology Masahiro Ibe (2011~) particle physics Postdoctoral Fellows Shuichiro Yokoyama Shohei Sugiyama Daisuke

More information

On Symmetric/Asymmetric Light Dark Matter

On Symmetric/Asymmetric Light Dark Matter On Symmetric/Asymmetric Light Dark Matter Hai-Bo Yu University of Michigan, Ann Arbor Exploring Low-Mass Dark Matter Candidates PITT PACC, 11/16/2011 Motivations Traditionally, we focus on O(100 GeV) dark

More information

Neutrinos in the era of precision Cosmology

Neutrinos in the era of precision Cosmology Neutrinos in the era of precision Cosmology Marta Spinelli Rencontres du Vietnam Quy Nhon - 21 July 2017 The vanilla model: -CDM (Late times) cosmological probes Supernovae Ia standard candles fundamental

More information

Model Universe Including Pressure

Model Universe Including Pressure Model Universe Including Pressure The conservation of mass within the expanding shell was described by R 3 ( t ) ρ ( t ) = ρ 0 We now assume an Universe filled with a fluid (dust) of uniform density ρ,

More information

RECENT PROGRESS IN SUSY DARK MATTER

RECENT PROGRESS IN SUSY DARK MATTER RECENT PROGRESS IN SUSY DARK MATTER Jonathan Feng University of California, Irvine 12 April 2006 Texas A&M Mitchell Symposium 12 Apr 06 Graphic: Feng N. Graf 1 Supersymmetric dark matter has been around

More information

Stochastic Backgrounds

Stochastic Backgrounds Stochastic Backgrounds For our last lecture, we will focus on stochastic backgrounds, with an emphasis on primordial gravitational waves. To get a handle on these issues, we need to think in terms of broad

More information

Gravitinos, Reheating and the Matter-Antimatter Asymmetry of the Universe

Gravitinos, Reheating and the Matter-Antimatter Asymmetry of the Universe Gravitinos, Reheating and the Matter-Antimatter Asymmetry of the Universe Raghavan Rangarajan Physical Research Laboratory Ahmedabad with N. Sahu, A. Sarkar, N. Mahajan OUTLINE THE MATTER-ANTIMATTER ASYMMETRY

More information

Axion in Large Extra Dimensions

Axion in Large Extra Dimensions Axion in Large Extra Dimensions Talk at ASK2011 Sanghyeon Chang Konkuk Univ. April 11, 2011 Sanghyeon Chang (Konkuk Univ.) Axion in Large Extra Dimensions April 11, 2011 1 / 27 Table of Contents 1 Introduction

More information

Neutrinos in Cosmology (IV)

Neutrinos in Cosmology (IV) Neutrinos in Cosmology (IV) Sergio Pastor (IFIC Valencia) Cinvestav 8-12 June 2015 Outline Prologue: the physics of (massive) neutrinos IntroducBon: neutrinos and the history of the Universe Basics of

More information

CMB Constraints on Fundamental Physics

CMB Constraints on Fundamental Physics CMB Constraints on Fundamental Physics Lecture III CMB & MORE PARAMETERS Things we learned from lecture II The standard cosmological model is based on several assumptions: general relativity, inflation,

More information

Lecture 3: Big Bang Nucleosynthesis The First Three Minutes Last time:

Lecture 3: Big Bang Nucleosynthesis The First Three Minutes Last time: Lecture 3: Big Bang Nucleosynthesis The First Three Minutes Last time: particle anti-particle soup --> quark soup --> neutron-proton soup p / n ratio at onset of 2 D formation Today: Form 2 D and 4 He

More information

Lecture 19 Nuclear Astrophysics. Baryons, Dark Matter, Dark Energy. Experimental Nuclear Physics PHYS 741

Lecture 19 Nuclear Astrophysics. Baryons, Dark Matter, Dark Energy. Experimental Nuclear Physics PHYS 741 Lecture 19 Nuclear Astrophysics Baryons, Dark Matter, Dark Energy Experimental Nuclear Physics PHYS 741 heeger@wisc.edu References and Figures from: - Haxton, Nuclear Astrophysics - Basdevant, Fundamentals

More information

CMB constraints on dark matter annihilation

CMB constraints on dark matter annihilation CMB constraints on dark matter annihilation Tracy Slatyer, Harvard University NEPPSR 12 August 2009 arxiv:0906.1197 with Nikhil Padmanabhan & Douglas Finkbeiner Dark matter!standard cosmological model:

More information

Structures in the early Universe. Particle Astrophysics chapter 8 Lecture 4

Structures in the early Universe. Particle Astrophysics chapter 8 Lecture 4 Structures in the early Universe Particle Astrophysics chapter 8 Lecture 4 overview problems in Standard Model of Cosmology: horizon and flatness problems presence of structures Need for an exponential

More information

Joel Meyers Canadian Institute for Theoretical Astrophysics

Joel Meyers Canadian Institute for Theoretical Astrophysics Cosmological Probes of Fundamental Physics Joel Meyers Canadian Institute for Theoretical Astrophysics SMU Physics Colloquium February 5, 2018 Image Credits: Planck, ANL The Cosmic Microwave Background

More information

Cosmologists dedicate a great deal of effort to determine the density of matter in the universe. Type Ia supernovae observations are consistent with

Cosmologists dedicate a great deal of effort to determine the density of matter in the universe. Type Ia supernovae observations are consistent with Notes for Cosmology course, fall 2005 Dark Matter Prelude Cosmologists dedicate a great deal of effort to determine the density of matter in the universe Type Ia supernovae observations are consistent

More information

Cosmological Constraints on Dark Energy via Bulk Viscosity from Decaying Dark Matter

Cosmological Constraints on Dark Energy via Bulk Viscosity from Decaying Dark Matter Cosmological Constraints on Dark Energy via Bulk Viscosity from Decaying Dark Matter Nguyen Quynh Lan Hanoi National University of Education, Vietnam (University of Notre Dame, USA) Rencontres du Vietnam:

More information

Dark matter: evidence and candidates

Dark matter: evidence and candidates .... Dark matter: evidence and candidates Zhao-Huan Yu ( 余钊焕 ) Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, CAS March 14, 2014 Zhao-Huan Yu (IHEP) Dark matter: evidence and

More information

Prospects for the Direct Detection of the Cosmic Neutrino Background

Prospects for the Direct Detection of the Cosmic Neutrino Background Prospects for the Direct Detection of the Cosmic Neutrino Background Andreas Ringwald http://www.desy.de/ ringwald DESY PANIC 2008 November 9 14, 2008, Eilat, Israel Prospects for the Direct Detection

More information

The Dark Matter Problem

The Dark Matter Problem The Dark Matter Problem matter : anything with equation of state w=0 more obvious contribution to matter: baryons (stars, planets, us!) and both Big Bang Nucleosynthesis and WMAP tell us that Ω baryons

More information