Fidelity and trace norm

Size: px
Start display at page:

Download "Fidelity and trace norm"

Transcription

1 Fidelity and trace norm In this lecture we will see two simple examples of semidefinite programs for quantities that are interesting in the theory of quantum information: the first is the trace norm of a given operator and the second is the fidelity between two positive semidefinite operators. When considering both of these semidefinite programming formulations, we will make use of a lemma that will come up several more times throughout the course; it gives a precise characterization of the relationship between the blocks of any 2-by-2 positive semidefinite block operator. 4. Trace norm Suppose X and Y are complex Euclidean spaces and A LY, X is an arbitrary operator. By the singular value decomposition theorem, one may always write A = r s k x k y k 4. k= for r = ranka and for some choice of orthonormal sets {x,..., x r } X and {y,..., y r } Y and positive real numbers s,..., s r which we always assume are ordered from largest to smallest, so s s 2 s r > 0. The values s,..., s r are the singular values of A, and up to their ordering are uniquely determined by A. The trace norm of A, which is denoted A, is defined as the sum of the singular values of A: A = s + + s r. 4.2 There are other, equivalent expressions of the trace norm, such as A = Tr AA = Tr A A 4.3 and A = max { B, A : B LY, X, B }. 4.4

2 CS 867/IC 890 Semidefinite Programming in uantum Information The second expression may alternatively be written as A = max { Re B, A : B LY, X, B } ; 4.5 it always holds that Re B, A B, A, and for an arbitrary choice of B one can choose a complex number γ with γ =, and therefore γb = B, such that Re γb, A = B, A. We ll write down an SDP for the trace norm of a given operator A momentarily, but first let us state and prove the lemma about block operators that was suggested above. Lemma 4.. Let X and Y be complex Euclidean spaces, let P PosX and PosY be positive semidefinite operators, and let X LY, X be an operator. It holds that P X X PosX Y 4.6 if and only if X = PK for K LY, X satisfying K. Proof. Suppose first that X = PK for K LY, X being an operator for which K. It follows that KK X, and therefore 0 PK K P = For the reverse implication, assume PKK P X P X X X. 4.7 P X X PosX Y, 4.8 and define K = P + X Here P + and + refer to the Moore Penrose pseudo-inverses of P and, respectively. For a case such as this, where P and are positive semidefinite, they may be obtained by taking a spectral decomposition of either P or and replacing each nonzero eigenvalue by its reciprocal. It will be proved that X = PK and K. Observe first that, for every Hermitian operator H HermX, the block operator H 0 P X H 0 HPH HX 0 X = 0 X H 2 4.0

3 is positive semidefinite. In particular, for H = Π kerp being the projection onto the kernel of P, one has that the operator 0 Π kerp X X 4. Π kerp is positive semidefinite, which implies that Π kerp X = 0, and therefore Π imp X = X. Through a similar argument, one finds that XΠ im = X. It therefore follows that PK = ΠimPXΠ im = X. 4.2 Next, note that x Px x Xy x 0 P X x 0 = y X x y y 0 y X y for every choice of vectors x X and y Y. Setting x = P + u and y = + v 4.4 for arbitrarily chosen unit vectors u X and v Y, one finds that u Kv u Π v K imp u u Kv u v K u v Π im v and therefore u Kv. As this inequality holds for all unit vectors u and v, it follows that K, as required. Now we can devise an SDP whose optimal value is A for a given operator A LY, X. The primal problem, in a slightly simplified form, will be the following: maximize: Primal problem 2 K, A + 2 K, A X K 0, K Y K LY, X. The optimal value of this primal form is evidently A, because the objective function can alternatively be expressed as Re K, A, and by the lemma above K is free to range over all elements of LY, X with spectral norm at most. 3

4 CS 867/IC 890 Semidefinite Programming in uantum Information The primal problem above can be matched to the rigid formal definition of semidefinite programs we have adopted by first defining Φ TX Y as X X 0 Φ = 4.6 Y 0 Y for all X LX and Y LY and the dots representing unnamed elements of LY, X or LX, Y that get zeroed out by the map. The primal problem above is then equivalent to the primal problem of the semidefinite program Φ, 2 0 A A 0, X 0 0 Y. 4.7 The dual problem is particularly easy to calculate for this semidefinite program because Φ is its own adjoint. After just a bit of simplification we obtain the following problem: minimize: Dual problem TrX + TrY X 0 0 Y 2 0 A A 0, X HermX, Y HermY. We can further simplify this problem by first noting that we must have X PosX and Y PosY for every feasible X and Y; and by setting P = 2X and = 2Y we get the following problem statement: minimize: Dual problem 2 TrP + 2 Tr P A A 0, P PosX, PosY. If you think about a singular value decomposition r A = s k x k y k 4.8 k= of A, then the dual problem makes perfect sense: we can take P = r s k x k x r k and = s k y k y k 4.9 k= k= to obtain a feasible solution whose objective value is A, and by weak duality this is the best we can do. 4

5 4.2 Fidelity The fidelity between two positive semidefinite operators P, PosX is defined as FP, = P Sometimes the fidelity is defined as this quantity squared, but we ll use the definition above, without the square. The alternative definition P FP, = Tr P 4.2 is obtained by expanding the trace norm using the expression 4.3. We will now describe a semidefinite program whose optimal value coincides with FP,. While this task is easily accomplished by applying the semidefinite program for the trace norm to the operator P, we will aim for something simpler that does not require the computation of operator square roots. The primal problem of our semidefinite program will be as follows: maximize: Primal problem 2 TrX + 2 TrX P X X 0, X LX. Notice that the objective function can alternatively be expressed as ReTrX. The lemma proved in the previous section reveals that the optimal value of the primal problem is the fidelity between P and : the operator X ranges precisely over those operators equal to PK for K LX satisfying K, and taking the maximum over all such K yields { } max Re Tr PK : K LX, K { } = max Re P, K : K LX, K { = max Re K, P } 4.22 : K LX, K = P. The primal problem above can be matched to the primal problem of a formally specified semidefinite program in a way that is quite similar to the trace norm 5

6 CS 867/IC 890 Semidefinite Programming in uantum Information semidefinite program from earlier in the lecture. More specifically, we may define a map Φ TX X exactly as in 4.6, taking Y = X so that each block is an element of LX, and then observe that the primal problem above is in agreement with the primal problem for the semidefinite program Φ, 2 0, 0 P The dual problem, after just a bit of simplification similar to the dual problem in the trace norm semidefinite program, is as follows: Dual problem minimize: 2 Y, P + Z, 2 Y 0, Z Y, Z LX. The primal problem is feasible although not strictly feasible in case P or is singular and the dual is strictly feasible, so strong duality holds by Slater s theorem. This dual problem can simplified further using the following proposition. Proposition 4.2. Let Y, Z HermX. It holds that if and only if Y, Z > 0 and Z Y. Y PosX X 4.24 Z Proof. Suppose Y, Z > 0 and Z Y. It holds that Y = Z 0 Y 0 Y 0 Z Y Y and therefore Y PosX X Z Conversely, suppose that Y PosX X Z 6

7 It holds that 0 u v Y Z u = u Yu u v v u + v Zv 4.28 v for all u, v X. If Y were not positive definite, there would exist a unit vector v for which v Yv = 0, and one could then set to obtain u = Z + v Z v Zv u, v + v, u = Z +, 4.30 which is absurd. Therefore Y > 0, and by inverting the expression above, we have Y 0 0 Y Y 0 Z Y = Y Z 0 This implies Z Y and therefore Z > 0 as required. Now, given that is positive semidefinite, it holds that, Z, Y whenever Z Y, so there would be no point in choosing any Z other than Y when aiming to minimize the dual objective function subject to that constraint. The dual problem above can therefore be phrased as follows: Dual problem minimize: 2 Y, P + 2 Y, Y > 0, Y PosX. Because we have strong duality for our semidefinite program, we obtain the following alternative characterization of the fidelity: FP, = inf Y>0 2 Y, P + 2 Y, This characterization is equivalent to Alberti s theorem, which states that FP, 2 = inf Y>0 Y, P Y, The equivalence can be established through the use of the arithmetic-geometric mean inequality. The following two theorems establish well-known properties of the fidelity function, but through proofs based on the semidefinite programming characterization we have obtained. 7

8 CS 867/IC 890 Semidefinite Programming in uantum Information Theorem 4.3. Let P 0, P, 0, PosX be positive semidefinite operators, for X a complex Euclidean space. It holds that FP 0 + P, 0 + FP 0, 0 + FP, Proof. By considering the primal problem associated with our semidefinite program, and noting that Slater s theorem implies that an optimal primal solution is always obtained, we see that we may choose operators X 0, X LX such that the block operators P0 X 0 P X X0 and 0 X 4.35 are both positive semidefinite, and such that TrX 0 = FP 0, 0 and TrX = FP, The sum of two positive semidefinite operators is positive semidefinite, and therefore P0 + P X 0 + X P0 X X 0 + X = 0 P X 0 + X0 + 0 X 4.37 is positive semidefinite. By again considering the primal problem of our semidefinite program, this time for FP 0 + P, 0 +, we find that as required. FP 0 + P, 0 + TrX 0 + X = FP 0, 0 + FP,, 4.38 Note that by combining this theorem with the fact that FλP, λ = λ FP,, we find that the fidelity is jointly concave: FλP 0 + λp, λy 0 + λy λ FP 0, Y 0 + λ FP, Y Theorem 4.4. Let X and Y be complex Euclidean spaces, let P, PosX, and let Φ CX, Y be a channel. It holds that FP, FΦP, Φ Proof. One may choose X LX so that P X X 4.4 8

9 is positive semidefinite and satisfies ReTrX = FP,. By the complete positivity of Φ, the block operator ΦP ΦX ΦP ΦX ΦX = Φ ΦX Φ 4.42 is positive semidefinite as well. By again considering the primal problem of the semidefinite program, this time for FΦP, Φ, along with the fact that Φ is trace-preserving, we find that as required. FΦP, Φ ReTrΦX = ReTrX = FP,,

Duality and alternative forms for semidefinite programs

Duality and alternative forms for semidefinite programs Lecture 2 Duality and alternative forms for semidefinite programs 2.1 Duality It is, of course, not an accident that we had that the primal and dual optimal values were equal in the previous example this

More information

Lecture 8: Semidefinite programs for fidelity and optimal measurements

Lecture 8: Semidefinite programs for fidelity and optimal measurements CS 766/QIC 80 Theory of Quantum Information (Fall 0) Lecture 8: Semidefinite programs for fidelity and optimal measurements This lecture is devoted to two examples of semidefinite programs: one is for

More information

Lecture 7: Semidefinite programming

Lecture 7: Semidefinite programming CS 766/QIC 820 Theory of Quantum Information (Fall 2011) Lecture 7: Semidefinite programming This lecture is on semidefinite programming, which is a powerful technique from both an analytic and computational

More information

Simpler semidefinite programs for completely bounded norms

Simpler semidefinite programs for completely bounded norms CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE http://cjtcs.cs.uchicago.edu/ Simpler semidefinite programs for completely bounded norms John Watrous July, 203 Abstract: The completely bounded trace and

More information

Lecture 4: Purifications and fidelity

Lecture 4: Purifications and fidelity CS 766/QIC 820 Theory of Quantum Information (Fall 2011) Lecture 4: Purifications and fidelity Throughout this lecture we will be discussing pairs of registers of the form (X, Y), and the relationships

More information

4. Algebra and Duality

4. Algebra and Duality 4-1 Algebra and Duality P. Parrilo and S. Lall, CDC 2003 2003.12.07.01 4. Algebra and Duality Example: non-convex polynomial optimization Weak duality and duality gap The dual is not intrinsic The cone

More information

Linear and non-linear programming

Linear and non-linear programming Linear and non-linear programming Benjamin Recht March 11, 2005 The Gameplan Constrained Optimization Convexity Duality Applications/Taxonomy 1 Constrained Optimization minimize f(x) subject to g j (x)

More information

Bipartite entanglement

Bipartite entanglement 6 Bipartite entanglement Entanglement is a fundamental concept in quantum information theory, considered by many to be a quintessential characteristic that distinguishes quantum systems from their classical

More information

EE 227A: Convex Optimization and Applications October 14, 2008

EE 227A: Convex Optimization and Applications October 14, 2008 EE 227A: Convex Optimization and Applications October 14, 2008 Lecture 13: SDP Duality Lecturer: Laurent El Ghaoui Reading assignment: Chapter 5 of BV. 13.1 Direct approach 13.1.1 Primal problem Consider

More information

EE/ACM Applications of Convex Optimization in Signal Processing and Communications Lecture 2

EE/ACM Applications of Convex Optimization in Signal Processing and Communications Lecture 2 EE/ACM 150 - Applications of Convex Optimization in Signal Processing and Communications Lecture 2 Andre Tkacenko Signal Processing Research Group Jet Propulsion Laboratory April 5, 2012 Andre Tkacenko

More information

Exercise Sheet 1.

Exercise Sheet 1. Exercise Sheet 1 You can download my lecture and exercise sheets at the address http://sami.hust.edu.vn/giang-vien/?name=huynt 1) Let A, B be sets. What does the statement "A is not a subset of B " mean?

More information

I.3. LMI DUALITY. Didier HENRION EECI Graduate School on Control Supélec - Spring 2010

I.3. LMI DUALITY. Didier HENRION EECI Graduate School on Control Supélec - Spring 2010 I.3. LMI DUALITY Didier HENRION henrion@laas.fr EECI Graduate School on Control Supélec - Spring 2010 Primal and dual For primal problem p = inf x g 0 (x) s.t. g i (x) 0 define Lagrangian L(x, z) = g 0

More information

1 Quantum states and von Neumann entropy

1 Quantum states and von Neumann entropy Lecture 9: Quantum entropy maximization CSE 599S: Entropy optimality, Winter 2016 Instructor: James R. Lee Last updated: February 15, 2016 1 Quantum states and von Neumann entropy Recall that S sym n n

More information

Quantum entropy and source coding

Quantum entropy and source coding 5 Quantum entropy and source coding The von Neumann entropy of a quantum state is an information-theoretic measure of the amount of randomness or uncertainty that is inherent to that state, and the quantum

More information

Lecture Note 5: Semidefinite Programming for Stability Analysis

Lecture Note 5: Semidefinite Programming for Stability Analysis ECE7850: Hybrid Systems:Theory and Applications Lecture Note 5: Semidefinite Programming for Stability Analysis Wei Zhang Assistant Professor Department of Electrical and Computer Engineering Ohio State

More information

Example: feasibility. Interpretation as formal proof. Example: linear inequalities and Farkas lemma

Example: feasibility. Interpretation as formal proof. Example: linear inequalities and Farkas lemma 4-1 Algebra and Duality P. Parrilo and S. Lall 2006.06.07.01 4. Algebra and Duality Example: non-convex polynomial optimization Weak duality and duality gap The dual is not intrinsic The cone of valid

More information

Singular Value Decomposition

Singular Value Decomposition Chapter 6 Singular Value Decomposition In Chapter 5, we derived a number of algorithms for computing the eigenvalues and eigenvectors of matrices A R n n. Having developed this machinery, we complete our

More information

Introduction to Mathematical Programming IE406. Lecture 10. Dr. Ted Ralphs

Introduction to Mathematical Programming IE406. Lecture 10. Dr. Ted Ralphs Introduction to Mathematical Programming IE406 Lecture 10 Dr. Ted Ralphs IE406 Lecture 10 1 Reading for This Lecture Bertsimas 4.1-4.3 IE406 Lecture 10 2 Duality Theory: Motivation Consider the following

More information

Lecture 1: Entropy, convexity, and matrix scaling CSE 599S: Entropy optimality, Winter 2016 Instructor: James R. Lee Last updated: January 24, 2016

Lecture 1: Entropy, convexity, and matrix scaling CSE 599S: Entropy optimality, Winter 2016 Instructor: James R. Lee Last updated: January 24, 2016 Lecture 1: Entropy, convexity, and matrix scaling CSE 599S: Entropy optimality, Winter 2016 Instructor: James R. Lee Last updated: January 24, 2016 1 Entropy Since this course is about entropy maximization,

More information

Lecture notes: Applied linear algebra Part 1. Version 2

Lecture notes: Applied linear algebra Part 1. Version 2 Lecture notes: Applied linear algebra Part 1. Version 2 Michael Karow Berlin University of Technology karow@math.tu-berlin.de October 2, 2008 1 Notation, basic notions and facts 1.1 Subspaces, range and

More information

Lagrange Duality. Daniel P. Palomar. Hong Kong University of Science and Technology (HKUST)

Lagrange Duality. Daniel P. Palomar. Hong Kong University of Science and Technology (HKUST) Lagrange Duality Daniel P. Palomar Hong Kong University of Science and Technology (HKUST) ELEC5470 - Convex Optimization Fall 2017-18, HKUST, Hong Kong Outline of Lecture Lagrangian Dual function Dual

More information

Optimal Success Bounds for Single Query Quantum Algorithms Computing the General SUM Problem

Optimal Success Bounds for Single Query Quantum Algorithms Computing the General SUM Problem Optimal Success Bounds for Single Query Quantum Algorithms Computing the General SUM Problem by Alexander Valtchev A thesis presented to the University of Waterloo in fulfillment of the thesis requirement

More information

Today: Linear Programming (con t.)

Today: Linear Programming (con t.) Today: Linear Programming (con t.) COSC 581, Algorithms April 10, 2014 Many of these slides are adapted from several online sources Reading Assignments Today s class: Chapter 29.4 Reading assignment for

More information

Applications of Linear Programming

Applications of Linear Programming Applications of Linear Programming lecturer: András London University of Szeged Institute of Informatics Department of Computational Optimization Lecture 9 Non-linear programming In case of LP, the goal

More information

Linear Algebra Massoud Malek

Linear Algebra Massoud Malek CSUEB Linear Algebra Massoud Malek Inner Product and Normed Space In all that follows, the n n identity matrix is denoted by I n, the n n zero matrix by Z n, and the zero vector by θ n An inner product

More information

Recall the convention that, for us, all vectors are column vectors.

Recall the convention that, for us, all vectors are column vectors. Some linear algebra Recall the convention that, for us, all vectors are column vectors. 1. Symmetric matrices Let A be a real matrix. Recall that a complex number λ is an eigenvalue of A if there exists

More information

E5295/5B5749 Convex optimization with engineering applications. Lecture 5. Convex programming and semidefinite programming

E5295/5B5749 Convex optimization with engineering applications. Lecture 5. Convex programming and semidefinite programming E5295/5B5749 Convex optimization with engineering applications Lecture 5 Convex programming and semidefinite programming A. Forsgren, KTH 1 Lecture 5 Convex optimization 2006/2007 Convex quadratic program

More information

3 Compact Operators, Generalized Inverse, Best- Approximate Solution

3 Compact Operators, Generalized Inverse, Best- Approximate Solution 3 Compact Operators, Generalized Inverse, Best- Approximate Solution As we have already heard in the lecture a mathematical problem is well - posed in the sense of Hadamard if the following properties

More information

Lecture 7 Spectral methods

Lecture 7 Spectral methods CSE 291: Unsupervised learning Spring 2008 Lecture 7 Spectral methods 7.1 Linear algebra review 7.1.1 Eigenvalues and eigenvectors Definition 1. A d d matrix M has eigenvalue λ if there is a d-dimensional

More information

A Short Course on Frame Theory

A Short Course on Frame Theory A Short Course on Frame Theory Veniamin I. Morgenshtern and Helmut Bölcskei ETH Zurich, 8092 Zurich, Switzerland E-mail: {vmorgens, boelcskei}@nari.ee.ethz.ch April 2, 20 Hilbert spaces [, Def. 3.-] and

More information

Time-reversal of rank-one quantum strategy functions

Time-reversal of rank-one quantum strategy functions Time-reversal of rank-one quantum strategy functions Yuan Su 1 John Watrous 2,3 1 Department of Computer Science, Institute for Advanced Computer Studies, and Joint Center for Quantum Information and Computer

More information

Elementary linear algebra

Elementary linear algebra Chapter 1 Elementary linear algebra 1.1 Vector spaces Vector spaces owe their importance to the fact that so many models arising in the solutions of specific problems turn out to be vector spaces. The

More information

Constrained Optimization and Lagrangian Duality

Constrained Optimization and Lagrangian Duality CIS 520: Machine Learning Oct 02, 2017 Constrained Optimization and Lagrangian Duality Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the lecture. They may or may

More information

Optimization for Communications and Networks. Poompat Saengudomlert. Session 4 Duality and Lagrange Multipliers

Optimization for Communications and Networks. Poompat Saengudomlert. Session 4 Duality and Lagrange Multipliers Optimization for Communications and Networks Poompat Saengudomlert Session 4 Duality and Lagrange Multipliers P Saengudomlert (2015) Optimization Session 4 1 / 14 24 Dual Problems Consider a primal convex

More information

Contents. 0.1 Notation... 3

Contents. 0.1 Notation... 3 Contents 0.1 Notation........................................ 3 1 A Short Course on Frame Theory 4 1.1 Examples of Signal Expansions............................ 4 1.2 Signal Expansions in Finite-Dimensional

More information

Optimality Conditions for Constrained Optimization

Optimality Conditions for Constrained Optimization 72 CHAPTER 7 Optimality Conditions for Constrained Optimization 1. First Order Conditions In this section we consider first order optimality conditions for the constrained problem P : minimize f 0 (x)

More information

Lecture: Duality.

Lecture: Duality. Lecture: Duality http://bicmr.pku.edu.cn/~wenzw/opt-2016-fall.html Acknowledgement: this slides is based on Prof. Lieven Vandenberghe s lecture notes Introduction 2/35 Lagrange dual problem weak and strong

More information

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 11 Luca Trevisan February 29, 2016

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 11 Luca Trevisan February 29, 2016 U.C. Berkeley CS294: Spectral Methods and Expanders Handout Luca Trevisan February 29, 206 Lecture : ARV In which we introduce semi-definite programming and a semi-definite programming relaxation of sparsest

More information

5. Duality. Lagrangian

5. Duality. Lagrangian 5. Duality Convex Optimization Boyd & Vandenberghe Lagrange dual problem weak and strong duality geometric interpretation optimality conditions perturbation and sensitivity analysis examples generalized

More information

1 Singular Value Decomposition and Principal Component

1 Singular Value Decomposition and Principal Component Singular Value Decomposition and Principal Component Analysis In these lectures we discuss the SVD and the PCA, two of the most widely used tools in machine learning. Principal Component Analysis (PCA)

More information

Lecture 7: Convex Optimizations

Lecture 7: Convex Optimizations Lecture 7: Convex Optimizations Radu Balan, David Levermore March 29, 2018 Convex Sets. Convex Functions A set S R n is called a convex set if for any points x, y S the line segment [x, y] := {tx + (1

More information

L. Vandenberghe EE236C (Spring 2016) 18. Symmetric cones. definition. spectral decomposition. quadratic representation. log-det barrier 18-1

L. Vandenberghe EE236C (Spring 2016) 18. Symmetric cones. definition. spectral decomposition. quadratic representation. log-det barrier 18-1 L. Vandenberghe EE236C (Spring 2016) 18. Symmetric cones definition spectral decomposition quadratic representation log-det barrier 18-1 Introduction This lecture: theoretical properties of the following

More information

subject to (x 2)(x 4) u,

subject to (x 2)(x 4) u, Exercises Basic definitions 5.1 A simple example. Consider the optimization problem with variable x R. minimize x 2 + 1 subject to (x 2)(x 4) 0, (a) Analysis of primal problem. Give the feasible set, the

More information

Lecture 1. 1 Conic programming. MA 796S: Convex Optimization and Interior Point Methods October 8, Consider the conic program. min.

Lecture 1. 1 Conic programming. MA 796S: Convex Optimization and Interior Point Methods October 8, Consider the conic program. min. MA 796S: Convex Optimization and Interior Point Methods October 8, 2007 Lecture 1 Lecturer: Kartik Sivaramakrishnan Scribe: Kartik Sivaramakrishnan 1 Conic programming Consider the conic program min s.t.

More information

DS-GA 1002 Lecture notes 0 Fall Linear Algebra. These notes provide a review of basic concepts in linear algebra.

DS-GA 1002 Lecture notes 0 Fall Linear Algebra. These notes provide a review of basic concepts in linear algebra. DS-GA 1002 Lecture notes 0 Fall 2016 Linear Algebra These notes provide a review of basic concepts in linear algebra. 1 Vector spaces You are no doubt familiar with vectors in R 2 or R 3, i.e. [ ] 1.1

More information

Lecture 3: Semidefinite Programming

Lecture 3: Semidefinite Programming Lecture 3: Semidefinite Programming Lecture Outline Part I: Semidefinite programming, examples, canonical form, and duality Part II: Strong Duality Failure Examples Part III: Conditions for strong duality

More information

Symmetric Matrices and Eigendecomposition

Symmetric Matrices and Eigendecomposition Symmetric Matrices and Eigendecomposition Robert M. Freund January, 2014 c 2014 Massachusetts Institute of Technology. All rights reserved. 1 2 1 Symmetric Matrices and Convexity of Quadratic Functions

More information

Convex Optimization M2

Convex Optimization M2 Convex Optimization M2 Lecture 3 A. d Aspremont. Convex Optimization M2. 1/49 Duality A. d Aspremont. Convex Optimization M2. 2/49 DMs DM par email: dm.daspremont@gmail.com A. d Aspremont. Convex Optimization

More information

Lecture 19 October 28, 2015

Lecture 19 October 28, 2015 PHYS 7895: Quantum Information Theory Fall 2015 Prof. Mark M. Wilde Lecture 19 October 28, 2015 Scribe: Mark M. Wilde This document is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike

More information

Projection methods to solve SDP

Projection methods to solve SDP Projection methods to solve SDP Franz Rendl http://www.math.uni-klu.ac.at Alpen-Adria-Universität Klagenfurt Austria F. Rendl, Oberwolfach Seminar, May 2010 p.1/32 Overview Augmented Primal-Dual Method

More information

Using Schur Complement Theorem to prove convexity of some SOC-functions

Using Schur Complement Theorem to prove convexity of some SOC-functions Journal of Nonlinear and Convex Analysis, vol. 13, no. 3, pp. 41-431, 01 Using Schur Complement Theorem to prove convexity of some SOC-functions Jein-Shan Chen 1 Department of Mathematics National Taiwan

More information

14. Duality. ˆ Upper and lower bounds. ˆ General duality. ˆ Constraint qualifications. ˆ Counterexample. ˆ Complementary slackness.

14. Duality. ˆ Upper and lower bounds. ˆ General duality. ˆ Constraint qualifications. ˆ Counterexample. ˆ Complementary slackness. CS/ECE/ISyE 524 Introduction to Optimization Spring 2016 17 14. Duality ˆ Upper and lower bounds ˆ General duality ˆ Constraint qualifications ˆ Counterexample ˆ Complementary slackness ˆ Examples ˆ Sensitivity

More information

Deep Learning Book Notes Chapter 2: Linear Algebra

Deep Learning Book Notes Chapter 2: Linear Algebra Deep Learning Book Notes Chapter 2: Linear Algebra Compiled By: Abhinaba Bala, Dakshit Agrawal, Mohit Jain Section 2.1: Scalars, Vectors, Matrices and Tensors Scalar Single Number Lowercase names in italic

More information

Lecture 8 : Eigenvalues and Eigenvectors

Lecture 8 : Eigenvalues and Eigenvectors CPS290: Algorithmic Foundations of Data Science February 24, 2017 Lecture 8 : Eigenvalues and Eigenvectors Lecturer: Kamesh Munagala Scribe: Kamesh Munagala Hermitian Matrices It is simpler to begin with

More information

Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 4

Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 4 Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 4 Instructor: Farid Alizadeh Scribe: Haengju Lee 10/1/2001 1 Overview We examine the dual of the Fermat-Weber Problem. Next we will

More information

We describe the generalization of Hazan s algorithm for symmetric programming

We describe the generalization of Hazan s algorithm for symmetric programming ON HAZAN S ALGORITHM FOR SYMMETRIC PROGRAMMING PROBLEMS L. FAYBUSOVICH Abstract. problems We describe the generalization of Hazan s algorithm for symmetric programming Key words. Symmetric programming,

More information

Moore-Penrose Conditions & SVD

Moore-Penrose Conditions & SVD ECE 275AB Lecture 8 Fall 2008 V1.0 c K. Kreutz-Delgado, UC San Diego p. 1/1 Lecture 8 ECE 275A Moore-Penrose Conditions & SVD ECE 275AB Lecture 8 Fall 2008 V1.0 c K. Kreutz-Delgado, UC San Diego p. 2/1

More information

CS-E4830 Kernel Methods in Machine Learning

CS-E4830 Kernel Methods in Machine Learning CS-E4830 Kernel Methods in Machine Learning Lecture 3: Convex optimization and duality Juho Rousu 27. September, 2017 Juho Rousu 27. September, 2017 1 / 45 Convex optimization Convex optimisation This

More information

Lecture: Duality of LP, SOCP and SDP

Lecture: Duality of LP, SOCP and SDP 1/33 Lecture: Duality of LP, SOCP and SDP Zaiwen Wen Beijing International Center For Mathematical Research Peking University http://bicmr.pku.edu.cn/~wenzw/bigdata2017.html wenzw@pku.edu.cn Acknowledgement:

More information

CHAPTER 2: CONVEX SETS AND CONCAVE FUNCTIONS. W. Erwin Diewert January 31, 2008.

CHAPTER 2: CONVEX SETS AND CONCAVE FUNCTIONS. W. Erwin Diewert January 31, 2008. 1 ECONOMICS 594: LECTURE NOTES CHAPTER 2: CONVEX SETS AND CONCAVE FUNCTIONS W. Erwin Diewert January 31, 2008. 1. Introduction Many economic problems have the following structure: (i) a linear function

More information

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Instructor: Moritz Hardt Email: hardt+ee227c@berkeley.edu Graduate Instructor: Max Simchowitz Email: msimchow+ee227c@berkeley.edu

More information

Convex Optimization M2

Convex Optimization M2 Convex Optimization M2 Lecture 8 A. d Aspremont. Convex Optimization M2. 1/57 Applications A. d Aspremont. Convex Optimization M2. 2/57 Outline Geometrical problems Approximation problems Combinatorial

More information

Support Vector Machines

Support Vector Machines Support Vector Machines Support vector machines (SVMs) are one of the central concepts in all of machine learning. They are simply a combination of two ideas: linear classification via maximum (or optimal

More information

Lecture 3: Lagrangian duality and algorithms for the Lagrangian dual problem

Lecture 3: Lagrangian duality and algorithms for the Lagrangian dual problem Lecture 3: Lagrangian duality and algorithms for the Lagrangian dual problem Michael Patriksson 0-0 The Relaxation Theorem 1 Problem: find f := infimum f(x), x subject to x S, (1a) (1b) where f : R n R

More information

Convex Optimization & Lagrange Duality

Convex Optimization & Lagrange Duality Convex Optimization & Lagrange Duality Chee Wei Tan CS 8292 : Advanced Topics in Convex Optimization and its Applications Fall 2010 Outline Convex optimization Optimality condition Lagrange duality KKT

More information

A priori bounds on the condition numbers in interior-point methods

A priori bounds on the condition numbers in interior-point methods A priori bounds on the condition numbers in interior-point methods Florian Jarre, Mathematisches Institut, Heinrich-Heine Universität Düsseldorf, Germany. Abstract Interior-point methods are known to be

More information

Linear Algebra. Min Yan

Linear Algebra. Min Yan Linear Algebra Min Yan January 2, 2018 2 Contents 1 Vector Space 7 1.1 Definition................................. 7 1.1.1 Axioms of Vector Space..................... 7 1.1.2 Consequence of Axiom......................

More information

CHARACTERIZATIONS. is pd/psd. Possible for all pd/psd matrices! Generating a pd/psd matrix: Choose any B Mn, then

CHARACTERIZATIONS. is pd/psd. Possible for all pd/psd matrices! Generating a pd/psd matrix: Choose any B Mn, then LECTURE 6: POSITIVE DEFINITE MATRICES Definition: A Hermitian matrix A Mn is positive definite (pd) if x Ax > 0 x C n,x 0 A is positive semidefinite (psd) if x Ax 0. Definition: A Mn is negative (semi)definite

More information

Quantum state discrimination with post-measurement information!

Quantum state discrimination with post-measurement information! Quantum state discrimination with post-measurement information! DEEPTHI GOPAL, CALTECH! STEPHANIE WEHNER, NATIONAL UNIVERSITY OF SINGAPORE! Quantum states! A state is a mathematical object describing the

More information

Convex Analysis and Economic Theory Winter 2018

Convex Analysis and Economic Theory Winter 2018 Division of the Humanities and Social Sciences Ec 181 KC Border Convex Analysis and Economic Theory Winter 2018 Topic 0: Vector spaces 0.1 Basic notation Here are some of the fundamental sets and spaces

More information

A Greedy Framework for First-Order Optimization

A Greedy Framework for First-Order Optimization A Greedy Framework for First-Order Optimization Jacob Steinhardt Department of Computer Science Stanford University Stanford, CA 94305 jsteinhardt@cs.stanford.edu Jonathan Huggins Department of EECS Massachusetts

More information

Convex Optimization Boyd & Vandenberghe. 5. Duality

Convex Optimization Boyd & Vandenberghe. 5. Duality 5. Duality Convex Optimization Boyd & Vandenberghe Lagrange dual problem weak and strong duality geometric interpretation optimality conditions perturbation and sensitivity analysis examples generalized

More information

Homework Set #6 - Solutions

Homework Set #6 - Solutions EE 15 - Applications of Convex Optimization in Signal Processing and Communications Dr Andre Tkacenko JPL Third Term 11-1 Homework Set #6 - Solutions 1 a The feasible set is the interval [ 4] The unique

More information

6.854J / J Advanced Algorithms Fall 2008

6.854J / J Advanced Algorithms Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 6.85J / 8.5J Advanced Algorithms Fall 008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 8.5/6.85 Advanced Algorithms

More information

Semidefinite Programming

Semidefinite Programming Semidefinite Programming Basics and SOS Fernando Mário de Oliveira Filho Campos do Jordão, 2 November 23 Available at: www.ime.usp.br/~fmario under talks Conic programming V is a real vector space h, i

More information

6-1 The Positivstellensatz P. Parrilo and S. Lall, ECC

6-1 The Positivstellensatz P. Parrilo and S. Lall, ECC 6-1 The Positivstellensatz P. Parrilo and S. Lall, ECC 2003 2003.09.02.10 6. The Positivstellensatz Basic semialgebraic sets Semialgebraic sets Tarski-Seidenberg and quantifier elimination Feasibility

More information

Semidefinite Programming Basics and Applications

Semidefinite Programming Basics and Applications Semidefinite Programming Basics and Applications Ray Pörn, principal lecturer Åbo Akademi University Novia University of Applied Sciences Content What is semidefinite programming (SDP)? How to represent

More information

The Theory of Quantum Information

The Theory of Quantum Information The Theory of Quantum Information John Watrous Institute for Quantum Computing University of Waterloo 018 John Watrous To be published by Cambridge University Press. Please note that this is a draft, pre-publication

More information

MATH 612 Computational methods for equation solving and function minimization Week # 2

MATH 612 Computational methods for equation solving and function minimization Week # 2 MATH 612 Computational methods for equation solving and function minimization Week # 2 Instructor: Francisco-Javier Pancho Sayas Spring 2014 University of Delaware FJS MATH 612 1 / 38 Plan for this week

More information

Summer School: Semidefinite Optimization

Summer School: Semidefinite Optimization Summer School: Semidefinite Optimization Christine Bachoc Université Bordeaux I, IMB Research Training Group Experimental and Constructive Algebra Haus Karrenberg, Sept. 3 - Sept. 7, 2012 Duality Theory

More information

Solving large Semidefinite Programs - Part 1 and 2

Solving large Semidefinite Programs - Part 1 and 2 Solving large Semidefinite Programs - Part 1 and 2 Franz Rendl http://www.math.uni-klu.ac.at Alpen-Adria-Universität Klagenfurt Austria F. Rendl, Singapore workshop 2006 p.1/34 Overview Limits of Interior

More information

Spectral Graph Theory Lecture 2. The Laplacian. Daniel A. Spielman September 4, x T M x. ψ i = arg min

Spectral Graph Theory Lecture 2. The Laplacian. Daniel A. Spielman September 4, x T M x. ψ i = arg min Spectral Graph Theory Lecture 2 The Laplacian Daniel A. Spielman September 4, 2015 Disclaimer These notes are not necessarily an accurate representation of what happened in class. The notes written before

More information

Notes on singular value decomposition for Math 54. Recall that if A is a symmetric n n matrix, then A has real eigenvalues A = P DP 1 A = P DP T.

Notes on singular value decomposition for Math 54. Recall that if A is a symmetric n n matrix, then A has real eigenvalues A = P DP 1 A = P DP T. Notes on singular value decomposition for Math 54 Recall that if A is a symmetric n n matrix, then A has real eigenvalues λ 1,, λ n (possibly repeated), and R n has an orthonormal basis v 1,, v n, where

More information

University of Colorado Denver Department of Mathematical and Statistical Sciences Applied Linear Algebra Ph.D. Preliminary Exam June 10, 2011

University of Colorado Denver Department of Mathematical and Statistical Sciences Applied Linear Algebra Ph.D. Preliminary Exam June 10, 2011 University of Colorado Denver Department of Mathematical and Statistical Sciences Applied Linear Algebra PhD Preliminary Exam June 2 Name: Exam Rules: This is a closed book exam Once the exam begins you

More information

An Introduction to Linear Matrix Inequalities. Raktim Bhattacharya Aerospace Engineering, Texas A&M University

An Introduction to Linear Matrix Inequalities. Raktim Bhattacharya Aerospace Engineering, Texas A&M University An Introduction to Linear Matrix Inequalities Raktim Bhattacharya Aerospace Engineering, Texas A&M University Linear Matrix Inequalities What are they? Inequalities involving matrix variables Matrix variables

More information

Matrices and Vectors. Definition of Matrix. An MxN matrix A is a two-dimensional array of numbers A =

Matrices and Vectors. Definition of Matrix. An MxN matrix A is a two-dimensional array of numbers A = 30 MATHEMATICS REVIEW G A.1.1 Matrices and Vectors Definition of Matrix. An MxN matrix A is a two-dimensional array of numbers A = a 11 a 12... a 1N a 21 a 22... a 2N...... a M1 a M2... a MN A matrix can

More information

Semidefinite Programming

Semidefinite Programming Semidefinite Programming Notes by Bernd Sturmfels for the lecture on June 26, 208, in the IMPRS Ringvorlesung Introduction to Nonlinear Algebra The transition from linear algebra to nonlinear algebra has

More information

Transmitter optimization for distributed Gaussian MIMO channels

Transmitter optimization for distributed Gaussian MIMO channels Transmitter optimization for distributed Gaussian MIMO channels Hon-Fah Chong Electrical & Computer Eng Dept National University of Singapore Email: chonghonfah@ieeeorg Mehul Motani Electrical & Computer

More information

Lecture 6: Further remarks on measurements and channels

Lecture 6: Further remarks on measurements and channels CS 766/QIC 820 Theory of Quantum Information Fall 2011) Lecture 6: Further remarks on measurements and channels In this lecture we will discuss a few loosely connected topics relating to measurements and

More information

U.C. Berkeley CS294: Beyond Worst-Case Analysis Handout 12 Luca Trevisan October 3, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Handout 12 Luca Trevisan October 3, 2017 U.C. Berkeley CS94: Beyond Worst-Case Analysis Handout 1 Luca Trevisan October 3, 017 Scribed by Maxim Rabinovich Lecture 1 In which we begin to prove that the SDP relaxation exactly recovers communities

More information

SPECTRAL THEORY EVAN JENKINS

SPECTRAL THEORY EVAN JENKINS SPECTRAL THEORY EVAN JENKINS Abstract. These are notes from two lectures given in MATH 27200, Basic Functional Analysis, at the University of Chicago in March 2010. The proof of the spectral theorem for

More information

14 Singular Value Decomposition

14 Singular Value Decomposition 14 Singular Value Decomposition For any high-dimensional data analysis, one s first thought should often be: can I use an SVD? The singular value decomposition is an invaluable analysis tool for dealing

More information

Math. H110 Answers for Final Examination December 21, :56 pm

Math. H110 Answers for Final Examination December 21, :56 pm This document was created with FrameMaker 404 Math. H110 Answers for Final Examination December 21, 2000 3:56 pm This is a CLOSED BOOK EXAM to which you may bring NO textbooks and ONE sheet of notes. Solve

More information

Spectral Theory, with an Introduction to Operator Means. William L. Green

Spectral Theory, with an Introduction to Operator Means. William L. Green Spectral Theory, with an Introduction to Operator Means William L. Green January 30, 2008 Contents Introduction............................... 1 Hilbert Space.............................. 4 Linear Maps

More information

Problem 1 (Exercise 2.2, Monograph)

Problem 1 (Exercise 2.2, Monograph) MS&E 314/CME 336 Assignment 2 Conic Linear Programming January 3, 215 Prof. Yinyu Ye 6 Pages ASSIGNMENT 2 SOLUTIONS Problem 1 (Exercise 2.2, Monograph) We prove the part ii) of Theorem 2.1 (Farkas Lemma

More information

Lecture 7: Positive Semidefinite Matrices

Lecture 7: Positive Semidefinite Matrices Lecture 7: Positive Semidefinite Matrices Rajat Mittal IIT Kanpur The main aim of this lecture note is to prepare your background for semidefinite programming. We have already seen some linear algebra.

More information

CS/Ph120 Homework 4 Solutions

CS/Ph120 Homework 4 Solutions CS/Ph10 Homework 4 Solutions November 3, 016 Problem 1: Robustness of GHZ and W states, part Solution: Due to Bolton Bailey a For the GHZ state, we have T r N GHZ N GHZ N = 1 0 N 1 0 N 1 + 1 N 1 1 N 1

More information

ECE 275A Homework #3 Solutions

ECE 275A Homework #3 Solutions ECE 75A Homework #3 Solutions. Proof of (a). Obviously Ax = 0 y, Ax = 0 for all y. To show sufficiency, note that if y, Ax = 0 for all y, then it must certainly be true for the particular value of y =

More information

4TE3/6TE3. Algorithms for. Continuous Optimization

4TE3/6TE3. Algorithms for. Continuous Optimization 4TE3/6TE3 Algorithms for Continuous Optimization (Duality in Nonlinear Optimization ) Tamás TERLAKY Computing and Software McMaster University Hamilton, January 2004 terlaky@mcmaster.ca Tel: 27780 Optimality

More information

LINEAR ALGEBRA BOOT CAMP WEEK 4: THE SPECTRAL THEOREM

LINEAR ALGEBRA BOOT CAMP WEEK 4: THE SPECTRAL THEOREM LINEAR ALGEBRA BOOT CAMP WEEK 4: THE SPECTRAL THEOREM Unless otherwise stated, all vector spaces in this worksheet are finite dimensional and the scalar field F is R or C. Definition 1. A linear operator

More information