A, Electromagnetic Fields Final Exam December 14, 2001 Solution

Size: px
Start display at page:

Download "A, Electromagnetic Fields Final Exam December 14, 2001 Solution"

Transcription

1 , Electrognetic Fiels Finl Ex Deceer 14, 2001 Solution 1. e9.8. In chpter9.proles.extr.two loops, e of thin wire crry equl n opposite currents s shown in the figure elow. The rius of ech loop is n the istnce etween the loops is 2. The loops re in free spce n plce prllel to ech other, so tht they re oth perpeniculr to the xis -C s shown (tht is, like two wheels on n xle). Clculte:. The gnetic flux ensity t point (iwy etween the two loops).. The gnetic flux ensity t point (t the center of loop No. 2). c. The gnetic flux ensity t point C if >>. Note: In ll three cses give oth irection n gnitue of the gnetic flux ensity. I (1) (2) I 2 C Solution: Clculte the gnetic flux ensity on the xis, ue to loop. This ws clculte in exple 8.3. The solution t ny point on the xis is then the superposition of the fiels of the two loops. The ltter is given s: H = I h 2 3/2 = µ 0 I h 2 3/2 The solution is written here s gnitues ecuse the gnetic flux ensity epens on the irection of the current. We will use the right hn rule to ientify these irections.. =0. The loops re ienticl n t equl istnce fro. The gnetic flux ensities they prouce t cncel ech other.. Loop (1), prouces gnetic flux ensity pointing to the right (this is tken s positive). With h=2: = µ 0 I h 2 3/2 = µ 0 I /2 T µ = 0 I /2 T Loop (2) prouces gnetic flux ensity pointing to the left (negtive). With h=0: = µ 0I /2 T

2 The totl fiel t is now: t = = µ 0 I µ 0I 2 2 3/2 2 = µ 0I 2 3/ = 0.455µ 0I t = µ 0 I µ 0I 2 2 3/2 2 = 0.455µ 0I 2 3/2 T The gnetic flux ensity points to the left. c. t lrge istnces the gnetic fiel intensities of the two loops is pproxitely the se n in opposite irections. Thus, C = e7.10. In chpter7.proles.extr. resistor is e in the for of conucting circulr wsher with inner rius equl to n outer rius equl to. The thickness of the wsher is equl to. If the conuctivity of the conuctor is σ, clculte the totl resistnce of the wsher:. If the source is connecte etween the inner n outer surfces (s shown in ()).. If the source is connecte etween the two flt surfces s in (). σ σ. Solution:. R = I I = R J = σe E = J σ J = R2πr E = Rσ2πr = E.l = Rσ2π 1 r r Thus the resistnce is

3 1 R = σ2π 1 r r 1 = σ2π ln. S = π( 2 2 ) I = R E = σrπ( 2 2 ) n is unifor. Thus, = E = σrπ( 2 2 ) n the resistnce is R = 1 σ2π ln Ω J = Rπ( 2 2 ) R = σπ( 2 2 ) Ω 3. e8.4. in chpter8.proles.extr). cylinricl conuctor of rius =10 is e of copper with conuctivity σ= S/. The conuctor is use for one conuctor of power line tht is =1000 k long. ecuse of the current in the conuctor, potentil rop of =50 exists cross the conuctor (see Figure). Clculte the gnetic fiel intensity everywhere in spce, incluing in the interior of the conuctor. Sketch the gnetic fiel intensity. σ = S/ =10 =1000k =50 Solution: To fin the gnetic fiel intensity we ust first clculte the current in the conuctor n to o so we ust hve the resistnce. The resistnce of cylinricl conuctor of length n rius is: The current in the conuctor is now: R = σπ 2 Ω

4 I = R = σπ2 Now we istinguish two regions. One is r>, the secon is 0<r. For 0<r, we use pere's lw y rwing contour of rius r<. This contour encloses n re πr 2 while the current is unifor in n re π 2. Thus, the totl current enclose y the contour is: I r = I πr2 π = 2 Ir2 = σπr2 2 The length of the contour is 2πr n we cn write: or: 2πrH = I r = σπr2 H = σr 2 H(r ) = r = 1250r For r>, ll current is enclose y the contour n we cn write: or: 2πrH = I = σπ2 H(r>) = (0.01) r H = σ2 2r = r t r=0, the gnetic fiel intensity is zero. t r= it is equl to /. etween zero n the gnetic fiel intensity grows linerly. fter tht it iinishes s 1/r. The plot of the fiel with istnce fro the center of the conuctor is shown in the figure elow / H =0.1 r e10.4. In chpter10.proles.extr. very long sheet of etl of with is plce in unifor, perpeniculr gnetic fiel s shown. volteter is connecte to the two opposite sies with stiff wires s shown. Suppose the contcts of the volteter cn slie on the sheet. Wht is the ef re y the volteter if:

5 . The volteter together with the connecting wires is ove t velocity v x in the x irection.. If the sheet is ove in the y irection t velocity v y n the volteter is sliing in the x irection t velocity (while still keeping the contcts, tht is, it is lso sliing in the y irection with the plte) v x. c. If the sheet is ove t velocity v x in the x irection n the volteter is sttionry with respect to the sheet. y x. The ef is: ef = v x The r oves in gnetic fiel.. Motion in the y irection prouces no ef on the r, ut the otion in the x irection oes: ef = v x c. ef=0. The r n conuctor for loop. loop oving in constnt gnetic fiel prouces zero ef. nother wy to look t it is tht the loop fore y the r is prllel to the flux ensity. Thus, zero flux psses through the loop. Note: there is potentil ifference etween the two eges of the stiff wire ut the volteter is now connecte in loop n the totl voltge it esures is zero. e (in chpter10.exs.extr). trnsforer is e s shown. The thickness of the trnsforer is n the cross-sectionl re of the trnsforer is the se everywhere n equl to S. The pereility of the core is lrge ut not infinite. Two coils ech hving N turns re woun; coil (1) is woun on the left "leg" of the trnsforer; coil (2) is woun on the centrl leg of the trnsforer. current I 1 =sinωt psses through coil (1), clculte the rtio etween the inuce voltge (ef) in coil (2) n coil (1).

6 (1) N c c N (2) c c µ c Figure Note: the thickness (into the pge) of the trnsforer core is given s. Solution: First, we rw the equivlent gnetic circuit s follows: R 1 Φ 1 Φ 2 Φ 3 NI1 R 2 R 3 Figure The efs in the two coils re, y efinition: ef 1 = N Φ 1 t, ef 2 = N Φ 2 t Thus, we nee to clculte the fluxes Φ 1 n Φ 2. Fro the equivlent circuit we write: Φ 1 = NI 1 R 1 + R 2 R 3, Φ 2 = NI 1 R 1 + R 2 R 3. R 2 R 3 R 2 where R 2 R 3 ens tht R 2 n R 3 re prllel to ech other. Now, we cn clculte the efs: The rtio is: or: ef 1 = N Φ 1 t = N N(I 1/t), ef 2 = N Φ 2 = N N(I 1/t). R 2 R 3 R 1 + R 2 R 3 t R 1 + R 2 R 3 R 2 N N(I 1/t). R 2 R 3 ef 2 R = 1 + R 2 R 3 R 2 ef 1 N N(I 1/t) R 1 + R 2 R 3 = R 2 R 3 R 2 ef 2 ef 1 = R 2 R 3 R 2 = R 2 R 3 R 2 R 2 +R 3 = R 3 R 2 +R 3

7 Now we clculte the reluctnces (verge pths re shown in Figure. Thus: R 1 = R 3 = + 2c µc ef 2 ef 1 = R 3 R 2 +R 3 = + 2c µ c + 2c µ c, R 2 = c µc + c µc = + 2c + 2 3c ef 2 ef 1 = + 2c + 2 3c You coul hve rgue s follows: The flux Φ 1 splits into 2 equl prts, only one of these prts (hlf the flux) linking with coil (2). Thus the utul inuctnce etween the two coils is hlf of wht it woul e if ll flux linke. Thus, the ef in coil (2) ust e hlf of wht it woul e if ll flux links. Since the nuer of turns is the se in oth coils, the ef in coil (2) ust e hlf the ef in coil (1). e9.4. (in chpter9.exs.extr). Two very thin conucting sheets re w=100 wie n re seprte istnce =1 prt. current I=20 psses through the sheets, uniforly istriute on the with of the sheets. ssue w>> n clculte:. The inuctnce per unit length of the syste of two sheets.. The force per unit length cting on the sheets. Inicte the irection of the force on ech of the sheets. I =0 w I. 1 C.. Clculte : since w>>, the whole ssely is like prllel pltes. Fro the loop ove (Figure ): w = µ 0 I = µ 0I w T

8 To clculte inuctnce we nee the flux per unit length of the ssely (see Figure C): Φ = 1 = µ 0I w w The flux linkge equls the flux (one turn only) thus, L 11 = Φ I = µ 0 w = 4π = H L 11 = µ 0 w = H. Force. The energy in the gp etween the two conuctors is: w = 2 2µ 0 J 3 If the gp is chnge y istnce l, the chnge in energy in the gp n force on the conuctors re: F = W l W = w v = w w 1 l = w w = 2 w = µ 0I 2 2µ 0 2w = 4π = N F = µ 0I 2 2w = N The two pltes ten to seprte (you cn see tht fro the right hn rule since f=j n this ust e perpeniculr to oth current n flux ensity) e7.28 In chpter7.proles.extr. cpcitor is e of two prllel pltes of re seprte y istnce. ttery is connecte holing the lower plte t groun potentil n the upper plte t potentil. Filling the spce etween the pltes re two lossy ielectric sls ech of thickness /2. The perittivities n conuctivities of the ielectrics re given y ε 1, ε 2, σ 1, n σ 2. y ε 2,σ 2 ε 1,σ 1 /2 Neglecting ny ege effects, the potentil istriution etween the pltes y e foun fro Lplce s eqution with the pproprite ounry conitions s

9 = 2σ 2 y, 0<y</2 σ 1 + σ 2 = 2σ 1 σ 1 + σ 2 y + σ 2 σ 1 σ 1 + σ 2, /2<y<. Fin the electric fiel intensity in ech ielectric region.. Fin the current I n the power P supplie y the ttery. Solution: Clculte the electric fiel intensity s the negtive grient of the potentil:. E 1 = 1 = y 2σ 2 (σ 1 + σ 2 ), E 2 = 2 = y 2σ 1 (σ 1 + σ 2 ). J 1 = σ 1 E 1 = y 2σ 1σ 2 (σ 1 + σ 2 ), J 2 = σ 2 E 2 = y 2σ 1σ 2 (σ 1 + σ 2 ) = J 1 I = J = 2σ 1σ 2 (σ 1 + σ 2 ) P = I = 2σ 1σ 2 2 (σ 1 + σ 2 ) W e8.79 In chpter8.proles.extr 8. Two concentric, very thin sphericl-shell conuctors hve rii n, <. The spce etween the shells is fille with ielectric eiu with perrnittivity ε. ttery is connecte so tht the outer shell is hel t potentil ()=, n the inner one t ()=0.. Fin the potentil n the electric fiel intensity t ll points etween the shells.. Fin the totl chrge on ech shell. Solution:. Strt with Lplce's Eq. in Cylinricl coorintes (fiel cn only vry with r so we cn write: Integrting once: Integrting gin, The potentil is zero t R=: 1 R 2 R 2 R = C 1 R2 R R = 0 = C 1 R + C 2 R = C 1 R 2

10 The potentil is t R=: Sustituting: Thus: n the generl solution is: The electric fiel intensity is: Thus: 0 = C 1 + C 2 = C 1 + C 2 = C 1 + C 1 = C 1 C 1 =, (R) = R R C 2 = E(R) = (R) = R 1 R 2. Fro Guss' lw: E(R) = R ( )R 2 Q = 4π 2 εe() = 4π2 ε = 4πε ( ) 2 ( ) C Q = 4π 2 εe() = 4π2 ε = 4πε ( ) 2 ( ) = Q C ut, ecuse the chrge is negtive on the inner shell (since the electric fiel intensity points in the negtive R irection), we hve: Q = 4πε ( ) C Q = 4πε ( ) C

Homework Assignment 5 Solution Set

Homework Assignment 5 Solution Set Homework Assignment 5 Solution Set PHYCS 44 3 Februry, 4 Problem Griffiths 3.8 The first imge chrge gurntees potentil of zero on the surfce. The secon imge chrge won t chnge the contribution to the potentil

More information

Exam 1 September 21, 2012 Instructor: Timothy Martin

Exam 1 September 21, 2012 Instructor: Timothy Martin PHY 232 Exm 1 Sept 21, 212 Exm 1 September 21, 212 Instructor: Timothy Mrtin Stuent Informtion Nme n section: UK Stuent ID: Set #: Instructions Answer the questions in the spce provie. On the long form

More information

Physics 2135 Exam 1 September 23, 2014

Physics 2135 Exam 1 September 23, 2014 Exm Totl Physics 2135 Exm 1 September 23, 2014 Key Printe Nme: 200 / 200 N/A Rec. Sec. Letter: Five multiple choice questions, 8 points ech. Choose the best or most nerly correct nswer. B 1. Object A hs

More information

Phys 201 Midterm 1 S. Nergiz, E.Oğuz, C. Saçlıoğlu T. Turgut Fall '01 No :. Name :. Total Grade :. Grade :. y=a. x=-a +q. x=a -q +q. +Q r.

Phys 201 Midterm 1 S. Nergiz, E.Oğuz, C. Saçlıoğlu T. Turgut Fall '01 No :. Name :. Total Grade :. Grade :. y=a. x=-a +q. x=a -q +q. +Q r. Phs 0 Miterm S. Nergiz, E.ğuz, C. Sçlıoğlu T. Turgut Fll '0 No :. Nme :. Totl Gre :. Gre :. Question : Three point chrges re plce s shown in figure. ) Clculte the coulom force on ech chrge. ) Fin the electrosttic

More information

Last Time emphasis on E-field. Potential of spherical conductor. Quick quiz. Connected spheres. Varying E-fields on conductor.

Last Time emphasis on E-field. Potential of spherical conductor. Quick quiz. Connected spheres. Varying E-fields on conductor. Lst Time emphsis on Efiel Electric flux through surfce Guss lw: Totl electric flux through close surfce proportionl to chrge enclose Q " E = E = 4$k e Q % o Chrge istribution on conuctors Chrge ccumultes

More information

Physics Lecture 14: MON 29 SEP

Physics Lecture 14: MON 29 SEP Physics 2113 Physics 2113 Lecture 14: MON 29 SEP CH25: Cpcitnce Von Kleist ws le to store electricity in the jr. Unknowingly, he h ctully invente novel evice to store potentil ifference. The wter in the

More information

PH 102 Exam I Solutions

PH 102 Exam I Solutions PH 102 Exm I Solutions 1. Three ienticl chrges of = 5.0 µc lie long circle of rius 2.0 m t ngles of 30, 150, n 270 s shown below. Wht is the resultnt electric fiel t the center of the circle? By symmetry,

More information

Physics 1402: Lecture 7 Today s Agenda

Physics 1402: Lecture 7 Today s Agenda 1 Physics 1402: Lecture 7 Tody s gend nnouncements: Lectures posted on: www.phys.uconn.edu/~rcote/ HW ssignments, solutions etc. Homework #2: On Msterphysics tody: due Fridy Go to msteringphysics.com Ls:

More information

I1 = I2 I1 = I2 + I3 I1 + I2 = I3 + I4 I 3

I1 = I2 I1 = I2 + I3 I1 + I2 = I3 + I4 I 3 2 The Prllel Circuit Electric Circuits: Figure 2- elow show ttery nd multiple resistors rrnged in prllel. Ech resistor receives portion of the current from the ttery sed on its resistnce. The split is

More information

Physics 3323, Fall 2016 Problem Set 7 due Oct 14, 2016

Physics 3323, Fall 2016 Problem Set 7 due Oct 14, 2016 Physics 333, Fll 16 Problem Set 7 due Oct 14, 16 Reding: Griffiths 4.1 through 4.4.1 1. Electric dipole An electric dipole with p = p ẑ is locted t the origin nd is sitting in n otherwise uniform electric

More information

ragsdale (zdr82) HW2 ditmire (58335) 1

ragsdale (zdr82) HW2 ditmire (58335) 1 rgsdle (zdr82) HW2 ditmire (58335) This print-out should hve 22 questions. Multiple-choice questions my continue on the next column or pge find ll choices before nswering. 00 0.0 points A chrge of 8. µc

More information

200 points 5 Problems on 4 Pages and 20 Multiple Choice/Short Answer Questions on 5 pages 1 hour, 48 minutes

200 points 5 Problems on 4 Pages and 20 Multiple Choice/Short Answer Questions on 5 pages 1 hour, 48 minutes PHYSICS 132 Smple Finl 200 points 5 Problems on 4 Pges nd 20 Multiple Choice/Short Answer Questions on 5 pges 1 hour, 48 minutes Student Nme: Recittion Instructor (circle one): nme1 nme2 nme3 nme4 Write

More information

Chapter E - Problems

Chapter E - Problems Chpter E - Prolems Blinn College - Physics 2426 - Terry Honn Prolem E.1 A wire with dimeter d feeds current to cpcitor. The chrge on the cpcitor vries with time s QHtL = Q 0 sin w t. Wht re the current

More information

Physics 2135 Exam 1 February 14, 2017

Physics 2135 Exam 1 February 14, 2017 Exm Totl / 200 Physics 215 Exm 1 Ferury 14, 2017 Printed Nme: Rec. Sec. Letter: Five multiple choice questions, 8 points ech. Choose the est or most nerly correct nswer. 1. Two chrges 1 nd 2 re seprted

More information

Homework Assignment 3 Solution Set

Homework Assignment 3 Solution Set Homework Assignment 3 Solution Set PHYCS 44 6 Ferury, 4 Prolem 1 (Griffiths.5(c The potentil due to ny continuous chrge distriution is the sum of the contriutions from ech infinitesiml chrge in the distriution.

More information

CLASS XII PHYSICS. (a) 30 cm, 60 cm (b) 20 cm, 30 cm (c) 15 cm, 20 cm (d) 12 cm, 15 cm. where

CLASS XII PHYSICS. (a) 30 cm, 60 cm (b) 20 cm, 30 cm (c) 15 cm, 20 cm (d) 12 cm, 15 cm. where PHYSICS combintion o two thin lenses with ocl lengths n respectively orms n imge o istnt object t istnce cm when lenses re in contct. The position o this imge shits by cm towrs the combintion when two

More information

PHYS102 - Electric Energy - Capacitors

PHYS102 - Electric Energy - Capacitors PHYS102 - lectric nerg - Cpcitors Dr. Suess Februr 14, 2007 Plcing Chrges on Conuctors................................................. 2 Plcing Chrges on Conuctors II................................................

More information

Exam 1 Solutions (1) C, D, A, B (2) C, A, D, B (3) C, B, D, A (4) A, C, D, B (5) D, C, A, B

Exam 1 Solutions (1) C, D, A, B (2) C, A, D, B (3) C, B, D, A (4) A, C, D, B (5) D, C, A, B PHY 249, Fll 216 Exm 1 Solutions nswer 1 is correct for ll problems. 1. Two uniformly chrged spheres, nd B, re plced t lrge distnce from ech other, with their centers on the x xis. The chrge on sphere

More information

Hints for Exercise 1 on: Current and Resistance

Hints for Exercise 1 on: Current and Resistance Hints for Exercise 1 on: Current nd Resistnce Review the concepts of: electric current, conventionl current flow direction, current density, crrier drift velocity, crrier numer density, Ohm s lw, electric

More information

Consider a potential problem in the half-space dened by z 0, with Dirichlet boundary conditions on the plane z = 0 (and at innity).

Consider a potential problem in the half-space dened by z 0, with Dirichlet boundary conditions on the plane z = 0 (and at innity). Problem.7 Consier otentil roblem in the hlf-sce ene by z 0, with Dirichlet bounry conitions on the lne z 0 (n t innity)..7.. Write own the rorite Green function G(~x; ~x 0 ). G D (~x; ~x 0 ) (x x 0 ) (x

More information

Version 001 HW#6 - Electromagnetism arts (00224) 1

Version 001 HW#6 - Electromagnetism arts (00224) 1 Version 001 HW#6 - Electromgnetism rts (00224) 1 This print-out should hve 11 questions. Multiple-choice questions my continue on the next column or pge find ll choices efore nswering. rightest Light ul

More information

Physics 1B schedule Winter Instructor: D.N. Basov Ch18: 1,3,5,7,13,17,21,26,31,33,35,

Physics 1B schedule Winter Instructor: D.N. Basov  Ch18: 1,3,5,7,13,17,21,26,31,33,35, Week 1:Jn 5 : Jn 1 Physics 1B scheule Winter 009. Instructor: D.N. Bsov bsov@ucs.eu Mon We Friy Lecture: the Electric fiel Lecture: Intro, 15.1-15.3 Lecture: The oulomb lw, Lecture: Electric Flux & Guss

More information

ELETROSTATICS Part II: BASICS

ELETROSTATICS Part II: BASICS GROWING WITH ONPTS: Physics LTROSTTIS Prt II: SIS Presence of chrge on ny oject cretes n electrosttic fiel roun it n in turn n electricl potentil is experience roun the oject. This phenomenon hs foun ppliction

More information

Reading from Young & Freedman: For this topic, read the introduction to chapter 24 and sections 24.1 to 24.5.

Reading from Young & Freedman: For this topic, read the introduction to chapter 24 and sections 24.1 to 24.5. PHY1 Electricity Topic 5 (Lectures 7 & 8) pcitors nd Dielectrics In this topic, we will cover: 1) pcitors nd pcitnce ) omintions of pcitors Series nd Prllel 3) The energy stored in cpcitor 4) Dielectrics

More information

DIRECT CURRENT CIRCUITS

DIRECT CURRENT CIRCUITS DRECT CURRENT CUTS ELECTRC POWER Consider the circuit shown in the Figure where bttery is connected to resistor R. A positive chrge dq will gin potentil energy s it moves from point to point b through

More information

Physics 24 Exam 1 February 18, 2014

Physics 24 Exam 1 February 18, 2014 Exm Totl / 200 Physics 24 Exm 1 Februry 18, 2014 Printed Nme: Rec. Sec. Letter: Five multiple choice questions, 8 points ech. Choose the best or most nerly correct nswer. 1. The totl electric flux pssing

More information

CAPACITORS AND DIELECTRICS

CAPACITORS AND DIELECTRICS Importnt Definitions nd Units Cpcitnce: CAPACITORS AND DIELECTRICS The property of system of electricl conductors nd insultors which enbles it to store electric chrge when potentil difference exists between

More information

Phys102 General Physics II

Phys102 General Physics II Phys1 Generl Physics II pcitnce pcitnce pcitnce definition nd exmples. Dischrge cpcitor irculr prllel plte cpcitior ylindricl cpcitor oncentric sphericl cpcitor Dielectric Sls 1 pcitnce Definition of cpcitnce

More information

TIME VARYING MAGNETIC FIELDS AND MAXWELL S EQUATIONS

TIME VARYING MAGNETIC FIELDS AND MAXWELL S EQUATIONS TIME VARYING MAGNETIC FIED AND MAXWE EQUATION Introuction Electrosttic fiels re usull prouce b sttic electric chrges wheres mgnetosttic fiels re ue to motion of electric chrges with uniform velocit (irect

More information

Designing Information Devices and Systems I Discussion 8B

Designing Information Devices and Systems I Discussion 8B Lst Updted: 2018-10-17 19:40 1 EECS 16A Fll 2018 Designing Informtion Devices nd Systems I Discussion 8B 1. Why Bother With Thévenin Anywy? () Find Thévenin eqiuvlent for the circuit shown elow. 2kΩ 5V

More information

Sample Exam 5 - Skip Problems 1-3

Sample Exam 5 - Skip Problems 1-3 Smple Exm 5 - Skip Problems 1-3 Physics 121 Common Exm 2: Fll 2010 Nme (Print): 4 igit I: Section: Honors Code Pledge: As n NJIT student I, pledge to comply with the provisions of the NJIT Acdemic Honor

More information

Homework Assignment 9 Solution Set

Homework Assignment 9 Solution Set Homework Assignment 9 Solution Set PHYCS 44 3 Mrch, 4 Problem (Griffiths 77) The mgnitude of the current in the loop is loop = ε induced = Φ B = A B = π = π µ n (µ n) = π µ nk According to Lense s Lw this

More information

IMPORTANT. Read these directions carefully:

IMPORTANT. Read these directions carefully: Physics 208: Electricity nd Mgnetism Finl Exm, Secs. 506 510. 7 My. 2004 Instructor: Dr. George R. Welch, 415 Engineering-Physics, 845-7737 Print your nme netly: Lst nme: First nme: Sign your nme: Plese

More information

JEE Main Online Exam 2019

JEE Main Online Exam 2019 JEE Min Online Ex 09 [Meory Bse Pper] uestions & Answer 9 th Jnury 09 Shift - I PHYSICS. Deterine the tio of root en squre spee of Heliu to Aron s t the se teperture (M He = 4U & M Ar = 40 U) () 0 () 0

More information

Lecture 10: PN Junction & MOS Capacitors

Lecture 10: PN Junction & MOS Capacitors Lecture 10: P Junction & MOS Cpcitors Prof. iknej eprtment of EECS Lecture Outline Review: P Junctions Therml Equilibrium P Junctions with Reverse Bis (3.3-3.6 MOS Cpcitors (3.7-3.9: Accumultion, epletion,

More information

Problem Solving 7: Faraday s Law Solution

Problem Solving 7: Faraday s Law Solution MASSACHUSETTS NSTTUTE OF TECHNOLOGY Deprtment of Physics: 8.02 Prolem Solving 7: Frdy s Lw Solution Ojectives 1. To explore prticulr sitution tht cn led to chnging mgnetic flux through the open surfce

More information

Hung problem # 3 April 10, 2011 () [4 pts.] The electric field points rdilly inwrd [1 pt.]. Since the chrge distribution is cylindriclly symmetric, we pick cylinder of rdius r for our Gussin surfce S.

More information

Today in Physics 122: work, energy and potential in electrostatics

Today in Physics 122: work, energy and potential in electrostatics Tody in Physics 1: work, energy nd potentil in electrosttics Leftovers Perfect conductors Fields from chrges distriuted on perfect conductors Guss s lw for grvity Work nd energy Electrosttic potentil energy,

More information

Chapter 7 Steady Magnetic Field. september 2016 Microwave Laboratory Sogang University

Chapter 7 Steady Magnetic Field. september 2016 Microwave Laboratory Sogang University Chpter 7 Stedy Mgnetic Field september 2016 Microwve Lbortory Sogng University Teching point Wht is the mgnetic field? Biot-Svrt s lw: Coulomb s lw of Mgnetic field Stedy current: current flow is independent

More information

F is on a moving charged particle. F = 0, if B v. (sin " = 0)

F is on a moving charged particle. F = 0, if B v. (sin  = 0) F is on moving chrged prticle. Chpter 29 Mgnetic Fields Ech mgnet hs two poles, north pole nd south pole, regrdless the size nd shpe of the mgnet. Like poles repel ech other, unlike poles ttrct ech other.

More information

Lecture 1: Electrostatic Fields

Lecture 1: Electrostatic Fields Lecture 1: Electrosttic Fields Instructor: Dr. Vhid Nyyeri Contct: nyyeri@iust.c.ir Clss web site: http://webpges.iust.c. ir/nyyeri/courses/bee 1.1. Coulomb s Lw Something known from the ncient time (here

More information

Homework Assignment 6 Solution Set

Homework Assignment 6 Solution Set Homework Assignment 6 Solution Set PHYCS 440 Mrch, 004 Prolem (Griffiths 4.6 One wy to find the energy is to find the E nd D fields everywhere nd then integrte the energy density for those fields. We know

More information

Summary of equations chapters 7. To make current flow you have to push on the charges. For most materials:

Summary of equations chapters 7. To make current flow you have to push on the charges. For most materials: Summry of equtions chpters 7. To mke current flow you hve to push on the chrges. For most mterils: J E E [] The resistivity is prmeter tht vries more thn 4 orders of mgnitude between silver (.6E-8 Ohm.m)

More information

AP Calculus BC Review Applications of Integration (Chapter 6) noting that one common instance of a force is weight

AP Calculus BC Review Applications of Integration (Chapter 6) noting that one common instance of a force is weight AP Clculus BC Review Applictions of Integrtion (Chpter Things to Know n Be Able to Do Fin the re between two curves by integrting with respect to x or y Fin volumes by pproximtions with cross sections:

More information

Physics 202, Lecture 10. Basic Circuit Components

Physics 202, Lecture 10. Basic Circuit Components Physics 202, Lecture 10 Tody s Topics DC Circuits (Chpter 26) Circuit components Kirchhoff s Rules RC Circuits Bsic Circuit Components Component del ttery, emf Resistor Relistic Bttery (del) wire Cpcitor

More information

332:221 Principles of Electrical Engineering I Fall Hourly Exam 2 November 6, 2006

332:221 Principles of Electrical Engineering I Fall Hourly Exam 2 November 6, 2006 2:221 Principles of Electricl Engineering I Fll 2006 Nme of the student nd ID numer: Hourly Exm 2 Novemer 6, 2006 This is closed-ook closed-notes exm. Do ll your work on these sheets. If more spce is required,

More information

Reference. Vector Analysis Chapter 2

Reference. Vector Analysis Chapter 2 Reference Vector nlsis Chpter Sttic Electric Fields (3 Weeks) Chpter 3.3 Coulomb s Lw Chpter 3.4 Guss s Lw nd pplictions Chpter 3.5 Electric Potentil Chpter 3.6 Mteril Medi in Sttic Electric Field Chpter

More information

Electric Potential. Electric Potential Video: Section 1 4. Electric Fields and WORK 9/3/2014. IB Physics SL (Year Two) Wednesday, September 3, 2014

Electric Potential. Electric Potential Video: Section 1 4. Electric Fields and WORK 9/3/2014. IB Physics SL (Year Two) Wednesday, September 3, 2014 9/3/014 lectric Potentil IB Physics SL (Yer Two) Wenesy, Septemer 3, 014 lectric Potentil Vieo: Section 1 4 lectric Fiels n WORK In orer to rin two like chres ner ech other work must e one. In orer to

More information

Chapter 6 Electrostatic Boundary Value Problems. Dr. Talal Skaik

Chapter 6 Electrostatic Boundary Value Problems. Dr. Talal Skaik Chpter 6 Electrosttic Boundry lue Problems Dr. Tll Skik 1 1 Introduction In previous chpters, E ws determined by coulombs lw or Guss lw when chrge distribution is known, or potentil is known throughout

More information

Jackson 2.7 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Jackson 2.7 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell Jckson.7 Homework Problem Solution Dr. Christopher S. Bird University of Msschusetts Lowell PROBLEM: Consider potentil problem in the hlf-spce defined by, with Dirichlet boundry conditions on the plne

More information

Math 142: Final Exam Formulas to Know

Math 142: Final Exam Formulas to Know Mth 4: Finl Exm Formuls to Know This ocument tells you every formul/strtegy tht you shoul know in orer to o well on your finl. Stuy it well! The helpful rules/formuls from the vrious review sheets my be

More information

Lecture 13 - Linking E, ϕ, and ρ

Lecture 13 - Linking E, ϕ, and ρ Lecture 13 - Linking E, ϕ, nd ρ A Puzzle... Inner-Surfce Chrge Density A positive point chrge q is locted off-center inside neutrl conducting sphericl shell. We know from Guss s lw tht the totl chrge on

More information

#6A&B Magnetic Field Mapping

#6A&B Magnetic Field Mapping #6A& Mgnetic Field Mpping Gol y performing this lb experiment, you will: 1. use mgnetic field mesurement technique bsed on Frdy s Lw (see the previous experiment),. study the mgnetic fields generted by

More information

E Problems for Unit I

E Problems for Unit I Physics 212E Chowry Clssicl n Moern Physics Spring 2005 E Problems for Unit I E1: Chrge Blloon. Chrge up blloon, n etermine whether it hs T chrge or B chrge. Describe your experiment. Next, ischrge the

More information

Designing Information Devices and Systems I Spring 2018 Homework 7

Designing Information Devices and Systems I Spring 2018 Homework 7 EECS 16A Designing Informtion Devices nd Systems I Spring 2018 omework 7 This homework is due Mrch 12, 2018, t 23:59. Self-grdes re due Mrch 15, 2018, t 23:59. Sumission Formt Your homework sumission should

More information

Problems for HW X. C. Gwinn. November 30, 2009

Problems for HW X. C. Gwinn. November 30, 2009 Problems for HW X C. Gwinn November 30, 2009 These problems will not be grded. 1 HWX Problem 1 Suppose thn n object is composed of liner dielectric mteril, with constnt reltive permittivity ɛ r. The object

More information

Physics 121 Sample Common Exam 1 NOTE: ANSWERS ARE ON PAGE 8. Instructions:

Physics 121 Sample Common Exam 1 NOTE: ANSWERS ARE ON PAGE 8. Instructions: Physics 121 Smple Common Exm 1 NOTE: ANSWERS ARE ON PAGE 8 Nme (Print): 4 Digit ID: Section: Instructions: Answer ll questions. uestions 1 through 16 re multiple choice questions worth 5 points ech. You

More information

Resistors. Consider a uniform cylinder of material with mediocre to poor to pathetic conductivity ( )

Resistors. Consider a uniform cylinder of material with mediocre to poor to pathetic conductivity ( ) 10/25/2005 Resistors.doc 1/7 Resistors Consider uniform cylinder of mteril with mediocre to poor to r. pthetic conductivity ( ) ˆ This cylinder is centered on the -xis, nd hs length. The surfce re of the

More information

Lecture 5 Capacitance Ch. 25

Lecture 5 Capacitance Ch. 25 Lecture 5 pcitnce h. 5 rtoon - pcitnce definition nd exmples. Opening Demo - Dischrge cpcitor Wrm-up prolem Physlet Topics pcitnce Prllel Plte pcitor Dielectrics nd induced dipoles oxil cle, oncentric

More information

Things to Memorize: A Partial List. January 27, 2017

Things to Memorize: A Partial List. January 27, 2017 Things to Memorize: A Prtil List Jnury 27, 2017 Chpter 2 Vectors - Bsic Fcts A vector hs mgnitude (lso clled size/length/norm) nd direction. It does not hve fixed position, so the sme vector cn e moved

More information

This final is a three hour open book, open notes exam. Do all four problems.

This final is a three hour open book, open notes exam. Do all four problems. Physics 55 Fll 27 Finl Exm Solutions This finl is three hour open book, open notes exm. Do ll four problems. [25 pts] 1. A point electric dipole with dipole moment p is locted in vcuum pointing wy from

More information

Instructor(s): Acosta/Woodard PHYSICS DEPARTMENT PHY 2049, Fall 2015 Midterm 1 September 29, 2015

Instructor(s): Acosta/Woodard PHYSICS DEPARTMENT PHY 2049, Fall 2015 Midterm 1 September 29, 2015 Instructor(s): Acost/Woodrd PHYSICS DEPATMENT PHY 049, Fll 015 Midterm 1 September 9, 015 Nme (print): Signture: On m honor, I hve neither given nor received unuthorized id on this emintion. YOU TEST NUMBE

More information

Conducting Ellipsoid and Circular Disk

Conducting Ellipsoid and Circular Disk 1 Problem Conducting Ellipsoid nd Circulr Disk Kirk T. McDonld Joseph Henry Lbortories, Princeton University, Princeton, NJ 08544 (September 1, 00) Show tht the surfce chrge density σ on conducting ellipsoid,

More information

7.1 Integral as Net Change and 7.2 Areas in the Plane Calculus

7.1 Integral as Net Change and 7.2 Areas in the Plane Calculus 7.1 Integrl s Net Chnge nd 7. Ares in the Plne Clculus 7.1 INTEGRAL AS NET CHANGE Notecrds from 7.1: Displcement vs Totl Distnce, Integrl s Net Chnge We hve lredy seen how the position of n oject cn e

More information

Chapter 36. a λ 2 2. (minima-dark fringes) Diffraction and the Wave Theory of Light. Diffraction by a Single Slit: Locating the Minima, Cont'd

Chapter 36. a λ 2 2. (minima-dark fringes) Diffraction and the Wave Theory of Light. Diffraction by a Single Slit: Locating the Minima, Cont'd Chpter 36 Diffrction In Chpter 35, we sw how light bes pssing through ifferent slits cn interfere with ech other n how be fter pssing through single slit flres-iffrcts- in Young's experient. Diffrction

More information

Review of Gaussian Quadrature method

Review of Gaussian Quadrature method Review of Gussin Qudrture method Nsser M. Asi Spring 006 compiled on Sundy Decemer 1, 017 t 09:1 PM 1 The prolem To find numericl vlue for the integrl of rel vlued function of rel vrile over specific rnge

More information

VI MAGNETIC EFFECTS OF CURRENTS

VI MAGNETIC EFFECTS OF CURRENTS V MAGNETC EFFECTS OF CURRENTS 6.1 Ampère s investigtions t ws Ampère who first estblishe n quntifie the force tht occurs between two currentcrrying conuctors. This is not quite s simple s the Coulomb lw

More information

Conservation Laws and Poynting

Conservation Laws and Poynting Chpter 11 Conservtion Lws n Poynting Vector In electrosttics n mgnetosttics one ssocites n energy ensity to the presence of the fiels U = 1 2 E2 + 1 2 B2 = (electric n mgnetic energy)/volume (11.1) In

More information

EMF Notes 9; Electromagnetic Induction ELECTROMAGNETIC INDUCTION

EMF Notes 9; Electromagnetic Induction ELECTROMAGNETIC INDUCTION EMF Notes 9; Electromgnetic nduction EECTOMAGNETC NDUCTON (Y&F Chpters 3, 3; Ohnin Chpter 3) These notes cover: Motionl emf nd the electric genertor Electromgnetic nduction nd Frdy s w enz s w nduced electric

More information

Mathematics. Area under Curve.

Mathematics. Area under Curve. Mthemtics Are under Curve www.testprepkrt.com Tle of Content 1. Introduction.. Procedure of Curve Sketching. 3. Sketching of Some common Curves. 4. Are of Bounded Regions. 5. Sign convention for finding

More information

PHYS 601 HW3 Solution

PHYS 601 HW3 Solution 3.1 Norl force using Lgrnge ultiplier Using the center of the hoop s origin, we will describe the position of the prticle with conventionl polr coordintes. The Lgrngin is therefore L = 1 2 ṙ2 + 1 2 r2

More information

University of Alabama Department of Physics and Astronomy. PH126: Exam 1

University of Alabama Department of Physics and Astronomy. PH126: Exam 1 University of Albm Deprtment of Physics nd Astronomy PH 16 LeClir Fll 011 Instructions: PH16: Exm 1 1. Answer four of the five questions below. All problems hve equl weight.. You must show your work for

More information

Designing Information Devices and Systems I Spring 2018 Homework 8

Designing Information Devices and Systems I Spring 2018 Homework 8 EECS 16A Designing Informtion Devices nd Systems I Spring 2018 Homework 8 This homework is due Mrch 19, 2018, t 23:59. Self-grdes re due Mrch 22, 2018, t 23:59. Sumission Formt Your homework sumission

More information

APPENDIX. Precalculus Review D.1. Real Numbers and the Real Number Line

APPENDIX. Precalculus Review D.1. Real Numbers and the Real Number Line APPENDIX D Preclculus Review APPENDIX D.1 Rel Numers n the Rel Numer Line Rel Numers n the Rel Numer Line Orer n Inequlities Asolute Vlue n Distnce Rel Numers n the Rel Numer Line Rel numers cn e represente

More information

mywbut.com Lesson 13 Representation of Sinusoidal Signal by a Phasor and Solution of Current in R-L-C Series Circuits

mywbut.com Lesson 13 Representation of Sinusoidal Signal by a Phasor and Solution of Current in R-L-C Series Circuits wut.co Lesson 3 Representtion of Sinusoil Signl Phsor n Solution of Current in R-L-C Series Circuits wut.co In the lst lesson, two points were escrie:. How sinusoil voltge wvefor (c) is generte?. How the

More information

Review & Summary. Electric Potential The electric potential V at a point P in the electric field of a charged object is

Review & Summary. Electric Potential The electric potential V at a point P in the electric field of a charged object is 77 eview & Summr Electric otentil The electric potentil V t point in the electric fiel of chrge object is W V W q U q, (24-2) where is the work tht woul be one b the electric force on positive test chrge

More information

Capacitance and Dielectrics

Capacitance and Dielectrics 2.2 This is the Nerest One He 803 P U Z Z L E R Mny electronic components crry wrning lel like this one. Wht is there insie these evices tht mkes them so ngerous? Why wouln t you e sfe if you unplugge

More information

Version 001 HW#6 - Electromagnetic Induction arts (00224) 1 3 T

Version 001 HW#6 - Electromagnetic Induction arts (00224) 1 3 T Version 001 HW#6 - lectromgnetic Induction rts (00224) 1 This print-out should hve 12 questions. Multiple-choice questions my continue on the next column or pge find ll choices efore nswering. AP 1998

More information

Section 6.3 The Fundamental Theorem, Part I

Section 6.3 The Fundamental Theorem, Part I Section 6.3 The Funmentl Theorem, Prt I (3//8) Overview: The Funmentl Theorem of Clculus shows tht ifferentition n integrtion re, in sense, inverse opertions. It is presente in two prts. We previewe Prt

More information

Potential Due to Point Charges The electric potential due to a single point charge at a distance r from that point charge is

Potential Due to Point Charges The electric potential due to a single point charge at a distance r from that point charge is 646 CHATE 24 ELECTIC OTENTIAL Electric otentil Energ The chnge U in the electric potentil energ U of point chrge s the chrge moves from n initil point i to finl point f in n electric fiel is U U f U i

More information

Phys 4321 Final Exam December 14, 2009

Phys 4321 Final Exam December 14, 2009 Phys 4321 Finl Exm December 14, 2009 You my NOT use the text book or notes to complete this exm. You nd my not receive ny id from nyone other tht the instructor. You will hve 3 hours to finish. DO YOUR

More information

- 5 - TEST 2. This test is on the final sections of this session's syllabus and. should be attempted by all students.

- 5 - TEST 2. This test is on the final sections of this session's syllabus and. should be attempted by all students. - 5 - TEST 2 This test is on the finl sections of this session's syllbus nd should be ttempted by ll students. Anything written here will not be mrked. - 6 - QUESTION 1 [Mrks 22] A thin non-conducting

More information

Version 001 Exam 1 shih (57480) 1

Version 001 Exam 1 shih (57480) 1 Version 001 Exm 1 shih 57480) 1 This print-out should hve 6 questions. Multiple-choice questions my continue on the next column or pge find ll choices before nswering. Holt SF 17Rev 1 001 prt 1 of ) 10.0

More information

Jackson 2.26 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Jackson 2.26 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell Jckson 2.26 Homework Problem Solution Dr. Christopher S. Bird University of Msschusetts Lowell PROBLEM: The two-dimensionl region, ρ, φ β, is bounded by conducting surfces t φ =, ρ =, nd φ = β held t zero

More information

ECE341 Test 2 Your Name: Tue 11/20/2018

ECE341 Test 2 Your Name: Tue 11/20/2018 ECE341 Test Your Name: Tue 11/0/018 Problem 1 (1 The center of a soli ielectric sphere with raius R is at the origin of the coorinate. The ielectric constant of the sphere is. The sphere is homogeneously

More information

Math 8 Winter 2015 Applications of Integration

Math 8 Winter 2015 Applications of Integration Mth 8 Winter 205 Applictions of Integrtion Here re few importnt pplictions of integrtion. The pplictions you my see on n exm in this course include only the Net Chnge Theorem (which is relly just the Fundmentl

More information

Special Relativity solved examples using an Electrical Analog Circuit

Special Relativity solved examples using an Electrical Analog Circuit 1-1-15 Specil Reltivity solved exmples using n Electricl Anlog Circuit Mourici Shchter mourici@gmil.com mourici@wll.co.il ISRAE, HOON 54-54855 Introduction In this pper, I develop simple nlog electricl

More information

5-4 Electrostatic Boundary Value Problems

5-4 Electrostatic Boundary Value Problems 11/8/4 Section 54 Electrostatic Bounary Value Problems blank 1/ 5-4 Electrostatic Bounary Value Problems Reaing Assignment: pp. 149-157 Q: A: We must solve ifferential equations, an apply bounary conitions

More information

Theoretische Physik 2: Elektrodynamik (Prof. A.-S. Smith) Home assignment 4

Theoretische Physik 2: Elektrodynamik (Prof. A.-S. Smith) Home assignment 4 WiSe 1 8.1.1 Prof. Dr. A.-S. Smith Dipl.-Phys. Ellen Fischermeier Dipl.-Phys. Mtthis Sb m Lehrstuhl für Theoretische Physik I Deprtment für Physik Friedrich-Alexnder-Universität Erlngen-Nürnberg Theoretische

More information

Discussion Question 1A P212, Week 1 P211 Review: 2-D Motion with Uniform Force

Discussion Question 1A P212, Week 1 P211 Review: 2-D Motion with Uniform Force Discussion Question 1A P1, Week 1 P11 Review: -D otion with Unifor Force The thetics nd phsics of the proble below re siilr to probles ou will encounter in P1, where the force is due to the ction of n

More information

September 13 Homework Solutions

September 13 Homework Solutions College of Engineering nd Computer Science Mechnicl Engineering Deprtment Mechnicl Engineering 5A Seminr in Engineering Anlysis Fll Ticket: 5966 Instructor: Lrry Cretto Septemer Homework Solutions. Are

More information

ECE 3318 Applied Electricity and Magnetism. Spring Prof. David R. Jackson Dept. of ECE. Notes 31 Inductance

ECE 3318 Applied Electricity and Magnetism. Spring Prof. David R. Jackson Dept. of ECE. Notes 31 Inductance ECE 3318 Applied Electricity nd Mgnetism Spring 018 Prof. Dvid R. Jckson Dept. of ECE Notes 31 nductnce 1 nductnce ˆn S Single turn coil The current produces flux though the loop. Definition of inductnce:

More information

UNIT 4:Capacitors and Dielectric

UNIT 4:Capacitors and Dielectric UNIT 4:apacitors an Dielectric SF7 4. apacitor A capacitor is a evice that is capable of storing electric charges or electric potential energy. It is consist of two conucting plates separate by a small

More information

I 3 2 = I I 4 = 2A

I 3 2 = I I 4 = 2A ECE 210 Eletril Ciruit Anlysis University of llinois t Chigo 2.13 We re ske to use KCL to fin urrents 1 4. The key point in pplying KCL in this prolem is to strt with noe where only one of the urrents

More information

ax bx c (2) x a x a x a 1! 2!! gives a useful way of approximating a function near to some specific point x a, giving a power-series expansion in x

ax bx c (2) x a x a x a 1! 2!! gives a useful way of approximating a function near to some specific point x a, giving a power-series expansion in x Elementr mthemticl epressions Qurtic equtions b b b The solutions to the generl qurtic eqution re (1) b c () b b 4c (3) Tlor n Mclurin series (power-series epnsion) The Tlor series n n f f f n 1!! n! f

More information

Designing Information Devices and Systems I Anant Sahai, Ali Niknejad. This homework is due October 19, 2015, at Noon.

Designing Information Devices and Systems I Anant Sahai, Ali Niknejad. This homework is due October 19, 2015, at Noon. EECS 16A Designing Informtion Devices nd Systems I Fll 2015 Annt Shi, Ali Niknejd Homework 7 This homework is due Octoer 19, 2015, t Noon. 1. Circuits with cpcitors nd resistors () Find the voltges cross

More information

Simple Harmonic Motion I Sem

Simple Harmonic Motion I Sem Simple Hrmonic Motion I Sem Sllus: Differentil eqution of liner SHM. Energ of prticle, potentil energ nd kinetic energ (derivtion), Composition of two rectngulr SHM s hving sme periods, Lissjous figures.

More information

Candidates must show on each answer book the type of calculator used.

Candidates must show on each answer book the type of calculator used. UNIVERSITY OF EAST ANGLIA School of Mthemtics My/June UG Exmintion 2007 2008 ELECTRICITY AND MAGNETISM Time llowed: 3 hours Attempt FIVE questions. Cndidtes must show on ech nswer book the type of clcultor

More information

x ) dx dx x sec x over the interval (, ).

x ) dx dx x sec x over the interval (, ). Curve on 6 For -, () Evlute the integrl, n (b) check your nswer by ifferentiting. ( ). ( ). ( ).. 6. sin cos 7. sec csccot 8. sec (sec tn ) 9. sin csc. Evlute the integrl sin by multiplying the numertor

More information

CAPACITANCE: CHAPTER 24. ELECTROSTATIC ENERGY and CAPACITANCE. Capacitance and capacitors Storage of electrical energy. + Example: A charged spherical

CAPACITANCE: CHAPTER 24. ELECTROSTATIC ENERGY and CAPACITANCE. Capacitance and capacitors Storage of electrical energy. + Example: A charged spherical CAPACITANCE: CHAPTER 24 ELECTROSTATIC ENERGY an CAPACITANCE Capacitance an capacitors Storage of electrical energy Energy ensity of an electric fiel Combinations of capacitors In parallel In series Dielectrics

More information