LECTURE 9. In the example above, we have a total of n equations and m unknowns. However, for the most part we

Size: px
Start display at page:

Download "LECTURE 9. In the example above, we have a total of n equations and m unknowns. However, for the most part we"

Transcription

1 LECTURE 9 Review of Matrix lgebra We shall now look at algorithms for solving systems of linear equations system of linear equations is a set of equations of the form è9è 8 é é: a x + a x + æææ+ a m x m = b a x + a x + æææ+ a m x m = b a n,;x + a n,;x + æææ+ a n,;mx m = b n, a n x + a n x + æææ+ a nm x m = b n In the example above, we have a total of n equations and m unknowns However, for the most part we shall be considering systems of equations where the total number of equations equals the total number of unknowns; for in this case, we generally have a unique solution èif we have fewer equations than unknowns we don't have enough information to get a unique solution; and if we have more èindependentè equations than unknowns that we won't have any solutionsè The ærst step in casting the problem of solving systems of linear equations into the realm on numerical analysis, is to represent such a systems as a matrix equation Thus, if we then denote by, x, and b the matrices a a æææ a ;n, a n a a æææ a ;n, a n a n,; a n,; æææ a n,;n, a n,;n a n a n; æææ a n;n, x = then è9è èwith m = nè can be written x x x n, x n ; b = x = b b b b n, b n Now what makes this formulation accessible to numerical analysis is the fact that most èif not allè numerical programming languages have anumerical array data type In Maple, for example, a matrix like can be identiæed with a array constructed as follows: := arrayè,è; ë,ë :=

2 THREE SIMPLE CSES or more succinctly ë,ë := ; ë,ë := ; ë,ë := ; ë,ë := ; ë,ë := ; ë,ë := ; ë,ë := ; ë,ë := ; := arrayè,è; := ëë,,ë,ë,,ë,ë,ëë; Three Simple Cases Diagonal Matrices matrix equation x = b is trivial to solve if the matrix is purely diagonal For if the corresponding system of equations reduces to a æææ a æææ æææ a n,;n, æææ a x = b è x = b a a x = b è x = b a x n = b n è x n = b n Lower Triangular Matrices If the matrix has the form a æææ a a æææ a n,; a n,; æææ a n,;n, a n a n; æææ a n;n, èwith zeros everywhere above the diagonal from a to è, then it is called lower triangular matrix equation x = b in which is lower triangular is also fairly easy to solve For it is equivalent ot a system of equations of the form a x = b a x + a x = b a x + a x + a x = b a n x + a n x + a n x + æææ+ x n = b n

3 THREE SIMPLE CSES To ænd the solution of such a system one solves the ærst equation for x and then substitutes its solution b =a for the variable x in the second equation a b a + a x = b è x = a b, a b a One can now substitute the numerical expressions for x, and x into the third equation and get a numerical expression for x Continuing in this manner we can solve the system completely t this point, it might be worthwhile to develop an explicit algorithm for carrying out the solution of a lower triangular linear system Let n denote the number of equations èand the number of unknownsè We shall assume the matrix is lower triangular so that ccording to the discusion above, we have a ij = ; if jéi x = b a and if we know x ;x ;::: ;x k, we can compute x k from the k th equation x k = èb k, a k x, a k x k,æææ,a k;k,x k è a kk = X b k, k, a ki x i a kk a kk i= Upper Triangular Matrices We can do a similar thing for systems of equations characterized by an upper triangular matrices For if then the corresponding system of equations will be a a æææ a ;n, a n a æææ a ;n, a n æææ a n,;n æææ a x + a x+æææ+ a n x n = b a x + æææ+ a n x n = b a n,;n,x n, + a n,;nx n = b n, x n = b n which can be solved by substituting the solution of the last equation into the penultimate equation and solving for x n, x n, = a n,;n, x n = b n b n,, a n,;n bn and then substituting this result into the third from last equation, etc then becomes x n,i = a n,i;n,i è b i, ix k= a n,i;n,kx n,k! The formula for a particular x i

4 THREE SIMPLE CSES Example 9 Write a Maple program that solves the following system of equations x = x + x = x +x + x = x + x +x + x = 8 æ First note that this system corresponds to a lower triangular matrix We can thus solve the equations x = b by forward substitution: for each k from to we set è! x k = k, X b k, a ks x s a kk In Maple this can be coded as follows: s= C n := ; := arrayèn,nè; b := arrayènè; x := arrayènè; := ëë,,,ë,ë,,,ë,ë,,,ë,ë,,,ëë; b := ë,,,9ë; for k from to n do xëkë := èbëkë - sumèëk,së*xësë,s=k-èèèëk,kë; od; Example 9 Write a Maple program that solves the following system of equations x +x + x, x = x + x, x =,x + x = x = 8 æ First note that this system corresponds to a lower triangular matrix We can thus solve the equations x = b by backward substitution: for each k from to we set x,k = a,k;,k In Maple this can be coded as follows: n := ; := arrayèn,nè; b := arrayènè; x := arrayènè; è X C k, b,k, a,k;,sx,s s=!

5 THREE SIMPLE CSES := ëë,,,-ë,ë,,,-ë,ë,,-,ë,ë,,,ëë; b := ë,,,8ë; for k from to èn-è do xën-kë := èbën-kë - sumèën-k,n-së*xën-së,s=k-èèèën-k,n-kë; od;

CS412: Lecture #17. Mridul Aanjaneya. March 19, 2015

CS412: Lecture #17. Mridul Aanjaneya. March 19, 2015 CS: Lecture #7 Mridul Aanjaneya March 9, 5 Solving linear systems of equations Consider a lower triangular matrix L: l l l L = l 3 l 3 l 33 l n l nn A procedure similar to that for upper triangular systems

More information

2.1 Gaussian Elimination

2.1 Gaussian Elimination 2. Gaussian Elimination A common problem encountered in numerical models is the one in which there are n equations and n unknowns. The following is a description of the Gaussian elimination method for

More information

Solving Systems of Linear Equations

Solving Systems of Linear Equations LECTURE 5 Solving Systems of Linear Equations Recall that we introduced the notion of matrices as a way of standardizing the expression of systems of linear equations In today s lecture I shall show how

More information

LECTURE 17. Algorithms for Polynomial Interpolation

LECTURE 17. Algorithms for Polynomial Interpolation LECTURE 7 Algorithms for Polynomial Interpolation We have thus far three algorithms for determining the polynomial interpolation of a given set of data.. Brute Force Method. Set and solve the following

More information

Direct Methods for Solving Linear Systems. Matrix Factorization

Direct Methods for Solving Linear Systems. Matrix Factorization Direct Methods for Solving Linear Systems Matrix Factorization Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University c 2011

More information

Solving Linear Systems Using Gaussian Elimination. How can we solve

Solving Linear Systems Using Gaussian Elimination. How can we solve Solving Linear Systems Using Gaussian Elimination How can we solve? 1 Gaussian elimination Consider the general augmented system: Gaussian elimination Step 1: Eliminate first column below the main diagonal.

More information

Illustration of Gaussian elimination to find LU factorization. A = a 11 a 12 a 13 a 14 a 21 a 22 a 23 a 24 a 31 a 32 a 33 a 34 a 41 a 42 a 43 a 44

Illustration of Gaussian elimination to find LU factorization. A = a 11 a 12 a 13 a 14 a 21 a 22 a 23 a 24 a 31 a 32 a 33 a 34 a 41 a 42 a 43 a 44 Illustration of Gaussian elimination to find LU factorization. A = a 21 a a a a 31 a 32 a a a 41 a 42 a 43 a 1 Compute multipliers : Eliminate entries in first column: m i1 = a i1 a 11, i = 2, 3, 4 ith

More information

Continuity of Bçezier patches. Jana Pçlnikovça, Jaroslav Plaçcek, Juraj ç Sofranko. Faculty of Mathematics and Physics. Comenius University

Continuity of Bçezier patches. Jana Pçlnikovça, Jaroslav Plaçcek, Juraj ç Sofranko. Faculty of Mathematics and Physics. Comenius University Continuity of Bezier patches Jana Plnikova, Jaroslav Placek, Juraj Sofranko Faculty of Mathematics and Physics Comenius University Bratislava Abstract The paper is concerned about the question of smooth

More information

Engineering Computation

Engineering Computation Engineering Computation Systems of Linear Equations_1 1 Learning Objectives for Lecture 1. Motivate Study of Systems of Equations and particularly Systems of Linear Equations. Review steps of Gaussian

More information

I = i 0,

I = i 0, Special Types of Matrices Certain matrices, such as the identity matrix 0 0 0 0 0 0 I = 0 0 0, 0 0 0 have a special shape, which endows the matrix with helpful properties The identity matrix is an example

More information

LECTURE Review. In this lecture we shall study the errors and stability properties for numerical solutions of initial value.

LECTURE Review. In this lecture we shall study the errors and stability properties for numerical solutions of initial value. LECTURE 24 Error Analysis for Multi-step Methods 1. Review In this lecture we shall study the errors and stability properties for numerical solutions of initial value problems of the form è24.1è dx = fèt;

More information

Chapter 6 Higher Dimensional Linear Systems

Chapter 6 Higher Dimensional Linear Systems hapter 6 Higher Dimensional Linear Systems Linear systems in R n : Observations: X x. x n X X a a n..... a n a nn ; Let T the the coordinate change matrix such that T T is in canonical form ;then Y T X

More information

. =. a i1 x 1 + a i2 x 2 + a in x n = b i. a 11 a 12 a 1n a 21 a 22 a 1n. i1 a i2 a in

. =. a i1 x 1 + a i2 x 2 + a in x n = b i. a 11 a 12 a 1n a 21 a 22 a 1n. i1 a i2 a in Vectors and Matrices Continued Remember that our goal is to write a system of algebraic equations as a matrix equation. Suppose we have the n linear algebraic equations a x + a 2 x 2 + a n x n = b a 2

More information

1 Multiply Eq. E i by λ 0: (λe i ) (E i ) 2 Multiply Eq. E j by λ and add to Eq. E i : (E i + λe j ) (E i )

1 Multiply Eq. E i by λ 0: (λe i ) (E i ) 2 Multiply Eq. E j by λ and add to Eq. E i : (E i + λe j ) (E i ) Direct Methods for Linear Systems Chapter Direct Methods for Solving Linear Systems Per-Olof Persson persson@berkeleyedu Department of Mathematics University of California, Berkeley Math 18A Numerical

More information

CHAPTER 6. Direct Methods for Solving Linear Systems

CHAPTER 6. Direct Methods for Solving Linear Systems CHAPTER 6 Direct Methods for Solving Linear Systems. Introduction A direct method for approximating the solution of a system of n linear equations in n unknowns is one that gives the exact solution to

More information

JACOBI S ITERATION METHOD

JACOBI S ITERATION METHOD ITERATION METHODS These are methods which compute a sequence of progressively accurate iterates to approximate the solution of Ax = b. We need such methods for solving many large linear systems. Sometimes

More information

If we remove the cyclotomic factors of fèxè, must the resulting polynomial be 1 or irreducible? This is in fact not the case. A simple example is give

If we remove the cyclotomic factors of fèxè, must the resulting polynomial be 1 or irreducible? This is in fact not the case. A simple example is give AN EXTENSION OF A THEOREM OF LJUNGGREN Michael Filaseta and Junior Solan* 1. Introduction E.S. Selmer ë5ë studied the irreducibility over the rationals of polynomials of the form x n + " 1 x m + " 2 where

More information

Deænition 1 A set S is ænite if there exists a number N such that the number of elements in S èdenoted jsjè is less than N. If no such N exists, then

Deænition 1 A set S is ænite if there exists a number N such that the number of elements in S èdenoted jsjè is less than N. If no such N exists, then Morphology of Proof An introduction to rigorous proof techniques Craig Silverstein September 26, 1998 1 Methodology of Proof an example Deep down, all theorems are of the form if A then B. They may be

More information

Lecture 2 INF-MAT : , LU, symmetric LU, Positve (semi)definite, Cholesky, Semi-Cholesky

Lecture 2 INF-MAT : , LU, symmetric LU, Positve (semi)definite, Cholesky, Semi-Cholesky Lecture 2 INF-MAT 4350 2009: 7.1-7.6, LU, symmetric LU, Positve (semi)definite, Cholesky, Semi-Cholesky Tom Lyche and Michael Floater Centre of Mathematics for Applications, Department of Informatics,

More information

Direct Methods for Solving Linear Systems. Simon Fraser University Surrey Campus MACM 316 Spring 2005 Instructor: Ha Le

Direct Methods for Solving Linear Systems. Simon Fraser University Surrey Campus MACM 316 Spring 2005 Instructor: Ha Le Direct Methods for Solving Linear Systems Simon Fraser University Surrey Campus MACM 316 Spring 2005 Instructor: Ha Le 1 Overview General Linear Systems Gaussian Elimination Triangular Systems The LU Factorization

More information

LU Factorization. LU Decomposition. LU Decomposition. LU Decomposition: Motivation A = LU

LU Factorization. LU Decomposition. LU Decomposition. LU Decomposition: Motivation A = LU LU Factorization To further improve the efficiency of solving linear systems Factorizations of matrix A : LU and QR LU Factorization Methods: Using basic Gaussian Elimination (GE) Factorization of Tridiagonal

More information

MATH 3511 Lecture 1. Solving Linear Systems 1

MATH 3511 Lecture 1. Solving Linear Systems 1 MATH 3511 Lecture 1 Solving Linear Systems 1 Dmitriy Leykekhman Spring 2012 Goals Review of basic linear algebra Solution of simple linear systems Gaussian elimination D Leykekhman - MATH 3511 Introduction

More information

Formula for the inverse matrix. Cramer s rule. Review: 3 3 determinants can be computed expanding by any row or column

Formula for the inverse matrix. Cramer s rule. Review: 3 3 determinants can be computed expanding by any row or column Math 20F Linear Algebra Lecture 18 1 Determinants, n n Review: The 3 3 case Slide 1 Determinants n n (Expansions by rows and columns Relation with Gauss elimination matrices: Properties) Formula for the

More information

COURSE Numerical methods for solving linear systems. Practical solving of many problems eventually leads to solving linear systems.

COURSE Numerical methods for solving linear systems. Practical solving of many problems eventually leads to solving linear systems. COURSE 9 4 Numerical methods for solving linear systems Practical solving of many problems eventually leads to solving linear systems Classification of the methods: - direct methods - with low number of

More information

International Competition in Mathematics for Universtiy Students in Plovdiv, Bulgaria 1994

International Competition in Mathematics for Universtiy Students in Plovdiv, Bulgaria 1994 International Competition in Mathematics for Universtiy Students in Plovdiv, Bulgaria 1994 1 PROBLEMS AND SOLUTIONS First day July 29, 1994 Problem 1. 13 points a Let A be a n n, n 2, symmetric, invertible

More information

Mundaneum #reopening

Mundaneum #reopening # 1895-2015 k T N, 76 - B-7000 - : P, 15 - B-7000 T : +32 (0)65 31.53.43 - F : +32 (0)65 39.54.86 -.. : E T - P @.@.b T : +32 (0)65 39.54.95 - +32(0)498 48.44.31 [] b B?... 2 T b k : T... 3 : k... 6 Q...

More information

5 Solving Systems of Linear Equations

5 Solving Systems of Linear Equations 106 Systems of LE 5.1 Systems of Linear Equations 5 Solving Systems of Linear Equations 5.1 Systems of Linear Equations System of linear equations: a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 +

More information

The purpose of computing is insight, not numbers. Richard Wesley Hamming

The purpose of computing is insight, not numbers. Richard Wesley Hamming Systems of Linear Equations The purpose of computing is insight, not numbers. Richard Wesley Hamming Fall 2010 1 Topics to Be Discussed This is a long unit and will include the following important topics:

More information

CHAPTER 6 : LITERATURE REVIEW

CHAPTER 6 : LITERATURE REVIEW CHAPTER 6 : LITERATURE REVIEW Chapter : LITERATURE REVIEW 77 M E A S U R I N G T H E E F F I C I E N C Y O F D E C I S I O N M A K I N G U N I T S A B S T R A C T A n o n l i n e a r ( n o n c o n v e

More information

P E R E N C O - C H R I S T M A S P A R T Y

P E R E N C O - C H R I S T M A S P A R T Y L E T T I C E L E T T I C E I S A F A M I L Y R U N C O M P A N Y S P A N N I N G T W O G E N E R A T I O N S A N D T H R E E D E C A D E S. B A S E D I N L O N D O N, W E H A V E T H E P E R F E C T R

More information

To keep things simple, let us just work with one pattern. In that case the objective function is defined to be. E = 1 2 xk d 2 (1)

To keep things simple, let us just work with one pattern. In that case the objective function is defined to be. E = 1 2 xk d 2 (1) Backpropagation To keep things simple, let us just work with one pattern. In that case the objective function is defined to be E = 1 2 xk d 2 (1) where K is an index denoting the last layer in the network

More information

MULTI-RESTRAINED STIRLING NUMBERS

MULTI-RESTRAINED STIRLING NUMBERS MULTI-RESTRAINED STIRLING NUMBERS JI YOUNG CHOI DEPARTMENT OF MATHEMATICS SHIPPENSBURG UNIVERSITY SHIPPENSBURG, PA 17257, U.S.A. Abstract. Given positive integers n, k, and m, the (n, k)-th m- restrained

More information

Linear Algebra Section 2.6 : LU Decomposition Section 2.7 : Permutations and transposes Wednesday, February 13th Math 301 Week #4

Linear Algebra Section 2.6 : LU Decomposition Section 2.7 : Permutations and transposes Wednesday, February 13th Math 301 Week #4 Linear Algebra Section. : LU Decomposition Section. : Permutations and transposes Wednesday, February 1th Math 01 Week # 1 The LU Decomposition We learned last time that we can factor a invertible matrix

More information

JUST THE MATHS UNIT NUMBER 9.3. MATRICES 3 (Matrix inversion & simultaneous equations) A.J.Hobson

JUST THE MATHS UNIT NUMBER 9.3. MATRICES 3 (Matrix inversion & simultaneous equations) A.J.Hobson JUST THE MATHS UNIT NUMBER 93 MATRICES 3 (Matrix inversion & simultaneous equations) by AJHobson 931 Introduction 932 Matrix representation of simultaneous linear equations 933 The definition of a multiplicative

More information

5. Direct Methods for Solving Systems of Linear Equations. They are all over the place...

5. Direct Methods for Solving Systems of Linear Equations. They are all over the place... 5 Direct Methods for Solving Systems of Linear Equations They are all over the place Miriam Mehl: 5 Direct Methods for Solving Systems of Linear Equations They are all over the place, December 13, 2012

More information

April 26, Applied mathematics PhD candidate, physics MA UC Berkeley. Lecture 4/26/2013. Jed Duersch. Spd matrices. Cholesky decomposition

April 26, Applied mathematics PhD candidate, physics MA UC Berkeley. Lecture 4/26/2013. Jed Duersch. Spd matrices. Cholesky decomposition Applied mathematics PhD candidate, physics MA UC Berkeley April 26, 2013 UCB 1/19 Symmetric positive-definite I Definition A symmetric matrix A R n n is positive definite iff x T Ax > 0 holds x 0 R n.

More information

LU Factorization a 11 a 1 a 1n A = a 1 a a n (b) a n1 a n a nn L = l l 1 l ln1 ln 1 75 U = u 11 u 1 u 1n 0 u u n 0 u n...

LU Factorization a 11 a 1 a 1n A = a 1 a a n (b) a n1 a n a nn L = l l 1 l ln1 ln 1 75 U = u 11 u 1 u 1n 0 u u n 0 u n... .. Factorizations Reading: Trefethen and Bau (1997), Lecture 0 Solve the n n linear system by Gaussian elimination Ax = b (1) { Gaussian elimination is a direct method The solution is found after a nite

More information

Chapter 7. Tridiagonal linear systems. Solving tridiagonal systems of equations. and subdiagonal. E.g. a 21 a 22 a A =

Chapter 7. Tridiagonal linear systems. Solving tridiagonal systems of equations. and subdiagonal. E.g. a 21 a 22 a A = Chapter 7 Tridiagonal linear systems The solution of linear systems of equations is one of the most important areas of computational mathematics. A complete treatment is impossible here but we will discuss

More information

Gaussian Elimination and Back Substitution

Gaussian Elimination and Back Substitution Jim Lambers MAT 610 Summer Session 2009-10 Lecture 4 Notes These notes correspond to Sections 31 and 32 in the text Gaussian Elimination and Back Substitution The basic idea behind methods for solving

More information

SOLVING LINEAR SYSTEMS

SOLVING LINEAR SYSTEMS SOLVING LINEAR SYSTEMS We want to solve the linear system a, x + + a,n x n = b a n, x + + a n,n x n = b n This will be done by the method used in beginning algebra, by successively eliminating unknowns

More information

Lecture 12 Simultaneous Linear Equations Gaussian Elimination (1) Dr.Qi Ying

Lecture 12 Simultaneous Linear Equations Gaussian Elimination (1) Dr.Qi Ying Lecture 12 Simultaneous Linear Equations Gaussian Elimination (1) Dr.Qi Ying Objectives Understanding forward elimination and back substitution in Gaussian elimination method Understanding the concept

More information

Lemma 8: Suppose the N by N matrix A has the following block upper triangular form:

Lemma 8: Suppose the N by N matrix A has the following block upper triangular form: 17 4 Determinants and the Inverse of a Square Matrix In this section, we are going to use our knowledge of determinants and their properties to derive an explicit formula for the inverse of a square matrix

More information

Section 1.6. M N = [a ij b ij ], (1.6.2)

Section 1.6. M N = [a ij b ij ], (1.6.2) The Calculus of Functions of Several Variables Section 16 Operations with Matrices In the previous section we saw the important connection between linear functions and matrices In this section we will

More information

JUST THE MATHS SLIDES NUMBER 9.3. MATRICES 3 (Matrix inversion & simultaneous equations) A.J.Hobson

JUST THE MATHS SLIDES NUMBER 9.3. MATRICES 3 (Matrix inversion & simultaneous equations) A.J.Hobson JUST THE MATHS SLIDES NUMBER 93 MATRICES 3 (Matrix inversion & simultaneous equations) by AJHobson 93 Introduction 932 Matrix representation of simultaneous linear equations 933 The definition of a multiplicative

More information

ANALYTICAL MATHEMATICS FOR APPLICATIONS 2018 LECTURE NOTES 3

ANALYTICAL MATHEMATICS FOR APPLICATIONS 2018 LECTURE NOTES 3 ANALYTICAL MATHEMATICS FOR APPLICATIONS 2018 LECTURE NOTES 3 ISSUED 24 FEBRUARY 2018 1 Gaussian elimination Let A be an (m n)-matrix Consider the following row operations on A (1) Swap the positions any

More information

Linear Algebra. Solving Linear Systems. Copyright 2005, W.R. Winfrey

Linear Algebra. Solving Linear Systems. Copyright 2005, W.R. Winfrey Copyright 2005, W.R. Winfrey Topics Preliminaries Echelon Form of a Matrix Elementary Matrices; Finding A -1 Equivalent Matrices LU-Factorization Topics Preliminaries Echelon Form of a Matrix Elementary

More information

Process Model Formulation and Solution, 3E4

Process Model Formulation and Solution, 3E4 Process Model Formulation and Solution, 3E4 Section B: Linear Algebraic Equations Instructor: Kevin Dunn dunnkg@mcmasterca Department of Chemical Engineering Course notes: Dr Benoît Chachuat 06 October

More information

LECTURE 12. Special Solutions of Laplace's Equation. 1. Separation of Variables with Respect to Cartesian Coordinates. Suppose.

LECTURE 12. Special Solutions of Laplace's Equation. 1. Separation of Variables with Respect to Cartesian Coordinates. Suppose. 50 LECTURE 12 Special Solutions of Laplace's Equation 1. Sepaation of Vaiables with Respect to Catesian Coodinates Suppose è12.1è èx; yè =XèxèY èyè is a solution of è12.2è Then we must have è12.3è 2 x

More information

1 Determinants. 1.1 Determinant

1 Determinants. 1.1 Determinant 1 Determinants [SB], Chapter 9, p.188-196. [SB], Chapter 26, p.719-739. Bellow w ll study the central question: which additional conditions must satisfy a quadratic matrix A to be invertible, that is to

More information

Solution of Linear systems

Solution of Linear systems Solution of Linear systems Direct Methods Indirect Methods -Elimination Methods -Inverse of a matrix -Cramer s Rule -LU Decomposition Iterative Methods 2 A x = y Works better for coefficient matrices with

More information

CS100: DISCRETE STRUCTURES. Lecture 3 Matrices Ch 3 Pages:

CS100: DISCRETE STRUCTURES. Lecture 3 Matrices Ch 3 Pages: CS100: DISCRETE STRUCTURES Lecture 3 Matrices Ch 3 Pages: 246-262 Matrices 2 Introduction DEFINITION 1: A matrix is a rectangular array of numbers. A matrix with m rows and n columns is called an m x n

More information

Gaussian Elimination for Linear Systems

Gaussian Elimination for Linear Systems Gaussian Elimination for Linear Systems Tsung-Ming Huang Department of Mathematics National Taiwan Normal University October 3, 2011 1/56 Outline 1 Elementary matrices 2 LR-factorization 3 Gaussian elimination

More information

CS475: Linear Equations Gaussian Elimination LU Decomposition Wim Bohm Colorado State University

CS475: Linear Equations Gaussian Elimination LU Decomposition Wim Bohm Colorado State University CS475: Linear Equations Gaussian Elimination LU Decomposition Wim Bohm Colorado State University Except as otherwise noted, the content of this presentation is licensed under the Creative Commons Attribution

More information

LOWELL. MICHIGAN, THURSDAY, AUGUST 16, Specialty Co. Sells to Hudson Mfg. Company. Ada Farmer Dies When Boat Tips

LOWELL. MICHIGAN, THURSDAY, AUGUST 16, Specialty Co. Sells to Hudson Mfg. Company. Ada Farmer Dies When Boat Tips K N» N - K V XXXV - N 22 N 5 V N N q N 0 " " - x Q- & V N -" Q" 24-?? 2530 35-6 9025 - - K ; ) ) ( _) ) N K : ; N - K K ) q ( K N ( x- 89830 z 7 K $2000 ( - N " " K : K 89335 30 4 V N

More information

Introduction to PDEs and Numerical Methods Lecture 7. Solving linear systems

Introduction to PDEs and Numerical Methods Lecture 7. Solving linear systems Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen Introduction to PDEs and Numerical Methods Lecture 7. Solving linear systems Dr. Noemi Friedman, 09.2.205. Reminder: Instationary heat

More information

DEN: Linear algebra numerical view (GEM: Gauss elimination method for reducing a full rank matrix to upper-triangular

DEN: Linear algebra numerical view (GEM: Gauss elimination method for reducing a full rank matrix to upper-triangular form) Given: matrix C = (c i,j ) n,m i,j=1 ODE and num math: Linear algebra (N) [lectures] c phabala 2016 DEN: Linear algebra numerical view (GEM: Gauss elimination method for reducing a full rank matrix

More information

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 6

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 6 CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 6 GENE H GOLUB Issues with Floating-point Arithmetic We conclude our discussion of floating-point arithmetic by highlighting two issues that frequently

More information

Lecture 12 (Tue, Mar 5) Gaussian elimination and LU factorization (II)

Lecture 12 (Tue, Mar 5) Gaussian elimination and LU factorization (II) Math 59 Lecture 2 (Tue Mar 5) Gaussian elimination and LU factorization (II) 2 Gaussian elimination - LU factorization For a general n n matrix A the Gaussian elimination produces an LU factorization if

More information

Inverses. Stephen Boyd. EE103 Stanford University. October 28, 2017

Inverses. Stephen Boyd. EE103 Stanford University. October 28, 2017 Inverses Stephen Boyd EE103 Stanford University October 28, 2017 Outline Left and right inverses Inverse Solving linear equations Examples Pseudo-inverse Left and right inverses 2 Left inverses a number

More information

CSE 160 Lecture 13. Numerical Linear Algebra

CSE 160 Lecture 13. Numerical Linear Algebra CSE 16 Lecture 13 Numerical Linear Algebra Announcements Section will be held on Friday as announced on Moodle Midterm Return 213 Scott B Baden / CSE 16 / Fall 213 2 Today s lecture Gaussian Elimination

More information

SyDe312 (Winter 2005) Unit 1 - Solutions (continued)

SyDe312 (Winter 2005) Unit 1 - Solutions (continued) SyDe3 (Winter 5) Unit - Solutions (continued) March, 5 Chapter 6 - Linear Systems Problem 6.6 - b Iterative solution by the Jacobi and Gauss-Seidel iteration methods: Given: b = [ 77] T, x = [ ] T 9x +

More information

A196837: Ordinary Generating Functions for Sums of Powers of the First n Positive Integers

A196837: Ordinary Generating Functions for Sums of Powers of the First n Positive Integers Karlsruhe October 14, 2011 November 1, 2011 A196837: Ordinary Generating Functions for Sums of Powers of the First n Positive Integers Wolfdieter L a n g 1 The sum of the k th power of the first n positive

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 12: Gaussian Elimination and LU Factorization Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 10 Gaussian Elimination

More information

12/1/2015 LINEAR ALGEBRA PRE-MID ASSIGNMENT ASSIGNED BY: PROF. SULEMAN SUBMITTED BY: M. REHAN ASGHAR BSSE 4 ROLL NO: 15126

12/1/2015 LINEAR ALGEBRA PRE-MID ASSIGNMENT ASSIGNED BY: PROF. SULEMAN SUBMITTED BY: M. REHAN ASGHAR BSSE 4 ROLL NO: 15126 12/1/2015 LINEAR ALGEBRA PRE-MID ASSIGNMENT ASSIGNED BY: PROF. SULEMAN SUBMITTED BY: M. REHAN ASGHAR Cramer s Rule Solving a physical system of linear equation by using Cramer s rule Cramer s rule is really

More information

7.3. Determinants. Introduction. Prerequisites. Learning Outcomes

7.3. Determinants. Introduction. Prerequisites. Learning Outcomes Determinants 7.3 Introduction Among other uses, determinants allow us to determine whether a system of linear equations has a unique solution or not. The evaluation of a determinant is a key skill in engineering

More information

Introduction to Quantitative Techniques for MSc Programmes SCHOOL OF ECONOMICS, MATHEMATICS AND STATISTICS MALET STREET LONDON WC1E 7HX

Introduction to Quantitative Techniques for MSc Programmes SCHOOL OF ECONOMICS, MATHEMATICS AND STATISTICS MALET STREET LONDON WC1E 7HX Introduction to Quantitative Techniques for MSc Programmes SCHOOL OF ECONOMICS, MATHEMATICS AND STATISTICS MALET STREET LONDON WC1E 7HX September 2007 MSc Sep Intro QT 1 Who are these course for? The September

More information

arxiv: v1 [math.co] 25 May 2011

arxiv: v1 [math.co] 25 May 2011 arxiv:1105.4986v1 [math.co] 25 May 2011 Gog and Magog triangles, and the Schützenberger involution Hayat Cheballah and Philippe Biane Abstract. We describe an approach to finding a bijection between Alternating

More information

COURSE Iterative methods for solving linear systems

COURSE Iterative methods for solving linear systems COURSE 0 4.3. Iterative methods for solving linear systems Because of round-off errors, direct methods become less efficient than iterative methods for large systems (>00 000 variables). An iterative scheme

More information

MAT 1332: CALCULUS FOR LIFE SCIENCES. Contents. 1. Review: Linear Algebra II Vectors and matrices Definition. 1.2.

MAT 1332: CALCULUS FOR LIFE SCIENCES. Contents. 1. Review: Linear Algebra II Vectors and matrices Definition. 1.2. MAT 1332: CALCULUS FOR LIFE SCIENCES JING LI Contents 1 Review: Linear Algebra II Vectors and matrices 1 11 Definition 1 12 Operations 1 2 Linear Algebra III Inverses and Determinants 1 21 Inverse Matrices

More information

Finite Math - J-term Section Systems of Linear Equations in Two Variables Example 1. Solve the system

Finite Math - J-term Section Systems of Linear Equations in Two Variables Example 1. Solve the system Finite Math - J-term 07 Lecture Notes - //07 Homework Section 4. - 9, 0, 5, 6, 9, 0,, 4, 6, 0, 50, 5, 54, 55, 56, 6, 65 Section 4. - Systems of Linear Equations in Two Variables Example. Solve the system

More information

1 Problem 1 Solution. 1.1 Common Mistakes. In order to show that the matrix L k is the inverse of the matrix M k, we need to show that

1 Problem 1 Solution. 1.1 Common Mistakes. In order to show that the matrix L k is the inverse of the matrix M k, we need to show that 1 Problem 1 Solution In order to show that the matrix L k is the inverse of the matrix M k, we need to show that Since we need to show that Since L k M k = I (or M k L k = I). L k = I + m k e T k, M k

More information

Solving Dense Linear Systems I

Solving Dense Linear Systems I Solving Dense Linear Systems I Solving Ax = b is an important numerical method Triangular system: [ l11 l 21 if l 11, l 22 0, ] [ ] [ ] x1 b1 = l 22 x 2 b 2 x 1 = b 1 /l 11 x 2 = (b 2 l 21 x 1 )/l 22 Chih-Jen

More information

4.2 Floating-Point Numbers

4.2 Floating-Point Numbers 101 Approximation 4.2 Floating-Point Numbers 4.2 Floating-Point Numbers The number 3.1416 in scientific notation is 0.31416 10 1 or (as computer output) -0.31416E01..31416 10 1 exponent sign mantissa base

More information

LOWELL, MICHIGAN, MAY 28, Every Patriotic American Salutes His Nation's Flag

LOWELL, MICHIGAN, MAY 28, Every Patriotic American Salutes His Nation's Flag / U N K U Y N Y 8 94 N /U/ N N 3 N U NY NUN ;!! - K - - 93 U U - K K»- [ : U K z ; 3 q U 9:3 - : z 353 «- - - q x z- : N / - q - z 6 - x! -! K N - 3 - U N x >» } ( ) - N Y - q K x x x Y 3 z - x x - x 8

More information

IEOR 6711: Stochastic Models I. Solutions to Homework Assignment 9

IEOR 6711: Stochastic Models I. Solutions to Homework Assignment 9 IEOR 67: Stochastic Models I Solutions to Homework Assignment 9 Problem 4. Let D n be the random demand of time period n. Clearly D n is i.i.d. and independent of all X k for k < n. Then we can represent

More information

Linear Algebra. James Je Heon Kim

Linear Algebra. James Je Heon Kim Linear lgebra James Je Heon Kim (jjk9columbia.edu) If you are unfamiliar with linear or matrix algebra, you will nd that it is very di erent from basic algebra or calculus. For the duration of this session,

More information

Linear System of Equations

Linear System of Equations Linear System of Equations Linear systems are perhaps the most widely applied numerical procedures when real-world situation are to be simulated. Example: computing the forces in a TRUSS. F F 5. 77F F.

More information

2 2 + x =

2 2 + x = Lecture 30: Power series A Power Series is a series of the form c n = c 0 + c 1 x + c x + c 3 x 3 +... where x is a variable, the c n s are constants called the coefficients of the series. n = 1 + x +

More information

Mathematical Induction Assignments

Mathematical Induction Assignments 1 Mathematical Induction Assignments Prove the Following using Principle of Mathematical induction 1) Prove that for any positive integer number n, n 3 + 2 n is divisible by 3 2) Prove that 1 3 + 2 3 +

More information

A Review of Matrix Analysis

A Review of Matrix Analysis Matrix Notation Part Matrix Operations Matrices are simply rectangular arrays of quantities Each quantity in the array is called an element of the matrix and an element can be either a numerical value

More information

MATH 1372, SECTION 33, MIDTERM 3 REVIEW ANSWERS

MATH 1372, SECTION 33, MIDTERM 3 REVIEW ANSWERS MATH 1372, SECTION 33, MIDTERM 3 REVIEW ANSWERS 1. We have one theorem whose conclusion says an alternating series converges. We have another theorem whose conclusion says an alternating series diverges.

More information

Numerical Methods I: Numerical linear algebra

Numerical Methods I: Numerical linear algebra 1/3 Numerical Methods I: Numerical linear algebra Georg Stadler Courant Institute, NYU stadler@cimsnyuedu September 1, 017 /3 We study the solution of linear systems of the form Ax = b with A R n n, x,

More information

Introduction to Groups

Introduction to Groups Introduction to Groups S F Ellermeyer November 2, 2006 A group, G, is a set, A, endowed with a single binary operation,, such that: The operation is associative, meaning that a (b c) = (a b) c for all

More information

1 - Systems of Linear Equations

1 - Systems of Linear Equations 1 - Systems of Linear Equations 1.1 Introduction to Systems of Linear Equations Almost every problem in linear algebra will involve solving a system of equations. ü LINEAR EQUATIONS IN n VARIABLES We are

More information

Linear Algebra (Review) Volker Tresp 2017

Linear Algebra (Review) Volker Tresp 2017 Linear Algebra (Review) Volker Tresp 2017 1 Vectors k is a scalar (a number) c is a column vector. Thus in two dimensions, c = ( c1 c 2 ) (Advanced: More precisely, a vector is defined in a vector space.

More information

The Cayley-Hamilton Theorem and the Jordan Decomposition

The Cayley-Hamilton Theorem and the Jordan Decomposition LECTURE 19 The Cayley-Hamilton Theorem and the Jordan Decomposition Let me begin by summarizing the main results of the last lecture Suppose T is a endomorphism of a vector space V Then T has a minimal

More information

Numerical Solution Techniques in Mechanical and Aerospace Engineering

Numerical Solution Techniques in Mechanical and Aerospace Engineering Numerical Solution Techniques in Mechanical and Aerospace Engineering Chunlei Liang LECTURE 3 Solvers of linear algebraic equations 3.1. Outline of Lecture Finite-difference method for a 2D elliptic PDE

More information

A Matrix Method for Efficient Computation of Bernstein Coefficients

A Matrix Method for Efficient Computation of Bernstein Coefficients A Matrix Method for Efficient Computation of Bernstein Coefficients Shashwati Ray Systems and Control Engineering Group, Room 114A, ACRE Building, Indian Institute of Technology, Bombay, India 400 076

More information

A New Invariance Property of Lyapunov Characteristic Directions S. Bharadwaj and K.D. Mease Mechanical and Aerospace Engineering University of Califor

A New Invariance Property of Lyapunov Characteristic Directions S. Bharadwaj and K.D. Mease Mechanical and Aerospace Engineering University of Califor A New Invariance Property of Lyapunov Characteristic Directions S. Bharadwaj and K.D. Mease Mechanical and Aerospace Engineering University of California, Irvine, California, 92697-3975 Email: sanjay@eng.uci.edu,

More information

Matrix Basic Concepts

Matrix Basic Concepts Matrix Basic Concepts Topics: What is a matrix? Matrix terminology Elements or entries Diagonal entries Address/location of entries Rows and columns Size of a matrix A column matrix; vectors Special types

More information

DETERMINANTS. , x 2 = a 11b 2 a 21 b 1

DETERMINANTS. , x 2 = a 11b 2 a 21 b 1 DETERMINANTS 1 Solving linear equations The simplest type of equations are linear The equation (1) ax = b is a linear equation, in the sense that the function f(x) = ax is linear 1 and it is equated to

More information

CSE373: Data Structures and Algorithms Lecture 2: Proof by Induction. Linda Shapiro Spring 2016

CSE373: Data Structures and Algorithms Lecture 2: Proof by Induction. Linda Shapiro Spring 2016 CSE373: Data Structures and Algorithms Lecture 2: Proof by Induction Linda Shapiro Spring 2016 Background on Induction Type of mathematical proof Typically used to establish a given statement for all natural

More information

Elementary Matrices. MATH 322, Linear Algebra I. J. Robert Buchanan. Spring Department of Mathematics

Elementary Matrices. MATH 322, Linear Algebra I. J. Robert Buchanan. Spring Department of Mathematics Elementary Matrices MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Outline Today s discussion will focus on: elementary matrices and their properties, using elementary

More information

ENGR-1100 Introduction to Engineering Analysis. Lecture 21. Lecture outline

ENGR-1100 Introduction to Engineering Analysis. Lecture 21. Lecture outline ENGR-1100 Introduction to Engineering Analysis Lecture 21 Lecture outline Procedure (algorithm) for finding the inverse of invertible matrix. Investigate the system of linear equation and invertibility

More information

INTRODUCTION TO THE DFS AND THE DFT

INTRODUCTION TO THE DFS AND THE DFT ITRODUCTIO TO THE DFS AD THE DFT otes: This brief handout contains in very brief outline form the lecture notes used for a video lecture in a previous year introducing the DFS and the DFT. This material

More information

Computations in Modules over Commutative Domains

Computations in Modules over Commutative Domains Computations in Modules over Commutative Domains 2007, September, 15 Dodgson's Algorithm Method of Forward and Backward Direction The One-pass Method The Recursive Method àñòü I System of Linear Equations

More information

Linear Algebra March 16, 2019

Linear Algebra March 16, 2019 Linear Algebra March 16, 2019 2 Contents 0.1 Notation................................ 4 1 Systems of linear equations, and matrices 5 1.1 Systems of linear equations..................... 5 1.2 Augmented

More information

On the Stability of LU-Factorizations

On the Stability of LU-Factorizations Australian Journal of Basic and Applied Sciences 5(6): 497-503 2011 ISSN 1991-8178 On the Stability of LU-Factorizations R Saneifard and A Asgari Department of Mathematics Oroumieh Branch Islamic Azad

More information

Numerical methods for solving linear systems

Numerical methods for solving linear systems Chapter 2 Numerical methods for solving linear systems Let A C n n be a nonsingular matrix We want to solve the linear system Ax = b by (a) Direct methods (finite steps); Iterative methods (convergence)

More information

Numerical Analysis: Solving Systems of Linear Equations

Numerical Analysis: Solving Systems of Linear Equations Numerical Analysis: Solving Systems of Linear Equations Mirko Navara http://cmpfelkcvutcz/ navara/ Center for Machine Perception, Department of Cybernetics, FEE, CTU Karlovo náměstí, building G, office

More information